
Algebraic approach to
the Quantified Constraint Satisfaction

Problem

Dmitriy Zhuk 1 Barnaby Martin 2

1Lomonosov Moscow State University

2Durham University



Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?
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Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I If |A| = 2 then QCSP(Γ) is either tractable, or
PSPACE-complete.

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

P
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Few facts about QCSP

I There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

I If |A| = 3 and Γ contains all constants then QCSP(Γ) is either
tractable, NP-complete, coNP-complete, or PSpace-complete.

I There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P
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PSPACE
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DP

ΘP
2
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Algebraic approach

I Surjective polymorphisms determine the
complexity of QCSP

I How to go from PSpace to NP?

I How to go from PSpace to coNP?

I How to prove PSpace-hardness?

I How to go from NP to P?

I How to go from coNP to P?
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Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using quantified
conjunctive formulas

R(x1, . . . , xn) = ∀y1∃y2∀y3∃y4 . . .R1(. . . ) ∧ · · · ∧ Rs(. . . ).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1, i.e.
sPol(Γ1) ⊇ sPol(Γ2).

Corollary

Suppose sPol(Γ1) ⊇ sPol(Γ2). Then QCSP(Γ1) is polynomially
reducible to QCSP(Γ2).
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From Π2 to NP

Π2-CSP(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I We need to check that for all evaluations of x1, . . . , xt there
exists a solution of the CSP (R1(. . . ) ∧ · · · ∧ Rs(. . . )).

I How many tuples it is sufficient to check?
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PGP vs EGP

For an algebra (A;F ) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property
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Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (ai , ai+1) with ai 6= ai+1 is a switch in a tuple (a1, . . . , an).
(0, 0, 0, 1, 2, 2, 0, 0, 0, 0) has 3 switches,
(3, 3, 3, 4, 3, 3, 3, 3, 3, 3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each An is
generated by all tuples with at most k switches.
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From Π2 to NP

Π2-CSP(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If Γ is preserved by x ∨ y then it is sufficient to check that
(R1(. . . ) ∧ · · · ∧ Rs(. . . )) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then Π2-CSP(Γ) can be polynomially reduced
to CSP(Γ ∪ {{a} | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . . ) ∧ · · · ∧ Rs(. . . ) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))
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with |A| universally quantified variables, i.e.

∀z1 . . . ∀z|A|∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . ))

Proof: Suppose A = {a1, . . . , an}.
Consider the equivalent instance I of CSP(Γ ∪ {{a} | a ∈ A}).
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Then I is equivalent to ∀z1 . . . ∀zn∃ . . . ∃ I.

Corollary

Suppose Pol(Γ) has PGP, then Π2-CSP(Γ) is in NP
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From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀xn1

1 ∀x
1
2 . . . ∀xn2

2 . . . ∀x1
t . . . ∀xntt

∃y1∃y1
2 . . . ∃ym2

2 . . . ∃y1
t . . .∃ymt

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = xn1

1 = 1, . . . , x1
t = · · · = xntt = 0
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From PSpace to NP

Theorem

Suppose Pol(Γ) is k-switchable, then ∃y1∀x1 . . . ∃yt∀xt Φ holds IFF
for every 1 ≤ n1 < n2 < · · · < nk ≤ t the sentence

∀z0∀z1 . . . ∀zk ∃y1 . . . ∃yn1∀xn1 ∃yn1+1 . . . ∃yn2∀xn2 . . .

. . . ∃ynk−1+1 . . . ∃ynk∀xnk∃ynk+1 . . . ∃ytΦ′,

where Φ′ is obtained from Φ by renaming variables xni+1, . . . , xni+1

to zi for every i .

Corollary 1

Suppose Pol(Γ) has PGP, then QCSP(Γ) is in NP

Corollary 2

Suppose Pol(Γ) has PGP, then QCSP(Γ) is equivalent to
Π2-CSP(Γ) with |A| universally quantified variables.
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How to go from NP to P?

If Pol(Γ) has PGP then

I QCSP(Γ) can be reduced to QCSP(Γ) with bounded number
of universal quantifiers

I QCSP(Γ) can be reduced to CSP(Γ ∪ {{a} | a ∈ A}).

I if CSP(Γ ∪ {{a} | a ∈ A}) is tractable then QCSP(Γ) is
tractable.

What if CSP(Γ ∪ {{a} | a ∈ A}) is not tractable?

