The Amazing Power of PP Constructions

Manuel Bodirsky

Institut für Algebra, TU Dresden

April 29, 2021, CSP Seminar Boulder, virtual (ongoing) joint work with Florian Starke, Albert Vucaj, Dmitriy Zhuk, ...

Outline

- Primitive positive constructions
- Alternative title: clones on finite domains ordered by minor-preserving maps
- 2-element case, 3-element case.
- Digraphs

Primitive Positive Constructions

Three posets on finite structures:

Primitive positive (pp) definability: $\underline{A} \leq_{\mathsf{def}} \underline{B}$ if A = B and every relation in B has a primitive positive definition in \underline{A} .

$$\exists x_1,\ldots,x_n(\psi_1 \wedge \cdots \wedge \psi_m)$$

- Primitive positive interpretations: $\underline{A} \leq_{int} \underline{B}$ if there exists $d \in \mathbb{N}$ and partial $f \colon A^d \to B$ such that preimages of relations of \underline{B} are pp-definable in \underline{A} .
- Primitive positive constructions (Barto, Pinsker, Opršal): $\underline{A} \leq_{con} \underline{B}$ if \underline{B} is homomorphically equivalent to \underline{B}' and $\underline{A} \leq_{int} \underline{B}'$.

Motivation:

- lacksquare $\leq_{\text{def}}, \leq_{\text{int}}, \leq_{\text{con}}$ preserve the complexity of CSPs.
- Bulatov'2017, Zhuk'2017: $CSP(\underline{B})$ is in P if $\underline{B} \not\leq_{con} K_3$, and is NP-hard otherwise.
- Relevant for: which CSPs are in L? NL? NC?
- Relevant not only for CSPs

Posets on clones over finite sets

 $\leq_{\mathsf{def}}, \leq_{\mathsf{int}}, \leq_{\mathsf{con}}$: transitive.

 $Pol(\underline{A})$: the clone of polymorphisms of \underline{A} .

- **1** $\underline{A} \leq_{\mathsf{def}} \underline{B} \mathsf{iff} \mathsf{Pol}(\underline{A}) \subseteq \mathsf{Pol}(\underline{B}).$
- 2 $\underline{A} \leq_{int} \underline{B}$ iff there is a clone homomorphism $\xi \colon Pol(\underline{A}) \to Pol(\underline{B})$.

$$\xi(f(g_1,\ldots,g_n)) = \xi(f)(\xi(g_1),\ldots,\xi(g_n))$$
$$\xi(\pi_i^n) = \pi_i^n$$

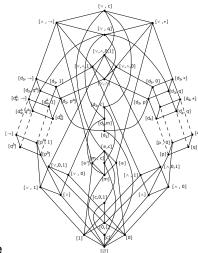
3 $\underline{A} \leq_{con} \underline{B}$ iff there is a minor-preserving map ξ : $Pol(\underline{A}) \rightarrow Pol(\underline{B})$.

$$\xi(f(\pi_{i_1}^k,\ldots,\pi_{i_k}^k)) = \xi(f)(\pi_{i_1}^k,\ldots,\pi_{i_k}^k)$$

(Every clone over a finite set equals $Pol(\underline{A})$ for some relational structure \underline{A} .)

Clones over two elements

 \leq_{def} on $\{0, 1\}$:



Post's lattice

Clones over three elements

 \leq_{def} on $\{0, 1, 2\}$:

Yanov-Muchnik: 2^ω

How about \leq_{int} ?

The interpretability poset on $\{0, 1, 2\}$

 \leq_{int} on $\{0, 1, 2\}$:

$$\begin{aligned} &C_3 := \big\{ (0,1), (1,2), (2,0) \big\} \\ &B_2 := \big\{ (1,0), (0,1), (1,1) \big\} \\ &R_3^- := \big\{ (x,y,z) \mid x \in \{0,1\} \land x = 0 \Rightarrow y = z \big\} \end{aligned}$$

Zhuk'15: 2^ω many clones between

$$\begin{array}{ccc} & \text{Pol}(\{0,1,2\}; C_3, R_3^=) \\ \text{and} & \text{Pol}(\{0,1,2\}; C_3, B_2) \end{array}$$

- Clones below $Pol(\{0, 1, 2\}; C_3)$: self-dual
- $Pol({0,1,2}; C_3, R_3^=)$ contains binary paper-scissor-stone operation

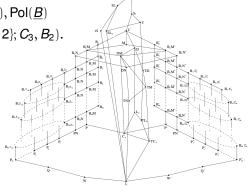
Non-collapse

Theorem. Let \underline{A} and \underline{B} be structures s.t.

$$\begin{split} (\{0,1,2\};\textit{C_3},\textit{$R_3^=$}) \leq_{\mathsf{def}} \mathsf{Pol}(\underline{\textit{A}}), \mathsf{Pol}(\underline{\textit{B}}) \\ \leq_{\mathsf{def}} (\{0,1,2\};\textit{C_3},\textit{B_2}). \end{split}$$

If $\underline{B} \leq_{int} \underline{A}$ then $\underline{B} \leq_{def} \underline{A}$.

