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Promise CSP

Constraint Satisfaction as a homomorphism problem

Given A, decide if A→ B
CSP(B) is pretty well understood

Promise CSP: Fix B, C such that B→ C
Input A
“Yes” instance when A→ B
“No” instance when ¬(A→ C)
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Promise CSP in picture
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“Yes” instances below B
“No” instances not below C
Notice the gap!
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Example: PCSP(K3,Kn)

Structures: Graphs

G→ K3 if and only if G is 3-colorable

G→ Kn if and only if G is n-colorable

PCSP(K3,Kn) has

“Yes” instances 3-colorable

“No” instances not even n-colorable

Conjectured to be NP-hard
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Why???

How far can we push the dichotomy between P and NP-hard
problems?

Better understanding of CSP reductions

Connections to approximability and things that CS people like
1 Probabilistically Checkable Proofs (PCP)
2 Label Cover problem
3 Unique Games Conjecture

New techniques (including category theory and topology; see future
talks)
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Polymorphisms from A to B

For CSP(A) we had polymorphisms: Mappings An → A that preserve
relations

Counterpart for PCSP(A,B): Mappings An → B that preserve
relations

Denote this set by Pol(A,B)

First appearance as “weak polymorphisms”: Per Austrin, Venkatesan
Guruswami, and Johan Håstad. (2 + epsilon)-SAT is NP-hard, 2014

We can (in general) no longer compose polymorphisms (no longer a
clone/algebra)

What is Pol(A,B) good for?
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Calling all minions

If f (x1, x2, x3) preserves relations, then so does f (x3, x3, x3)

In general, let f : An → B and σ : [n]→ [m]

Define the σ-minor of f as

f σ(x1, . . . , xm) = f (xσ(1), . . . , xσ(n))

Example f ternary, σ(1) = σ(2) = 14, σ(3) = 2,

f σ(x1, . . . , x14) = f (x14, x14, x2)

Pol(A,B) is nonempty and closed under minor-taking – a minion
(AKA clonoid)
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Minion homomorphisms

Let M,N be minions

φ : M→N is a minion homomorphism if it commutes with
minor-taking: For all f ∈M and all applicable σ

φ(f σ) = φ(f )σ.

We do not have to worry about compositions!

Compare to h1 clone homomorphisms in L. Barto, J. Opřsal, M.
Pinsker: The wonderland of reflections (2018)
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A simple example from Tame Congruence Theory

A algebra, e a unary operation from A with image B ⊂ A

For f term operation of A consider the mapping f 7→ e ◦ f
This maps term operations of A into operations on B

It is not an algebra homomorphism. . .

. . . but it is a clonoid homomorphism

e(f (x3, x2, x2, x3, x7)) = e ◦ f (x3, x2, x2, x3, x7)

This would be a special case of “reflection” from the Wonderland
paper
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PCSP reduction

Theorem

If Pol(A,B)→ Pol(C,D), then PCSP(C,D) reduces to PCSP(A,B) in
logarithmic space.

Libor Barto, Jakub Buĺın, Andrei Krokhin, Jakub Opřsal, Algebraic
approach to promise constraint satisfaction

In particular: If Pol(A,B)→ Pol(K3,K3), then Pol(A,B) is NP-hard

Pol(K3,K3) contains only operations like f (x1, . . . , xn) = α(xi )

Vladiḿır Müller, On colorings of graphs without short cycles, Discrete
mathematics 26, 1979
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Hardness of PCSP(K3,K4)

Original combinatorial proofs:
1 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of

approximating the chromatic number, 2000
2 Venkatesan Guruswami, Sanjeev Khanna, On the hardness of 3-coloring

a 4-colorable graph, 2004

Not state of the art anymore (see future talks)

We want to find a homomorphism Pol(K3,K4)→ Pol(K3,K3)
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Coloring by projections

We want to assign each f : Kn
3 → K4 one of n coordinates so that we

commute with minor-taking

φ(f ) = πi should imply φ(f σ) = πσ(i)

Our job is easy: Each f in fact mostly depends on just one coordinate

Proof modeled after Joshua Brakensiek, Venkatesan Guruswami, New
hardness results for graph and hypergraph colorings, 2016

Lemma

Let f : Kn
3 → K4 be a homomorphism. Then there exists a ∈ V (K4) such

that f restricted to Kn
3 \ {f −1(a)} depends only on one coordinate i .

Moreover, this i is unique.
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Example

Condition for homomorphism f : K2
3 → K4

f

u w
| |
v t

 ∈ E (K4)

f 0 1 2

0 0 0 1
1 2 2 2
2 3 3 1

Cross out all 1s. . .
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Sketch of the general proof I

Take f : Kn
3 → K4

View V (Kn
3) as Zn

3 for convenience

Step 1: Show that there is no v ∈ V (Kn
3 ) and no distinct i , j such that

f (v), f (v + ei ), f (v + 2ei )

and
f (v), f (v + ej), f (v + 2ej)

would contain three distinct values each.

Proof by induction on n and considering a few cases.
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Sketch of the general proof II

Step 2: If there is v and i such that

f (v) 6= f (v + ei ) = f (v + 2ei ),

the claim holds.

Say f (00 . . . 0) = 0, f (10 . . . 0) = f (20 . . . 0) = 1

Then examine the cube {1, 2}n

Observe that f on {1, 2}n is 2 or 3

Assume that 2 = f (1112222) 6= f (1122222) = 3

Then 3 = f (2221111) and f (2211111) = 2

Thus f (1102222) ∈ {0, 1}
Aha, f (11?2222) are all different!
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Sketch of the general proof III

Let u,w ∈ {1, 2}n differ in one coordinate i

We found: If f (u) 6= f (w) then f (u), f (u + ei ), f (u + 2ei ) are all
different

By step 1 there is for each u at most one such i

If the i exists, record it as g(u)

Now say f (111122) = f (111222) = 2, but g(111122) = 1 and
g(111222) is not 1 (maybe undefined)

Then f (211122) = 3 and f (211222) = 2

Then g(211122) is not unique
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Sketch of the general proof IV

For each u ∈ {1, 2}n either f is constant on all neighbors, or there is
a well defined coordinate g(u)

If g(u) is defined, it spreads to neighbors

f is not constant on {1, 2}n, so g is defined everywhere to be the
same

Considering a few cases gives us that f is “mostly” a projection to
the g -th coordinate
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Sketch of the general proof V

So we know that f is in each direction constant or has 3 distinct
values

And for each u there is at most one direction so that f had 3 different
values

If the direction exists for u, denote the corresponding coordinate by
g(u)

That’s a lot of conditions on f . . .

Again if u,w are neighbors and g(u) is defined, then g(w) = g(u)

By contradiction: Say
f (0000000) = 0, f (1000000) = 1, f (2000000) = 2 and
0 = f (0000100) = f (1000100) = f (2000100)

Then g(1000000) = 1, so f (1000100) = 1, contradiction

Thus f is the projection to the g -th coordinate
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What’s next?

Studying minions for their own sake (the homomorphism order of
minions is a distributive lattice!)

Homomorphisms to minions where operations depend on small sets of
coordinates

Better hardness proofs, stronger than by minion homomorphisms

Reductions between various PCSP(Kn,Km) problems

Different kinds of promises
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New seminar website

http://math.colorado.edu/~alka3345/
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