
Constraint Satisfaction Problem over

semilattices of Mal'cev blocks

Petar Markovi¢

(joint work with Aleksandar Proki¢)

University of Novi Sad, Serbia

Ulam Seminar, Boulder, CO

May 6th, 2021



Motivation: Why beat a dead horse?

Dichotomy is already proved, why work on it?

We advertised the CSP as a gateway to more complex problems

("Logic for P",. . . )

Both existing proofs are complicated. Not easy to apply to a

more general, more di�cult problem.

Before trying that, we should simplify the Dichotomy proof.



SMB algebras

De�nition

A = (A; d,∧) is a semilattice of Mal'cev blocks (SMB algebra) if

there exists a congruence (always denoted by ∼) such that

• (A/∼;∧) is a semilattice,

• On each ∼-class, ∧ is the second projection and

• On each ∼-class, d(x, y, z) is a Mal'cev operation.

Each SMB algebra has a Taylor term.

SMB algebras are a quasivariety, since

x ∼ y i� x ∧ y = y and y ∧ x = x.



Regular SMB algebras 1

De�nition

An SMB algebra A = (A; d,∧) is regular if

• x ∧ (x ∧ y) ≈ y ∧ (x ∧ y) ≈ (x ∧ y) ∧ y ≈ x ∧ y
• d(x, y, z) ≈ d((y ∧ z) ∧ x, (x ∧ z) ∧ y, (x ∧ y) ∧ z)
• If [x ∧ y]∼ = [y]∼, then x ∧ y = y.

Proposition

The class of all regular SMB algebras is a variety.

Proof: Syntax.

Theorem

The class of all SMB algebras is a variety.

Proof follows from: If A is an SMB algebra wrt ∼ and

α ∈ Con A, then A/α is an SMB algebra wrt (∼ ∨ α)/α.
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Theorem

In any �nite SMB algebra A = (A; d,∧) there exist terms d′ and
∧′ such that (A; d′,∧′) is a regular SMB algebra, with respect to

the same congruence ∼. Moreover, (A/∼;∧) = (A/∼;∧′) and
d = d′ holds on each ∼-class.

Question

Can we assume that (A; d′,∧′) is Taylor minimal?

It is not even known whether every �nite Mal'cev algebra has a

reduct which is a Taylor minimal Mal'cev algebra. We �almost"

reduce to the Mal'cev case, since all term operations of a regular

SMB reduct modulo ∼ act as the meet of their variables.



Motivation 2: SMB algebras and the colored edges theory

A. Bulatov's theory of colored edges: a TCT-like theory aimed

at understanding compatible relations of a �nite idempotent

algebra.

Key results for Taylor algebras:

• The graph of thick edges is connected.

• There exists a Taylor reduct where all thick majority and

semilattice edges are subuniverses (smooth reduct).

• The maximal elements are strongly connected in the

directed thin asm-graph.

• f(a, b) = a or af(a, b) is a thin semilattice edge.

• ab and cd are di�erent types of directed thin edges ⇒ ∃ a
term p, p(b, a) = b & p(c, d) = d.

• Various rectangularity properties for maximal elements.

• Quasi-2-decomposability (in SMB algebras even

quasi-1-decomposability).

All trivially hold in SMB algebras.



Motivation 3: Why work on CSP for SMB algebras?

Bulatov proved �rst SMB algebras are tractable and then used

the above results to generalize to Dichotomy.

Easier proof of tractability for SMB algebras may lead to an

easier proof of the Dichotomy.



Binary CSP instances: new notation

A CSP instance is binary if all constraint relations are binary.

A binary instance P can be described with two graphs:

ΓV = (V,EV ) and ΓP = (VP , EP ) and one surjective

homomorphism pot : ΓP → ΓV .

V = {1, 2, . . . , n} is the set of variables, and Pi := pot−1(i) is
the set of values which can be assigned to the variable i.

The undirected graph EV consists of the pairs of variables

between which we impose constraints.

The set of edges in EP which maps by pot to ij ∈ EV is denoted

by Rij and ({i, j}, Rij) is the constraint in the usual sense.

A solution to the instance (ΓV ,ΓP ) is a homomorphism

f : ΓV → ΓP which satis�es pot ◦ f = idV .

We assume that no vertex of V is isolated in ΓV .

We didn't do much, just converted many bipartite graphs into

one multipartite graph.



