## Topology in promise CSPs

Andrei Krokhin, Jakub Opršal, Marcin Wrochna, Standa Živný

Durham University University of Oxford, UK

## Graph coloring



Map vertices $V(G)$ to colors $\{1,2,3,4,5\}$ so that adjacent vertices get different colors.

## Promise graph coloring

## (Search version)

Given a 3-colorable graph G, find a 100-coloring.
(Decision version)
Distinguish 3-colorable graphs
from those that are not even 100-colorable.

## Promise graph coloring

(Search version)
Given a 3-colorable graph G, find a 100-coloring.
(Decision version)
Distinguish 3-colorable graphs
from those that are not even 100-colorable.

3 vs $\sqrt[5]{n}$ in poly-time Kawarabayashi, Thorup '14
3 vs 5 is NP-hard Barto, Bulín, Krokhin, Opršal '18
$c$ vs $c^{\prime}$ is NP-hard for all constants $3 \leq c \leq c^{\prime}$ ? conjecture
true assuming a variant of UGC Dinur, Mossel, Regev '05

## Promise graph coloring

(Search version)
Given a 3-colorable graph G, find a 100-coloring.
(Decision version)
Distinguish 3-colorable graphs
from those that are not even 100-colorable.
3 vs $\sqrt[5]{n}$ in poly-time Kawarabayashi, Thorup '14
3 vs 5 is NP-hard Barto, Bulín, Krokhin, Opršal '18
$c$ vs $c^{\prime}$ is NP-hard for all constants $3 \leq c \leq c^{\prime}$ ? conjecture
true assuming a variant of UGC Dinur, Mossel, Regev '05
Motivation: constraint satisfaction, hardness of apx., codes, ...

Graph homomorphism $f: G \rightarrow H$
a function $f: V(G) \rightarrow V(H)$
such that $u v \in E(G) \Longrightarrow f(u) f(v) \in E(H)$


Graph homomorphism $f: G \rightarrow H$
a function $f: V(G) \rightarrow V(H)$
such that $u v \in E(G) \Longrightarrow f(u) f(v) \in E(H)$


Graph homomorphism $f: G \rightarrow H$
a function $f: V(G) \rightarrow V(H)$
such that $u v \in E(G) \Longrightarrow f(u) f(v) \in E(H)$


We write $G \rightarrow H$ and we say $G$ is $H$-colorable.
Ex. $G \rightarrow K_{k}$ iff $G$ is $k$-colorable.

Graph homomorphism $f: G \rightarrow H$
a function $f: V(G) \rightarrow V(H)$
such that $u v \in E(G) \Longrightarrow f(u) f(v) \in E(H)$


We write $G \rightarrow H$ and we say $G$ is $H$-colorable.
Ex. $G \rightarrow K_{k}$ iff $G$ is $k$-colorable.
$\operatorname{PCSP}(G, H)$ :
Given a $G$-colorable graph, can we find an $H$-coloring?

## The conjecture for graph homomorphisms

$\operatorname{PCSP}(G, H)$ is hard?

## conj. Brakensiek, Guruswami '18

 for all non-bipartite $G, H$ such that $G \rightarrow H$.It's enough to ask about $\operatorname{PCSP}\left(C_{2 k+1}, K_{n}\right)$.

$$
\ldots C_{7} \rightarrow C_{5} \rightarrow C_{3}=K_{3} \rightarrow K_{4} \rightarrow K_{5} \rightarrow \ldots
$$

## The conjecture for graph homomorphisms

$\operatorname{PCSP}(G, H)$ is hard?
conj. Brakensiek, Guruswami '18
for all non-bipartite $G, H$ such that $G \rightarrow H$.
It's enough to ask about $\operatorname{PCSP}\left(C_{2 k+1}, K_{n}\right)$.

$$
\ldots C_{7} \rightarrow C_{5} \rightarrow C_{3}=K_{3} \rightarrow K_{4} \rightarrow K_{5} \rightarrow \ldots
$$

More general than:
the coloring conjecture: the $K_{c}$ vs $K_{c^{\prime}}$ case, the Hell-Nešetřil theorem ('90): the $G=H$ case.