Corollary: 2^{ω} clones over $\{0, 1, 2\}$ even when considered up to clone homomorphism equivalence!



Conclusion: Need stronger weapons.

The constructability poset

 $<_{con}$:

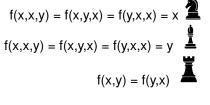
Clones \mathcal{C}_1 and \mathcal{C}_2 collapse if there is a minor-preserving map $\mathcal{C}_1 \to \mathcal{C}_2$ and a minor-preserving map $\mathcal{C}_2 \to \mathcal{C}_1$.

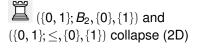
- lacktriangle all clones ${\mathcal C}$ with constant operation collapse.
- if \mathcal{C} has operation with image of size k, then \mathcal{C} collapses with a clone on k elements.
- if $\mathcal{C}^{(1)} \subseteq S_n$, then \mathcal{C} collapses with its idempotent reduct.
- consequence: to separate clones, can focus on idempotent strong linear Mal'cev conditions!

The constructability poset on {0, 1}

Pieces:

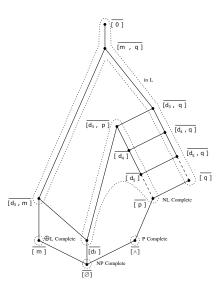
all clones without cyclic operation collapse

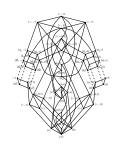




The constructability poset

 \leq_{con} on $\{0, 1\}$: outcome.





B., Vucaj 2020

The constructability poset on $\{0, 1, 2\}$

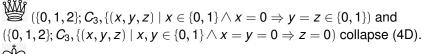
3-4 weak near unanimity

$$f(x, x, x, y) = f(x, x, y, x) = f(x, y, x, x) = f(y, x, x, x),$$

$$f(x, x, x, y) = g(x, x, y), g(x, x, y) = g(x, y, x) = g(y, x, x)$$

'guarded 3-cyclic':

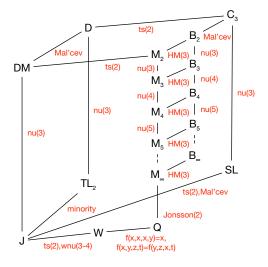
$$f(x, x, x, y) = x, f(x_1, x_2, x_3, y) = f(x_2, x_3, x_1, y)$$



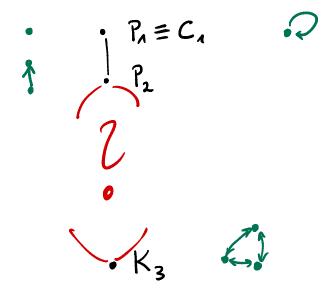
Further collapses ...

The constructability poset on $\{0, 1, 2\}$

 \leq_{con} for self-dual clones on $\{0, 1, 2\}$: outcome.



Digraphs



Digraphs: pieces

 $P_2 \leq_{con} D$ for every digraph D with a Mal'cev polymorphism and cyclic polymorphisms of all prime arities

 $D \leq_{\text{con}} T_3$ for every digraph D without a Mal'cev polymorphism $D \leq_{\text{con}} C_p$ for every digraph D without p-cyclic polymorphism

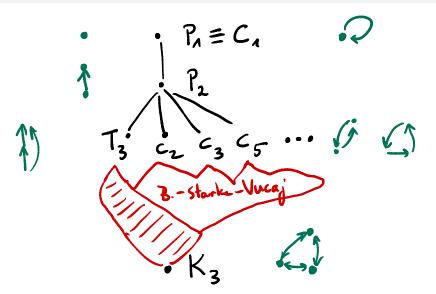
$$f(y, y, x) = f(x, y, y) = y$$

$$f(x_1, x_2) = f(x_2, x_1)$$

$$f(x_1, x_2, x_3) = f(x_2, x_3, x_1)$$

$$f(x_1, x_2, x_3, x_4) = f(x_2, x_3, x_4, x_1)$$

Digraphs: current state



Recruiting

\leq_{con} on finite structures:

- 1 What is the cardinality of \leq_{con} ?
- 2 Are there infinite ascending chains?
- 3 Is \leq_{con} a lattice?
- 4 What are the maximal elements below P_2 for general finite structures?
- 5 What are the maximal digraphs below T_3 ?