Promise CSP: Arise, my minions!

Alexandr Kazda

CU Boulder

January 28th 2021

Promise CSP

- Constraint Satisfaction as a homomorphism problem
- Given \mathbb{A}, decide if $\mathbb{A} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{B})$ is pretty well understood
- Promise CSP: Fix \mathbb{B}, \mathbb{C} such that $\mathbb{B} \rightarrow \mathbb{C}$
- Input \mathbb{A}
- "Yes" instance when $\mathbb{A} \rightarrow \mathbb{B}$
- "No" instance when $\neg(\mathbb{A} \rightarrow \mathbb{C})$

Promise CSP in picture

- "Yes" instances below \mathbb{B}
- "No" instances not below \mathbb{C}
- Notice the gap!

Example: $\operatorname{PCSP}\left(\mathbb{K}_{3}, \mathbb{K}_{n}\right)$

- Structures: Graphs
- $\mathbb{G} \rightarrow \mathbb{K}_{3}$ if and only if \mathbb{G} is 3-colorable
- $\mathbb{G} \rightarrow \mathbb{K}_{n}$ if and only if \mathbb{G} is n-colorable
- $\operatorname{PCSP}\left(\mathbb{K}_{3}, \mathbb{K}_{n}\right)$ has
- "Yes" instances 3-colorable
- "No" instances not even n-colorable
- Conjectured to be NP-hard

Why???

- How far can we push the dichotomy between P and NP-hard problems?
- Better understanding of CSP reductions
- Connections to approximability and things that CS people like
(1) Probabilistically Checkable Proofs (PCP)
(2) Label Cover problem
(3) Unique Games Conjecture
- New techniques (including category theory and topology; see future talks)

Polymorphisms from \mathbb{A} to \mathbb{B}

- For $\operatorname{CSP}(\mathbb{A})$ we had polymorphisms: Mappings $\mathbb{A}^{n} \rightarrow \mathbb{A}$ that preserve relations
- Counterpart for $\operatorname{PCSP}(\mathbb{A}, \mathbb{B}):$ Mappings $\mathbb{A}^{n} \rightarrow \mathbb{B}$ that preserve relations
- Denote this set by $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$
- First appearance as "weak polymorphisms": Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + epsilon)-SAT is NP-hard, 2014
- We can (in general) no longer compose polymorphisms (no longer a clone/algebra)
- What is $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \operatorname{good}$ for?

Calling all minions

- If $f\left(x_{1}, x_{2}, x_{3}\right)$ preserves relations, then so does $f\left(x_{3}, x_{3}, x_{3}\right)$
- In general, let $f: \mathbb{A}^{n} \rightarrow \mathbb{B}$ and $\sigma:[n] \rightarrow[m]$
- Define the σ-minor of f as

$$
f^{\sigma}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

- Example f ternary, $\sigma(1)=\sigma(2)=14, \sigma(3)=2$,

$$
f^{\sigma}\left(x_{1}, \ldots, x_{14}\right)=f\left(x_{14}, x_{14}, x_{2}\right)
$$

- $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ is nonempty and closed under minor-taking - a minion (AKA clonoid)

Minion homomorphisms

- Let \mathcal{M}, \mathcal{N} be minions
- $\phi: \mathcal{M} \rightarrow \mathcal{N}$ is a minion homomorphism if it commutes with minor-taking: For all $f \in \mathcal{M}$ and all applicable σ

$$
\phi\left(f^{\sigma}\right)=\phi(f)^{\sigma} .
$$

- We do not have to worry about compositions!
- Compare to h1 clone homomorphisms in L. Barto, J. Opršal, M. Pinsker: The wonderland of reflections (2018)

A simple example from Tame Congruence Theory

- A algebra, e a unary operation from \mathbf{A} with image $B \subset \mathbf{A}$
- For f term operation of \mathbf{A} consider the mapping $f \mapsto e \circ f$
- This maps term operations of \mathbf{A} into operations on B
- It is not an algebra homomorphism...
- ... but it is a clonoid homomorphism
- e $e\left(f\left(x_{3}, x_{2}, x_{2}, x_{3}, x_{7}\right)\right)=e \circ f\left(x_{3}, x_{2}, x_{2}, x_{3}, x_{7}\right)$
- This would be a special case of "reflection" from the Wonderland paper

PCSP reduction

Theorem

If $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}(\mathbb{C}, \mathbb{D})$, then $\operatorname{PCSP}(\mathbb{C}, \mathbb{D})$ reduces to $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ in logarithmic space.

- Libor Barto, Jakub Bulín, Andrei Krokhin, Jakub Opršal, Algebraic approach to promise constraint satisfaction
- In particular: If $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}\left(\mathbb{K}_{3}, \mathbb{K}_{3}\right)$, then $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ is NP-hard
- $\operatorname{Pol}\left(\mathbb{K}_{3}, \mathbb{K}_{3}\right)$ contains only operations like $f\left(x_{1}, \ldots, x_{n}\right)=\alpha\left(x_{i}\right)$
- Vladimír Müller, On colorings of graphs without short cycles, Discrete mathematics 26, 1979

Hardness of PCSP $\left(\mathbb{K}_{3}, \mathbb{K}_{4}\right)$

- Original combinatorial proofs:
(1) Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number, 2000
(2) Venkatesan Guruswami, Sanjeev Khanna, On the hardness of 3-coloring a 4-colorable graph, 2004
- Not state of the art anymore (see future talks)
- We want to find a homomorphism $\operatorname{Pol}\left(\mathbb{K}_{3}, \mathbb{K}_{4}\right) \rightarrow \operatorname{Pol}\left(\mathbb{K}_{3}, \mathbb{K}_{3}\right)$