## The conjecture for graph homomorphisms

$\operatorname{PCSP}(G, H)$ is hard?
conj. Brakensiek, Guruswami '18
for all non-bipartite $G, H$ such that $G \rightarrow H$.
It's enough to ask about $\operatorname{PCSP}\left(C_{2 k+1}, K_{n}\right)$.

$$
\ldots C_{7} \rightarrow C_{5} \rightarrow C_{3}=K_{3} \rightarrow K_{4} \rightarrow K_{5} \rightarrow \ldots
$$

More general than:
the coloring conjecture: the $K_{c}$ vs $K_{c^{\prime}}$ case, the Hell-Nešetřil theorem ('90): the $G=H$ case.

Results:

- $\operatorname{PCSP}\left(G, K_{3}\right)$ is NP-hard for all $G \rightarrow K_{3}$.
- This property of $H$ that "for all $G, \operatorname{PCSP}(G, H)$ is NP-hard" only depends on the topology of $H \ldots$


## Understanding why H -coloring is hard

We build an instance of the problem that encodes a known hard problem.

## Understanding why H -coloring is hard

We build an instance of the problem that encodes a known hard problem.

The crucial gadget is $H^{n}=H \times H \times \cdots \times H$.
Possible $H$-colorings of the gadget are polymorphisms $H^{n} \rightarrow H$. Often the only $H$-colorings of $H^{n}$ are projections $p_{i}: H^{n} \rightarrow H$. So the gadget $H^{n}$ encodes a choice $i \in\{1, \ldots, n\}$.

## Understanding why H -coloring is hard

We build an instance of the problem that encodes a known hard problem.

The crucial gadget is $H^{n}=H \times H \times \cdots \times H$.
Possible $H$-colorings of the gadget are polymorphisms $H^{n} \rightarrow H$. Often the only $H$-colorings of $H^{n}$ are projections $p_{i}: H^{n} \rightarrow H$. So the gadget $H^{n}$ encodes a choice $i \in\{1, \ldots, n\}$.

If two gadgets are colored with $a: H^{2} \rightarrow H$ and $b: H^{5} \rightarrow H$, then we can enforce $a(x, y)=b(x, y, x, x, y)$ by identifying each $(x, y) \in H^{2}$ with $(x, y, x, x, y) \in H^{5}$.

## Understanding why H -coloring is hard

We build an instance of the problem that encodes a known hard problem.

The crucial gadget is $H^{n}=H \times H \times \cdots \times H$.
Possible $H$-colorings of the gadget are polymorphisms $H^{n} \rightarrow H$. Often the only $H$-colorings of $H^{n}$ are projections $p_{i}: H^{n} \rightarrow H$. So the gadget $H^{n}$ encodes a choice $i \in\{1, \ldots, n\}$.

If two gadgets are colored with $a: H^{2} \rightarrow H$ and $b: H^{5} \rightarrow H$, then we can enforce $a(x, y)=b(x, y, x, x, y)$
by identifying each $(x, y) \in H^{2}$ with $(x, y, x, x, y) \in H^{5}$.
So for any function $\pi:\{1, \ldots, 5\} \rightarrow\{1,2\}$
we can enforce the constraint
"if the second gadget is colored $p_{i}$, then the first is colored $p_{\pi(i)}$ ". "if we choose $i \in\{1, \ldots, 5\}$, then we must choose $\pi(i) \in\{1,2\}$ ".

Proving $\operatorname{PCSP}\left(C_{k}, C_{3}\right)$ is hard

## Proving $\operatorname{PCSP}\left(C_{k}, C_{3}\right)$ is hard

So to prove hardness of $\operatorname{PCSP}\left(C_{k}, C_{3}\right)$,
we look at homomorphisms $f: C_{k}^{n} \rightarrow C_{3}$. We want to prove that they essentially just encode something simple like a 1 -in- $n$ choice.

## Proving $\operatorname{PCSP}\left(C_{k}, C_{3}\right)$ is hard

So to prove hardness of $\operatorname{PCSP}\left(C_{k}, C_{3}\right)$,
we look at homomorphisms $f: C_{k}^{n} \rightarrow C_{3}$. We want to prove that they essentially just encode something simple like a 1 -in- $n$ choice.

For $n \gg k$, a homomorphism $f: C_{k}^{n} \rightarrow C_{3}$ looks like a function that depends only on a few ( $\sim k$ out of $n$ ) inputs, except for some noise. Looking at it as a continuous function, we disregard the noise.

