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Graph coloring

Map vertices V (G ) to colors {1, 2, 3, 4, 5}
so that adjacent vertices get different colors.



Promise graph coloring

(Search version)

Given a 3-colorable graph G , find a 100-coloring.

(Decision version)

Distinguish 3-colorable graphs
from those that are not even 100-colorable.

3 vs 5
√
n in poly-time Kawarabayashi, Thorup ’14

3 vs 5 is NP-hard Barto, Buĺın, Krokhin, Opřsal ’18
c vs c ′ is NP-hard for all constants 3 ≤ c ≤ c ′? conjecture
true assuming a variant of UGC Dinur, Mossel, Regev ’05

Motivation: constraint satisfaction, hardness of apx., codes, . . .
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Graph homomorphism f : G → H

a function f : V (G )→ V (H)
such that uv ∈ E (G ) =⇒ f (u)f (v) ∈ E (H)

G

C5

G → C5

We write G → H and we say G is H-colorable.
Ex. G → Kk iff G is k-colorable.
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Graph homomorphism f : G → H

a function f : V (G )→ V (H)
such that uv ∈ E (G ) =⇒ f (u)f (v) ∈ E (H)

G

K5

G → K5

We write G → H and we say G is H-colorable.
Ex. G → Kk iff G is k-colorable.

PCSP(G ,H):
Given a G -colorable graph, can we find an H-coloring?



The conjecture for graph homomorphisms

PCSP(G ,H) is hard? conj. Brakensiek, Guruswami ’18
for all non-bipartite G ,H such that G → H.
It’s enough to ask about PCSP(C2k+1,Kn).

. . .C7 → C5 → C3 = K3 → K4 → K5 → . . .

More general than:

the coloring conjecture: the Kc vs Kc ′ case,

the Hell-Nešeťril theorem (’90): the G = H case.

Results:

• PCSP(G ,K3) is NP-hard for all G → K3.

• This property of H that “for all G , PCSP(G ,H) is NP-hard”
only depends on the topology of H. . .
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Understanding why H-coloring is hard

We build an instance of the problem that encodes a known hard
problem.

The crucial gadget is Hn = H × H × · · · × H.
Possible H-colorings of the gadget are polymorphisms Hn → H.
Often the only H-colorings of Hn are projections pi : Hn → H.
So the gadget Hn encodes a choice i ∈ {1, . . . , n}.

If two gadgets are colored with a : H2 → H and b : H5 → H,
then we can enforce a(x , y) = b(x , y , x , x , y)
by identifying each (x , y) ∈ H2 with (x , y , x , x , y) ∈ H5.

So for any function π : {1, . . . , 5} → {1, 2}
we can enforce the constraint
“if the second gadget is colored pi , then the first is colored pπ(i)”.
“if we choose i ∈ {1, . . . , 5}, then we must choose π(i) ∈ {1, 2}”.
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Proving PCSP(Ck , C3) is hard

So to prove hardness of PCSP(Ck , C3),
we look at homomorphisms f : Cn

k → C3. We want to prove that
they essentially just encode something simple like a 1-in-n choice.

For n� k , a homomorphism f : Cn
k → C3 looks like a function that

depends only on a few (∼ k out of n) inputs, except for some noise.

Looking at it as a continuous function, we disregard the noise.



Proving PCSP(Ck , C3) is hard

So to prove hardness of PCSP(Ck , C3),
we look at homomorphisms f : Cn

k → C3. We want to prove that
they essentially just encode something simple like a 1-in-n choice.

For n� k , a homomorphism f : Cn
k → C3 looks like a function that

depends only on a few (∼ k out of n) inputs, except for some noise.

Looking at it as a continuous function, we disregard the noise.



Proving PCSP(Ck , C3) is hard

So to prove hardness of PCSP(Ck , C3),
we look at homomorphisms f : Cn

k → C3. We want to prove that
they essentially just encode something simple like a 1-in-n choice.

For n� k , a homomorphism f : Cn
k → C3 looks like a function that

depends only on a few (∼ k out of n) inputs, except for some noise.

Looking at it as a continuous function, we disregard the noise.



The box complex

Graphs Topological spaces

with an action of Z2

G Box(G )

Ck circle S1

Kk sphere Sk−2

Cn
k torus S1 × · · · × S1 = (S1)n

f : Cn
k → C3 continuous map from n-torus to circle
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The box complex

Graphs Topological spaces with an action of Z2

G Box(G )

Ck circle S1

Kk sphere Sk−2

Cn
k torus S1 × · · · × S1 = (S1)n

f : Cn
k → C3 equivariant map from n-torus to circle
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Pol(Ck ,C3)

We see f : Cn
k → C3 as a continuous map from n-torus to circle.

A map S1 → S1 has a winding number deg(f ) ∈ Z.

A map (S1)n → S1 has degi (f ) := deg(x 7→ f (0, . . . , x , . . . , 0)).

deg1
(
(x , y) 7→ f (x , y , y , x , . . . )

)
=
∑
i∈...

degi (f )

There are finitely many possible deg((x , y) 7→ f (x , y , y , x , . . . ))
(namely 3k

2
, independent of n).

So only a few i ∈ {1, . . . , n} have non-zero degree when n� k!