Coloring by projections

- We want to assign each $f: \mathbb{K}_{3}^{n} \rightarrow \mathbb{K}_{4}$ one of n coordinates so that we commute with minor-taking
- $\phi(f)=\pi_{i}$ should imply $\phi\left(f^{\sigma}\right)=\pi_{\sigma(i)}$
- Our job is easy: Each f in fact mostly depends on just one coordinate
- Proof modeled after Joshua Brakensiek, Venkatesan Guruswami, New hardness results for graph and hypergraph colorings, 2016

Lemma

Let $f: \mathbb{K}_{3}^{n} \rightarrow \mathbb{K}_{4}$ be a homomorphism. Then there exists $a \in V\left(\mathbb{K}_{4}\right)$ such that f restricted to $\mathbb{K}_{3}^{n} \backslash\left\{f^{-1}(a)\right\}$ depends only on one coordinate i. Moreover, this i is unique.

Example

- Condition for homomorphism $f: \mathbb{K}_{3}^{2} \rightarrow \mathbb{K}_{4}$

$$
\begin{gathered}
f\left(\begin{array}{cc}
u & w \\
\mid & \mid \\
v & t
\end{array}\right) \in E\left(\mathbb{K}_{4}\right) \\
\qquad \begin{array}{c|ccc}
f & 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 1 \\
1 & 2 & 2 & 2 \\
2 & 3 & 3 & 1
\end{array}
\end{gathered}
$$

- Cross out all 1s...

Sketch of the general proof I

- Take $f: \mathbb{K}_{3}^{n} \rightarrow \mathbb{K}_{4}$
- View $V\left(\mathbb{K}_{3}^{n}\right)$ as \mathbb{Z}_{3}^{n} for convenience
- Step 1: Show that there is no $\mathbf{v} \in V\left(K_{3}^{n}\right)$ and no distinct i, j such that

$$
f(\mathbf{v}), \quad f\left(\mathbf{v}+\mathbf{e}_{i}\right), \quad f\left(\mathbf{v}+2 \mathbf{e}_{i}\right)
$$

and

$$
f(\mathbf{v}), \quad f\left(\mathbf{v}+\mathbf{e}_{j}\right), \quad f\left(\mathbf{v}+2 \mathbf{e}_{j}\right)
$$

would contain three distinct values each.

- Proof by induction on n and considering a few cases.

Sketch of the general proof II

- Step 2: If there is \mathbf{v} and i such that

$$
f(\mathbf{v}) \neq f\left(\mathbf{v}+\mathbf{e}_{i}\right)=f\left(\mathbf{v}+2 \mathbf{e}_{i}\right)
$$

the claim holds.

- Say $f(00 \ldots 0)=0, f(10 \ldots 0)=f(20 \ldots 0)=1$
- Then examine the cube $\{1,2\}^{n}$
- Observe that f on $\{1,2\}^{n}$ is 2 or 3
- Assume that $2=f(1112222) \neq f(1122222)=3$
- Then $3=f(2221111)$ and $f(2211111)=2$
- Thus $f(1102222) \in\{0,1\}$
- Aha, $f(11$?2222) are all different!

Sketch of the general proof III

- Let $\mathbf{u}, \mathbf{w} \in\{1,2\}^{n}$ differ in one coordinate i
- We found: If $f(\mathbf{u}) \neq f(\mathbf{w})$ then $f(\mathbf{u}), f\left(\mathbf{u}+\mathbf{e}_{i}\right), f\left(\mathbf{u}+2 \mathbf{e}_{i}\right)$ are all different
- By step 1 there is for each \mathbf{u} at most one such i
- If the i exists, record it as $g(\mathbf{u})$
- Now say $f(111122)=f(111222)=2$, but $g(111122)=1$ and $g(111222)$ is not 1 (maybe undefined)
- Then $f(211122)=3$ and $f(211222)=2$
- Then $g(211122)$ is not unique

Sketch of the general proof IV

- For each $\mathbf{u} \in\{1,2\}^{n}$ either f is constant on all neighbors, or there is a well defined coordinate $g(\mathbf{u})$
- If $g(\mathbf{u})$ is defined, it spreads to neighbors
- f is not constant on $\{1,2\}^{n}$, so g is defined everywhere to be the same
- Considering a few cases gives us that f is "mostly" a projection to the g-th coordinate

Sketch of the general proof V

- So we know that f is in each direction constant or has 3 distinct values
- And for each \mathbf{u} there is at most one direction so that f had 3 different values
- If the direction exists for \mathbf{u}, denote the corresponding coordinate by $g(\mathbf{u})$
- That's a lot of conditions on f...
- Again if \mathbf{u}, \mathbf{w} are neighbors and $g(\mathbf{u})$ is defined, then $g(\mathbf{w})=g(\mathbf{u})$
- By contradiction: Say
$f(0000000)=0, f(1000000)=1, f(2000000)=2$ and $0=f(0000100)=f(1000100)=f(2000100)$
- Then $g(1000000)=1$, so $f(1000100)=1$, contradiction
- Thus f is the projection to the g-th coordinate

What's next?

- Studying minions for their own sake (the homomorphism order of minions is a distributive lattice!)
- Homomorphisms to minions where operations depend on small sets of coordinates
- Better hardness proofs, stronger than by minion homomorphisms
- Reductions between various $\operatorname{PCSP}\left(\mathbb{K}_{n}, \mathbb{K}_{m}\right)$ problems
- Different kinds of promises

New seminar website

http://math.colorado.edu/~alka3345/