## The box complex

Graphs Topological spaces
G
Box(G)
$C_{k}$
$K_{k}$
circle $\mathcal{S}^{1}$
$C_{k}^{n}$
torus $\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}=\left(\mathcal{S}^{1}\right)^{n}$
$f: C_{k}^{n} \rightarrow C_{3}$ continuous map from $n$-torus to circle

## The box complex

Graphs Topological spaces
G
Box(G)
$C_{k}$
$K_{k}$ circle $\mathcal{S}^{1}$
sphere $\mathcal{S}^{k-2}$
$C_{k}^{n} \quad$ torus $\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}=\left(\mathcal{S}^{1}\right)^{n}$
$f: C_{k}^{n} \rightarrow C_{3}$ continuous map from $n$-torus to circle


## The box complex

| Graphs | Topological spaces |
| :--- | :--- |
| $G$ | $\operatorname{Box}(G)$ |
| $C_{k}$ | circle $\mathcal{S}^{1}$ |
| $K_{k}$ | sphere $\mathcal{S}^{k-2}$ |
| $C_{k}^{n}$ | torus $\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}=\left(\mathcal{S}^{1}\right)^{n}$ |
| $f: C_{k}^{n} \rightarrow C_{3}$ | continuous map from $n$-torus to circle |



## The box complex

Graphs Topological spaces
G
Box(G)
$C_{k}$
$K_{k}$ circle $\mathcal{S}^{1}$
sphere $\mathcal{S}^{k-2}$
$C_{k}^{n} \quad$ torus $\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}=\left(\mathcal{S}^{1}\right)^{n}$
$f: C_{k}^{n} \rightarrow C_{3}$ continuous map from $n$-torus to circle


## The box complex

Graphs Topological spaces with an action of $\mathbb{Z}_{2}$
G Box(G)
$C_{k}$ circle $\mathcal{S}^{1}$
$K_{k}$
sphere $\mathcal{S}^{k-2}$
$C_{k}^{n} \quad$ torus $\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}=\left(\mathcal{S}^{1}\right)^{n}$
$f: C_{k}^{n} \rightarrow C_{3}$ equivariant map from $n$-torus to circle

$\operatorname{Pol}\left(C_{k}, C_{3}\right)$
We see $f: C_{k}^{n} \rightarrow C_{3}$ as a continuous map from $n$-torus to circle.

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as a continuous map from $n$-torus to circle.
A map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}$ has $\operatorname{deg}_{i}(f):=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as a continuous map from $n$-torus to circle.
A map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}{\operatorname{has~} \operatorname{deg}_{i}(f)}=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

$$
\operatorname{deg}_{1}((x, y) \mapsto f(x, y, y, x, \ldots))=
$$

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as a continuous map from $n$-torus to circle.
A $\operatorname{map} \mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}$ has $\operatorname{deg}_{i}(f):=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

$$
\operatorname{deg}_{1}((x, y) \mapsto f(x, y, y, x, \ldots))=\sum_{i \in \ldots} \operatorname{deg}_{i}(f)
$$

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as a continuous map from $n$-torus to circle.
A map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}{\operatorname{has~} \operatorname{deg}_{i}(f)}(=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

$$
\operatorname{deg}_{1}((x, y) \mapsto f(x, y, y, x, \ldots))=\sum_{i \in \ldots} \operatorname{deg}_{i}(f)
$$

There are finitely many possible $\operatorname{deg}((x, y) \mapsto f(x, y, y, x, \ldots))$ (namely $3^{k^{2}}$, independent of $n$ ).
So only a few $i \in\{1, \ldots, n\}$ have non-zero degree when $n \gg k$ !

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as an equivariant map from $n$-torus to circle.
A map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}{\operatorname{has~} \operatorname{deg}_{i}(f)}(=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

$$
\operatorname{deg}_{1}((x, y) \mapsto f(x, y, y, x, \ldots))=\sum_{i \in \ldots} \operatorname{deg}_{i}(f)
$$

There are finitely many possible $\operatorname{deg}((x, y) \mapsto f(x, y, y, x, \ldots))$ (namely $3^{k^{2}}$, independent of $n$ ).
So only a few $i \in\{1, \ldots, n\}$ have non-zero degree when $n \gg k$ !
An equivariant map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has $\operatorname{deg}(x \mapsto f(x, \ldots, x)) \neq 0$.
So someone has non-zero degree.

