Polymorphisms of directed graphs

Alexandr Kazda

CU Boulder

January 21st 2021

Polymorphisms

- $\mathbb{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$
- $f: A^{n} \rightarrow A$ is a polymorphism of \mathbb{A} if f is compatible with all operations of \mathbb{A}
- A height 1 identity for is an identity of the form

$$
f(? \cdots ?) \approx g(? \cdots ?)
$$

where question marks are variables

- CSP theory: The more height 1 identities $\operatorname{Pol}(\mathbb{A})$ satisfies, the easier $\operatorname{CSP}(\mathbb{A})$ is
- L. Barto, J. Opršal, M. Pinsker, The wonderland of reflections, Israel Journal of Mathematics 223/1 (2018), 363-398
- L. Barto, J. Bulin, A. Krokhin, J. Opršal, Algebraic approach to promise constraint satisfaction

Polymorphisms of digraphs

- Directed graphs were one of the earliest objects for CSP
- $\mathbb{G}=(V(\mathbb{G}), E(\mathbb{G}))$ has as polymorphisms all $f: V(\mathbb{G})^{n} \rightarrow V(\mathbb{G})$ such that whenever

$$
\begin{array}{cccc}
u_{1} & u_{2} & \ldots & u_{n} \\
\downarrow & \downarrow & \ldots & \downarrow \\
v_{1} & v_{2} & \ldots & v_{n}
\end{array}
$$

then

$$
\begin{gathered}
f\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
\downarrow \\
f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
\end{gathered}
$$

Reduction to digraphs

- Feder, Vardi: Every $\operatorname{CSP}(\mathbb{A})$ is poly-time equivalent to $\operatorname{CSP}(\mathbb{G})$ for some \mathbb{G} balanced digraph.
- Feder, Vardi: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory, 1998
- How well do digraphs simulate polymorphisms of general relational structures?
- Bulín, Delic, Jackson, Niven: For every \mathbb{A} there exists a digraph \mathbb{G} such that for any* set of identities Σ we have \mathbb{A} satisfies Σ iff \mathbb{G} satisfies Σ
- Jakub Bulín and D. Delic and M. Jackson and T. Niven: A finer reduction of constraint problems to digraphs, 2015
- Warning: The asterisk hides a lot of technicalies...

Example identities for which the BDJN reduction works

- Necessary condition: The polymorphisms must be polymorphisms of

- Example: Majority

$$
M(x, x, y) \approx M(x, y, x) \approx M(y, x, x) \approx x
$$

- Non-example: Maltsev (after Anatoly Ivanovich Maltsev, 1909-1967)

$$
p(x, x, y) \approx p(y, x, x) \approx y
$$

Maltsev does not generally imply majority

- Maltsev \& majority

$$
\begin{aligned}
p(x, x, y) & \approx p(y, x, x) \\
M(x, x, y) & \approx M(x, y, x) \approx M(y, x, x) \approx x
\end{aligned}
$$

- Take $\mathbb{A}=(\{0,1\} ; R)$
- $R=\{(a, b, c): a+b+c=0(\bmod 2)\}$
- $p(x, y, z)=x+y+z(\bmod 2)$
- If M was majority, apply to rows of

$$
M\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

but this is not in R

Maltsev polymorphism

- How do Maltsev digraphs look like?
- Recall $p(x, x, y) \approx p(y, x, x) \approx y$
- If we have

- Then

$$
f\left(\begin{array}{ccc}
u & w & w \\
\downarrow & \downarrow & \downarrow \\
v & v & t
\end{array}\right)=\left(\begin{array}{l}
u \\
\downarrow \\
t
\end{array}\right),
$$

- We get

Equivalence relations

- \mathbb{G} be a Maltsev digraph; it looks like this:

- Two partial equivalences
(1) $R^{+}(u, v)$ iff $\exists z,(u, z),(v, z) \in E(\mathbb{G})$
(2) $R^{-}(u, v)$ iff $\exists z,(z, u),(z, v) \in E(\mathbb{G})$