An equivariant map S1 → S1 has deg(x 7→ f (x , . . . , x)) 6= 0.
So someone has non-zero degree.
That’s how we “decode” f : Cn

k → C3 to a small choice in {1, . . . , n}.
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Adjunction

A graph thin functor Λ is a function from graphs to graphs such that:

G → H =⇒ ΛG → ΛH

For example: Λk replaces each edge with k edges
Γk puts an edge between endpoints of every k-walk

Λ, Γ are (thin) adjoints if:

ΛG → H ⇔ G → ΓH

Λ3(G ) G Γ3(G )

Λ is a reduction from PCSP(G ,ΓH) to PCSP(ΛG , H).
(So if we knew the first is hard, then the latter is hard).
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Adjunction

The functor Γk has a left adjoint Λk , but also a right adjoint Ωk .

It turns out ΩkG behaves like barycentric subdivision on Box(G ):

• Box(ΩkG ) ' Box(G )

• If you have a continuous map Box(G )→ Box(H), you can turn
it into a graph homomorphism ΩkG → H, for k large enough.

We use it to prove that “only topology matters”:

if H is such that PCSP(G ,H) is hard for all G
and H ′ is a graph with Box(H ′) ' Box(H)
then PCSP(G ,H ′) is also hard for all G .

Pf. Since H and H ′ have the same topologies, we have ΩkH
′ → H.

By adjunction PCSP(ΓkG ,H ′) is harder than PCSP(G , ΩkH
′).

The latter is harder to get than PCSP(G , H).
So for cycles PCSP(ΓkCn,H ′) ≥ PCSP(Cn,H).
Since ΓkCn ≈ Cn/k , increasing n proves hardness for large cycles.



Adjunction

The functor Γk has a left adjoint Λk , but also a right adjoint Ωk .

It turns out ΩkG behaves like barycentric subdivision on Box(G ):

• Box(ΩkG ) ' Box(G )

• If you have a continuous map Box(G )→ Box(H), you can turn
it into a graph homomorphism ΩkG → H, for k large enough.

We use it to prove that “only topology matters”:

if H is such that PCSP(G ,H) is hard for all G
and H ′ is a graph with Box(H ′) ' Box(H)
then PCSP(G ,H ′) is also hard for all G .

Pf. Since H and H ′ have the same topologies, we have ΩkH
′ → H.

By adjunction PCSP(ΓkG ,H ′) is harder than PCSP(G , ΩkH
′).

The latter is harder to get than PCSP(G , H).
So for cycles PCSP(ΓkCn,H ′) ≥ PCSP(Cn,H).
Since ΓkCn ≈ Cn/k , increasing n proves hardness for large cycles.



Adjunction

The functor Γk has a left adjoint Λk , but also a right adjoint Ωk .

It turns out ΩkG behaves like barycentric subdivision on Box(G ):

• Box(ΩkG ) ' Box(G )

• If you have a continuous map Box(G )→ Box(H), you can turn
it into a graph homomorphism ΩkG → H, for k large enough.

We use it to prove that “only topology matters”:

if H is such that PCSP(G ,H) is hard for all G
and H ′ is a graph with Box(H ′) ' Box(H)
then PCSP(G ,H ′) is also hard for all G .

Pf. Since H and H ′ have the same topologies, we have ΩkH
′ → H.

By adjunction PCSP(ΓkG ,H ′) is harder than PCSP(G , ΩkH
′).

The latter is harder to get than PCSP(G , H).
So for cycles PCSP(ΓkCn,H ′) ≥ PCSP(Cn,H).
Since ΓkCn ≈ Cn/k , increasing n proves hardness for large cycles.



Adjunction

The functor Γk has a left adjoint Λk , but also a right adjoint Ωk .

It turns out ΩkG behaves like barycentric subdivision on Box(G ):

• Box(ΩkG ) ' Box(G )

• If you have a continuous map Box(G )→ Box(H), you can turn
it into a graph homomorphism ΩkG → H, for k large enough.

We use it to prove that “only topology matters”:

if H is such that PCSP(G ,H) is hard for all G
and H ′ is a graph with Box(H ′) ' Box(H)
then PCSP(G ,H ′) is also hard for all G .

Pf. Since H and H ′ have the same topologies, we have ΩkH
′ → H.

By adjunction PCSP(ΓkG ,H ′) is harder than PCSP(G , ΩkH
′).

The latter is harder to get than PCSP(G , H).
So for cycles PCSP(ΓkCn,H ′) ≥ PCSP(Cn,H).
Since ΓkCn ≈ Cn/k , increasing n proves hardness for large cycles.



Adjunction – some open problems

I. In category theory, the definition of adjoints has more conditions.
“Real” (not just thin) adjoints imply a relation between
polymorphisms minions.
But we know the functors we apply are not really adjoint,
they change the minion in some interesting way!

II. To understand Pol(Ck ,K4) we have to understand maps from
n-torus to S2 (or rather from n-torus to RP2).

III. When we look at f ∈ Pol(Ck ,K5) we have a problem:
the continuous functions we get from projections are all homotopic!
So Box(f ) does not contain any interesting information.
But somehow Box(K5) does?

Thank you!
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