## $\operatorname{Pol}\left(C_{k}, C_{3}\right)$

We see $f: C_{k}^{n} \rightarrow C_{3}$ as an equivariant map from $n$-torus to circle.
A map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has a winding number $\operatorname{deg}(f) \in \mathbb{Z}$.
A map $\left(\mathcal{S}^{1}\right)^{n} \rightarrow \mathcal{S}^{1}{\operatorname{has~} \operatorname{deg}_{i}(f)}(=\operatorname{deg}(x \mapsto f(0, \ldots, x, \ldots, 0))$.

$$
\operatorname{deg}_{1}((x, y) \mapsto f(x, y, y, x, \ldots))=\sum_{i \in \ldots} \operatorname{deg}_{i}(f)
$$

There are finitely many possible $\operatorname{deg}((x, y) \mapsto f(x, y, y, x, \ldots))$ (namely $3^{k^{2}}$, independent of $n$ ).
So only a few $i \in\{1, \ldots, n\}$ have non-zero degree when $n \gg k$ !
An equivariant map $\mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ has $\operatorname{deg}(x \mapsto f(x, \ldots, x)) \neq 0$.
So someone has non-zero degree.
That's how we "decode" $f: C_{k}^{n} \rightarrow C_{3}$ to a small choice in $\{1, \ldots, n\}$.

## Adjunction

A graph thin functor $\Lambda$ is a function from graphs to graphs such that:

$$
G \rightarrow H \Longrightarrow \Lambda G \rightarrow \Lambda H
$$

For example: $\Lambda_{k}$ replaces each edge with $k$ edges
$\Gamma_{k}$ puts an edge between endpoints of every $k$-walk


## Adjunction

A graph thin functor $\Lambda$ is a function from graphs to graphs such that:

$$
G \rightarrow H \Longrightarrow \Lambda G \rightarrow \Lambda H
$$

For example: $\Lambda_{k}$ replaces each edge with $k$ edges
$\Gamma_{k}$ puts an edge between endpoints of every $k$-walk
$\Lambda, \Gamma$ are (thin) adjoints if:

$$
\Lambda G \rightarrow H \quad \Leftrightarrow \quad G \rightarrow \Gamma H
$$





## Adjunction

A graph thin functor $\Lambda$ is a function from graphs to graphs such that:

$$
G \rightarrow H \Longrightarrow \Lambda G \rightarrow \Lambda H
$$

For example: $\Lambda_{k}$ replaces each edge with $k$ edges
$\Gamma_{k}$ puts an edge between endpoints of every $k$-walk
$\Lambda, \Gamma$ are (thin) adjoints if:

$$
\wedge G \rightarrow H \quad \Leftrightarrow \quad G \rightarrow \Gamma H
$$

$\Lambda$ is a reduction from $\operatorname{PCSP}(G, \Gamma H)$ to $\operatorname{PCSP}(\Lambda G, H)$.
(So if we knew the first is hard, then the latter is hard).

Adjunction

## Adjunction

The functor $\Gamma_{k}$ has a left adjoint $\Lambda_{k}$, but also a right adjoint $\Omega_{k}$.
It turns out $\Omega_{k} G$ behaves like barycentric subdivision on $\operatorname{Box}(G)$ :

- $\operatorname{Box}\left(\Omega_{k} G\right) \simeq \operatorname{Box}(G)$
- If you have a continuous map $\operatorname{Box}(G) \rightarrow \operatorname{Box}(H)$, you can turn it into a graph homomorphism $\Omega_{k} G \rightarrow H$, for $k$ large enough.


## Adjunction

The functor $\Gamma_{k}$ has a left adjoint $\Lambda_{k}$, but also a right adjoint $\Omega_{k}$.
It turns out $\Omega_{k} G$ behaves like barycentric subdivision on $\operatorname{Box}(G)$ :

- $\operatorname{Box}\left(\Omega_{k} G\right) \simeq \operatorname{Box}(G)$
- If you have a continuous map $\operatorname{Box}(G) \rightarrow \operatorname{Box}(H)$, you can turn it into a graph homomorphism $\Omega_{k} G \rightarrow H$, for $k$ large enough.