Factorizing a digraph

- Assume G is smooth (each vertex has in- and out-degree ≥ 1)
- R^{+}and R^{-}are equivalences
- Equivalences factorize stuff
- Idea: Prove Maltsev \Rightarrow majority by induction on digraph size, go from \mathbb{G} / R^{+}to \mathbb{G}
- Induction basis: R^{+}, R^{-}are identity
- Happens for disjoint union of cycles (has Maltsev \& majority)

Graphs \mathbb{G} / R^{+}and \mathbb{G} / R^{-}

- Bijection ϕ from R^{+}-classes to R^{-}-classes
- \mathbb{G} / R^{+}and \mathbb{G} / R^{-}turn out to be isomorphic via ϕ
- Observation: If $u \in \phi\left(v / R^{+}\right)$, then $v \rightarrow u$

From Maltsev to majority

- Now onto induction step
- Easy: If \mathbb{G} has Maltsev, then \mathbb{G} / R^{+}has Maltsev
- Thus \mathbb{G} / R^{+}has majority m
- \mathbb{G} / R^{-}has majority $m^{\prime}(x, y, z)=\phi\left(m\left(\phi^{-1}(x), \phi^{-1}(y), \phi^{-1}(z)\right)\right)$
- Construct a majority map $M: V(\mathbb{G})^{3} \rightarrow V(\mathbb{G})$ so that we have

$$
\begin{aligned}
& M(x, y, z) / R^{+}=m\left(x / R^{+}, y / R^{+}, z / R^{+}\right) \\
& M(x, y, z) / R^{-}=m^{\prime}\left(x / R^{-}, y / R^{-}, z / R^{-}\right)
\end{aligned}
$$

M is a polymorphism

- Construct a majority map $M: V(\mathbb{G})^{3} \rightarrow V(\mathbb{G})$ so that we have

$$
\begin{aligned}
& M(x, y, z) / R^{+}=m\left(x / R^{+}, y / R^{+}, z / R^{+}\right) \\
& M(x, y, z) / R^{-}=m^{\prime}\left(x / R^{-}, y / R^{-}, z / R^{-}\right)
\end{aligned}
$$

- Suppose we do this. Then M will be a polymorphism of \mathbb{G}
- Assume

- Now $\phi\left(u_{i} / R^{+}\right)=v_{i} / R^{-}$for all i
- Thus

$$
\begin{aligned}
& M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}=m^{\prime}\left(v_{1} / R^{-}, v_{2} / R^{-}, v_{3} / R^{-}\right) \\
& M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}=\phi\left(m\left(\phi^{-1}\left(v_{1} / R^{-}\right), \phi^{-1}\left(v_{2} / R^{-}\right), \phi^{-1}\left(v_{3} / R^{-}\right)\right)\right) \\
& M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}=\phi\left(m\left(u_{1} / R^{+}, u_{2} / R^{+}, u_{3} / R^{+}\right)\right) \\
& M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}=\phi\left(M\left(u_{1}, u_{2}, u_{3}\right) / R^{+}\right)
\end{aligned}
$$

Finishing the homomorphism proof

- Assume

$$
\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
\downarrow & \downarrow & \downarrow \\
v_{1} & v_{2} & v_{3}
\end{array}
$$

- We got $M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}=\phi\left(M\left(u_{1}, u_{2}, u_{3}\right) / R^{+}\right)$
- By the definition of ϕ, the block $M\left(v_{1}, v_{2}, v_{3}\right) / R^{-}$is where all the edges from $M\left(u_{1}, u_{2}, u_{3}\right) / R^{+}$go!
- Thus $M\left(u_{1}, u_{2}, u_{3}\right) \rightarrow M\left(v_{1}, v_{2}, v_{3}\right)$ is an edge

Connections to other papers

- Maltsev \Rightarrow majority shows that BDJN reduction cannot be made into a perfect correspondence
- More about Maltsev digraphs: Catarina Carvalho, Laszlo Egri, Marcel Jackson, Todd Niven. On Maltsev digraphs, 2015.
- If \mathbb{G} is a Maltsev digraph, \mathbb{G} has both Maltsev and majority
- This makes $\operatorname{CSP}(\mathbb{G})$ very easy, doable in logarithmic space
- This uses Victor Dalmau, Benoit Larose, Maltsev + Datalog \Rightarrow symmetric Datalog, 2008