Consistency and induced subinstances

Let P = (ΓV ,ΓP ) be a binary CSP instance. P is 1-consistent if

for all ij ∈ EV and all a ∈ Pi there exists b ∈ Pj so that

ab ∈ EP .

Let P = (ΓV ,ΓP ) be a binary CSP instance. P is cycle

consistent if for all cyclic graphs Ck = 1− 2− · · · − k − 1, all
i ∈ V , all homomorphisms g : Ck → ΓV such that g(1) = i and
all a ∈ Pi there exists a homomorphism f : Ck → ΓP so that

pot ◦ f = g and f(1) = a.

Let (ΓV ,ΓP ) be a binary CSP instance, E1 ⊆ EV . E1 induces a

subinstance P ′ = (Γ1,ΓP ′) of P by

• Γ1 = (V1, E1), where V1 = {all endpoints of edges in E1}.
So, Γ1 is an edge subgraph of ΓV with no isolated vertices.

• ΓP ′ = (VP ′ , EP ′), where VP ′ := pot−1(V1), EP ′ = pot−1(E1).



Zhuk's vocabulary

Let (ΓV ,ΓP ) be a binary CSP instance.

• (ΓV ,ΓP ) has a subdirect solution set if for every a ∈ VP ,
∃ a solution f of (ΓV ,ΓP ) such that (f ◦ pot)(a) = a.
(We can �nd a solution through any point of any Pi).

• (ΓV ,ΓP ) is fragmented if ΓV is disconnected.

• (ΓV ,ΓP ) is linked if ΓP is connected.

• (ΓV ,ΓP ) is irreducible if, for any E1 ⊆ EV , where (Γ1,ΓP ′)
is the subinstance of (ΓV ,ΓP ) induced by E1, one of the

following holds:

− (Γ1,ΓP ′) is fragmented, or

− (Γ1,ΓP ′) is linked, or

− (Γ1,ΓP ′) has a subdirect solution set.



Zhuk's Reduction Theorem

Zhuk's Reduction Theorem for SMB Algebras

Let P = (ΓV ,ΓP ) be a binary CSP instance over SMB algebras.

Assume that P is irreducible, 1-consistent and cycle consistent.

If P has a solution, then P has a solution f such that for all

i ∈ V , f(i) is in the least ∼-class of Pi.

Our Reduction Theorem Lemma for SMB Algebras

Let P = (ΓV ,ΓP ) be a binary CSP instance over SMB algebras.

Assume that P is irreducible, 1-consistent, linked, but for any

edge ij ∈ EV , the subinstance induced by EV \ {ij} is not
linked. If P has a solution, then P has a solution f such that

for all i ∈ V , f(i) is in the least ∼-class of Pi.



Lemmas on graphs between two SMB algebras

Lemma 1

Let A and B be two SMB algebras and R ≤sd A×B a

subdirect product. For each a ∈ A there is the least ∼-class in
B which is R-connected to a, denoted by a↘. Moreover, if

a1 ∼ a2, then a1↘ = a2↘. For b ∈ B we use b↙.
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De�nition

An SMB algebra A is unital if there exists some 1 ∈ A such that

1∧ x = x∧ 1 = x holds for all x ∈ A. 1 is the unit element of A,

[1]∼ = {1} and it is the greatest class in the semilattice A/∼.
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Lemma 2

Let A and B be two unital regular SMB algebras with unit

elements 1A and 1B, and let R ≤sd A×B be a subdirect

product. The connected component of the R-graph containing

1A also contains 1B and it is a union of ∼-classes of A and of B.



Proof of our Reduction Lemma: Bridges

We assume f is the meet of all solutions to P so f always goes

through the least ∼-class any solution passes through.

(*) Let ij ∈ EV be such that f(i)a ∈ Rij ⊆ EP , where a ∈ Pj

satis�es [a]∼ < [f(j)]∼.

Let ij be a bridge in ΓV . The subinstance of P induced by

EV \ {ij} splits into independent subinstances P1 and P2.



Proof of our Reduction Lemma: Bridges



Proof of our Reduction Lemma: Bridges

P1, P2 - not fragmented.

If either of P1, P2 is not linked, use the subdirect solution sets

and, if necessary, inductive assumption (P1 and P2 satisfy the

assumptions of our theorem if linked).