We use it to prove that "only topology matters":
if $H$ is such that $\operatorname{PCSP}(G, H)$ is hard for all $G$ and $H^{\prime}$ is a graph with $\operatorname{Box}\left(H^{\prime}\right) \simeq \operatorname{Box}(H)$ then $\operatorname{PCSP}\left(G, H^{\prime}\right)$ is also hard for all $G$.

## Adjunction

The functor $\Gamma_{k}$ has a left adjoint $\Lambda_{k}$, but also a right adjoint $\Omega_{k}$.
It turns out $\Omega_{k} G$ behaves like barycentric subdivision on $\operatorname{Box}(G)$ :

- $\operatorname{Box}\left(\Omega_{k} G\right) \simeq \operatorname{Box}(G)$
- If you have a continuous map $\operatorname{Box}(G) \rightarrow \operatorname{Box}(H)$, you can turn it into a graph homomorphism $\Omega_{k} G \rightarrow H$, for $k$ large enough.

We use it to prove that "only topology matters":
if $H$ is such that $\operatorname{PCSP}(G, H)$ is hard for all $G$
and $H^{\prime}$ is a graph with $\operatorname{Box}\left(H^{\prime}\right) \simeq \operatorname{Box}(H)$ then $\operatorname{PCSP}\left(G, H^{\prime}\right)$ is also hard for all $G$.
Pf. Since $H$ and $H^{\prime}$ have the same topologies, we have $\Omega_{k} H^{\prime} \rightarrow H$. By adjunction $\operatorname{PCSP}\left(\Gamma_{k} G, H^{\prime}\right)$ is harder than $\operatorname{PCSP}\left(G, \Omega_{k} H^{\prime}\right)$.
The latter is harder to get than $\operatorname{PCSP}(G, H)$.
So for cycles $\operatorname{PCSP}\left(\Gamma_{k} C_{n}, H^{\prime}\right) \geq \operatorname{PCSP}\left(C_{n}, H\right)$.
Since $\Gamma_{k} C_{n} \approx C_{n / k}$, increasing $n$ proves hardness for large cycles.

## Adjunction - some open problems

I. In category theory, the definition of adjoints has more conditions. "Real" (not just thin) adjoints imply a relation between polymorphisms minions.
But we know the functors we apply are not really adjoint, they change the minion in some interesting way!

## Adjunction - some open problems

I. In category theory, the definition of adjoints has more conditions. "Real" (not just thin) adjoints imply a relation between polymorphisms minions.
But we know the functors we apply are not really adjoint, they change the minion in some interesting way!
II. To understand $\operatorname{Pol}\left(C_{k}, K_{4}\right)$ we have to understand maps from $n$-torus to $\mathcal{S}^{2}$ (or rather from $n$-torus to $\mathbb{R} P^{2}$ ).

## Adjunction - some open problems

I. In category theory, the definition of adjoints has more conditions.
"Real" (not just thin) adjoints imply a relation between polymorphisms minions.
But we know the functors we apply are not really adjoint, they change the minion in some interesting way!
II. To understand $\operatorname{Pol}\left(C_{k}, K_{4}\right)$ we have to understand maps from $n$-torus to $\mathcal{S}^{2}$ (or rather from $n$-torus to $\mathbb{R} P^{2}$ ).
III. When we look at $f \in \operatorname{Pol}\left(C_{k}, K_{5}\right)$ we have a problem: the continuous functions we get from projections are all homotopic! So Box $(f)$ does not contain any interesting information.
But somehow $\operatorname{Box}\left(K_{5}\right)$ does?

## Adjunction - some open problems

I. In category theory, the definition of adjoints has more conditions.
"Real" (not just thin) adjoints imply a relation between
polymorphisms minions.
But we know the functors we apply are not really adjoint, they change the minion in some interesting way!
II. To understand $\operatorname{Pol}\left(C_{k}, K_{4}\right)$ we have to understand maps from $n$-torus to $\mathcal{S}^{2}$ (or rather from $n$-torus to $\mathbb{R} P^{2}$ ).
III. When we look at $f \in \operatorname{Pol}\left(C_{k}, K_{5}\right)$ we have a problem: the continuous functions we get from projections are all homotopic! So Box $(f)$ does not contain any interesting information.
But somehow $\operatorname{Box}\left(K_{5}\right)$ does?

