Polymorphisms of directed graphs

Alexandr Kazda

CU Boulder

January 21st 2021

Polymorphisms

- $\mathbb{A} = (A; R_1, \ldots, R_k)$
- $f: A^n \to A$ is a polymorphism of \mathbb{A} if f is compatible with all operations of \mathbb{A}
- A height 1 identity for is an identity of the form

 $f(?\cdots?)\approx g(?\cdots?),$

where question marks are variables

- CSP theory: The more height 1 identities $\mathsf{Pol}(\mathbb{A})$ satisfies, the easier $\mathsf{CSP}(\mathbb{A})$ is
- L. Barto, J. Opršal, M. Pinsker, The wonderland of reflections, Israel Journal of Mathematics 223/1 (2018), 363-398
- L. Barto, J. Bulin, A. Krokhin, J. Opršal, Algebraic approach to promise constraint satisfaction

- Directed graphs were one of the earliest objects for CSP
- $\mathbb{G} = (V(\mathbb{G}), E(\mathbb{G}))$ has as polymorphisms all $f \colon V(\mathbb{G})^n \to V(\mathbb{G})$ such that whenever

u_1	и ₂	 u _n
\downarrow	\downarrow	 \downarrow ,
v_1	<i>v</i> ₂	 vn

then

$$f(u_1, u_2, \ldots, u_n) \\\downarrow \\ f(v_1, v_2, \ldots, v_n)$$

Reduction to digraphs

- Feder, Vardi: Every CSP(A) is poly-time equivalent to CSP(G) for some G balanced digraph.
- Feder, Vardi: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory, 1998
- How well do digraphs simulate polymorphisms of general relational structures?
- Bulín, Delic, Jackson, Niven: For every A there exists a digraph \mathbb{G} such that for any* set of identities Σ we have A satisfies Σ iff \mathbb{G} satisfies Σ
- Jakub Bulín and D. Delic and M. Jackson and T. Niven: A finer reduction of constraint problems to digraphs, 2015
- Warning: The asterisk hides a lot of technicalies...

Example identities for which the BDJN reduction works

• Necessary condition: The polymorphisms must be polymorphisms of

• Example: Majority

$$M(x,x,y) \approx M(x,y,x) \approx M(y,x,x) \approx x$$

• Non-example: Maltsev (after Anatoly Ivanovich Maltsev, 1909–1967)

$$p(x,x,y)\approx p(y,x,x)\approx y$$

Maltsev does not generally imply majority

• Maltsev & majority

$$p(x, x, y) \approx p(y, x, x) \approx y$$

 $M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x$

• If *M* was majority, apply to rows of

$$M\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

but this is not in R

Maltsev polymorphism

- How do Maltsev digraphs look like?
- Recall $p(x, x, y) \approx p(y, x, x) \approx y$
- If we have

Then

$$f\begin{pmatrix} u & w & w \\ \downarrow & \downarrow & \downarrow \\ v & v & t \end{pmatrix} = \begin{pmatrix} u \\ \downarrow \\ t \end{pmatrix},$$

• We get

• G be a Maltsev digraph; it looks like this:

Two partial equivalences

 R⁺(u, v) iff ∃z, (u, z), (v, z) ∈ E(G)

 R⁻(u, v) iff ∃z, (z, u), (z, v) ∈ E(G)

- Assume G is smooth (each vertex has in- and out-degree ≥ 1)
- R^+ and R^- are equivalences
- Equivalences factorize stuff
- Idea: Prove Maltsev \Rightarrow majority by induction on digraph size, go from \mathbb{G}/R^+ to \mathbb{G}
- Induction basis: R^+, R^- are identity
- Happens for disjoint union of cycles (has Maltsev & majority)

Graphs \mathbb{G}/R^+ and \mathbb{G}/R^-

- Bijection ϕ from R^+ -classes to R^- -classes
- \mathbb{G}/R^+ and \mathbb{G}/R^- turn out to be isomorphic via ϕ
- Observation: If $u \in \phi(v/R^+)$, then $v \to u$

- Now onto induction step
- Easy: If \mathbb{G} has Maltsev, then \mathbb{G}/R^+ has Maltsev
- Thus \mathbb{G}/R^+ has majority m
- \mathbb{G}/R^- has majority $m'(x,y,z) = \phi(m(\phi^{-1}(x),\phi^{-1}(y),\phi^{-1}(z)))$
- Construct a majority map $M\colon V(\mathbb{G})^3 o V(\mathbb{G})$ so that we have

$$M(x, y, z)/R^{+} = m(x/R^{+}, y/R^{+}, z/R^{+})$$

$$M(x, y, z)/R^{-} = m'(x/R^{-}, y/R^{-}, z/R^{-})$$

M is a polymorphism

- Construct a majority map $M \colon V(\mathbb{G})^3 \to V(\mathbb{G})$ so that we have
 $$\begin{split} & M(x,y,z)/R^+ = m(x/R^+,y/R^+,z/R^+) \\ & M(x,y,z)/R^- = m'(x/R^-,y/R^-,z/R^-) \end{split}$$
- Suppose we do this. Then M will be a polymorphism of G
 Assume

u_1	u_2	uз
\downarrow	\downarrow	\downarrow
v_1	<i>v</i> ₂	V3

• Now
$$\phi(u_i/R^+) = v_i/R^-$$
 for all i

Thus

$$M(v_1, v_2, v_3)/R^- = m'(v_1/R^-, v_2/R^-, v_3/R^-)$$

$$M(v_1, v_2, v_3)/R^- = \phi(m(\phi^{-1}(v_1/R^-), \phi^{-1}(v_2/R^-), \phi^{-1}(v_3/R^-)))$$

$$M(v_1, v_2, v_3)/R^- = \phi(m(u_1/R^+, u_2/R^+, u_3/R^+))$$

$$M(v_1, v_2, v_3)/R^- = \phi(M(u_1, u_2, u_3)/R^+)$$

Assume

$$\begin{array}{cccc} u_1 & u_2 & u_3 \\ \downarrow & \downarrow & \downarrow \\ v_1 & v_2 & v_3 \end{array}$$

• We got
$$M(v_1, v_2, v_3)/R^- = \phi(M(u_1, u_2, u_3)/R^+)$$

- By the definition of φ, the block M(v₁, v₂, v₃)/R⁻ is where all the edges from M(u₁, u₂, u₃)/R⁺ go!
- Thus $M(u_1, u_2, u_3) \rightarrow M(v_1, v_2, v_3)$ is an edge

- Maltsev \Rightarrow majority shows that BDJN reduction cannot be made into a perfect correspondence
- More about Maltsev digraphs: Catarina Carvalho, Laszlo Egri, Marcel Jackson, Todd Niven. On Maltsev digraphs, 2015.
- $\bullet\,$ If $\mathbb G$ is a Maltsev digraph, $\mathbb G$ has both Maltsev and majority
- \bullet This makes $\mathsf{CSP}(\mathbb{G})$ very easy, doable in logarithmic space
- This uses Victor Dalmau, Benoit Larose, Maltsev + Datalog \Rightarrow symmetric Datalog, 2008