If P1 and P2 are both linked, then we can �nd another edge i′j′

with the same properties as ij, either in P1 or in P2, and reduce

the search for such an edge ij ∈ EV to subinstance P1 or P2,

each of which has fewer bridges than P .

Finally �nd ij ∈ EV just like in (*), but ij is not a bridge in ΓV .



Proof of our Reduction Lemma: subdirect solution sets

Let ij ∈ EV be such that f(i)a ∈ Rij ⊆ EP , where a ∈ Pj

satis�es [a]∼ < [f(j)]∼ and ij is not a bridge in ΓV .

The subinstance P ′ induced by EV \ {ij} has a subdirect

solution set. Two graphs on Pi × Pj : ab ∈ Pij if there exists a

solution g to P ′ such that g(i) = a and g(j) = b. The other
graph is Rij . Both graphs are subdirect.



Proof of our Reduction Lemma: subdirect solution sets

Any edge in P ′ij ∩Rij - a solution to P .

Replace Pi and Pj with P
′
i = Pi ∧ f(i) and P ′j = Pj ∧ f(j).

Restrict P ′ij and Rij to P
′
i × P ′j . Both restrictions still subdirect

since f(i)f(j) ∈ P ′ij ∩Rij .

P ′i and P
′
j - unital regular SMB algebras.



Proof of our Reduction Lemma: Loop Lemma

Use ↘ in R′ij and ↙ in P ′ij , and apply Lemma 1, to get to

a ∈ P ′i , c ∈ P ′j such that
• f(i)↘↙↘↙ . . .↘↙ = [a]∼,
• a↘ = [c]∼ and c↙ = [a]∼.

pp-de�ne a directed graph on P ′i : a→c if (∃b ∈ P ′j)ab ∈ R′ij and
bc ∈ P ′ij .



Proof of our Reduction Lemma: Loop Lemma

May assume f(i)→na→mb and b is in the minimal (like sink)

strong component A of the restriction of → to [a]∼.
Use the meet with the path from f(i) to obtain that the

restriction of → to A has algebraic length 1. Thus A is

pp-de�nable ⇒ a subuniverse.

Barto, Kozik and Niven's Loop Lemma: There is a →-loop in A.
This gives a solution to P strictly below f .



Maróti reduction

Let P be a multisorted CSP instance. Under certain mild

assumptions about a binary term t, M. Maróti �nds a

�decomposition instance" t(P ) with the following properties:

• If P has a solution, then so does t(P ).

• If t(P ) has a solution, this solution �nds a reduction of P
to an equivalent problem with at least one sort smaller.

• t(P ) has many more variables than P , but its sorts are all
smaller (unless a �bad thing" happens).

By an inductive argument, one can solve t(P ) in polynomial

time and thus reduce P until the �bad thing" happens in every

sort.

For regular SMB algebras, �bad thing" is precisely that they are

unital.



Zhuk+Maróti+consistency ⇒ solution

Theorem 2

Let P = (ΓV ,ΓP ) be a binary CSP instance over regular SMB

algebras. If P is Maróti reduced, irreducible in the sense of

Zhuk, 1-consistent and cycle consistent, then P has a solution.

Proof.

Maróti reduced instances are such that each Pi is unital with

unit 1i and has more than one ∼-class. If, for all ij ∈ EV one

adds all edges of the form 1i1j to Rij , by Lemma 2 the

connected components of induced subinstances are unchanged.

Moreover, Rij ∪ {1i1j} are compatible. By Zhuk's Reduction

Theorem, the new instance has a solution f which traverses the

least ∼-blocks. Thus f never uses the new edges so it is also a

solution to P .



Problems with Theorem 2 and improvement

Theorem 2 is useless!

Can't enforce Maróti reduced + binary instance.

Better version:

Theorem 2'

Let P be a multisorted CSP instance over regular SMB

algebras. If P is Maróti reduced, irreducible in the sense of

Zhuk, 1-consistent and cycle consistent, then P has a solution.

Proof.

For each constraint relation, add the tuple which is the unit

element at each variable in the scope. Then apply Lemma 2 to

pp-de�nable graphs which are used in Zhuk's original notions of

connectivity of multisorted instances. Then use the same proof

as Theorem 2.



Concluding remarks

We �xed Theorem 2, but it doesn't mix well with our Reduction

Lemma. One needs any arity, the other needs binary. We need

to choose which way to proceed in further investigation.

THANK YOU FOR YOUR ATTENTION!