∀-CSP(Γ)

What is the complexity for sentences
∀x∃y1 . . . ∃yt(R1(. . . ) ∧ · · · ∧ Rs(. . . )), where R1, . . . ,Rs ∈ Γ.

Γ CSP(Γ) ∀-CSP(Γ) CSP(Γ∗)

No-Rainbow, {0} P P NPC
No-Rainbow, {0},{1} P NPC NPC

where No-Rainbow = {(a, b, c} | |{a, b, c}| < 3},
Γ∗ = Γ ∪ {{a} | a ∈ A}.
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How to go from NP to P?

Let A = {a1, . . . , an}

, Γ = (A;R1, . . . ,Rs).

∀-CSP(Γ)

What is the complexity for sentences
∀x∃y1 . . . ∃yt(Ri1(. . . ) ∧ · · · ∧ Ris (. . . )).

Claim

∀-CSP(Γ) is polynomially equivalent to CSP(Γ|A| ∪ {(a1, . . . , an)}).

Proof.

I WLOG assume that x appears only in constraints x = yi
I For each a ∈ A we need to find a solution

(x , y1, . . . , yt) = (a, ba1, . . . , b
a
t ),equivalently, we need to find

((ba1
1 , . . . , ban1 ), . . . , (ba1

t , . . . , bant ))

I Introduce variables y i = (ya1
i , . . . , yani ) over the domain A|A|.

I Replace Ri (y1, y2) by Ri (y1, y2) :=
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j Ri (y
aj
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I Replace x = yi by y i = (a1, . . . , an)
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Π2-CSP(Γ) with |A| universal quantifiers is polynomially equivalent

to CSP(Γ|A|
|A| ∪ {U1, . . . ,U|A|}) for unary relations U1, . . . ,U|A|.

Corollary

Suppose Pol(Γ) has PGP, then QCSP(Γ) is equivalent to
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|A| ∪ {U1, . . . ,U|A|}) for unary relations U1, . . . ,U|A|.

Is there a better characterization than this?
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How to go from PSpace to coNP?

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: ∃y1∀x1 . . . ∃yt∀xt Φ

We need a polynomial algorithm to choose an assignment y1 = a s.t.

∃y1∀x1 . . . ∃yt∀xtΦ⇐⇒ ∃y1∀x1 . . . ∃yt∀xt(Φ ∧ y1 = a)

⇓

∃y1∀x1 . . . ∀xt∃y2 . . . ∃yt(Φ ∧ y1 = a)

⇓

Φ ∧ y1 = a ∧ x1 = · · · = xt = c is satisfiable for every c ∈ A

How to choose between y1 = a and y2 = b if both satisfy this
condition?
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ft (x1 , . . . , xt−1 )

a /∈ Φx1 x2 . . . xtf ′2(x1)

f ′t (x1 , . . . , xt−1 )

0 1 2

0 1 2

I either there exists a pp-definable relation Rb s. t.
∀c , d (c , d , d , d) ∈ Rb, (b, 0, 1, 2) ∈ Rb, (a, 0, 1, 2) /∈ Rb,

I or there exists a polymorphism f s.t. f (x , 0, 1, 2) = x and
f (b, 0, 1, 2) = a. We choose a over b
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Suppose Γ admits a WNU and contains all constants.

Ra and Rb are pp-definable, i.e

I ∀c , d (c , d , d , d) ∈ Rb, (c , d , d , d) ∈ Rb;

I (a, 0, 1, 2) ∈ Ra, (b, 0, 1, 2) /∈ Ra;

I (b, 0, 1, 2) ∈ Rb, (a, 0, 1, 2) /∈ Rb;

Claim 1

QCSP({{a, b}3 \ {(b, b, a)},Rb}) is PSpace-complete.

Claim 2

QCSP({{a, b}3 \ {(a, a, b)},Ra}) is PSpace-complete.

I Unless there is minority or majority on {a, b}
(all relations are linear or conjunction of binary relations),
the problem is PSpace-hard.
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How to go from coNP to P?

EGP ⇐⇒ 〈(x1 = x2) ∨ · · · ∨ (x2n−1 = x2n)〉Pol(Γ) 6= A2n for every n.

For idempotent case (Γ contains all constants).

EGP ⇐⇒ there exists a reflexive symmetric relation x ∼ y s.t.
(x1 ∼ x2) ∨ · · · ∨ (x2n−1 ∼ x2n) is pp-definable Γ for every n.

Below Pol(Γ) has EGP and Γ contains all constants.

(x1 ∼ x2 ∼ x3)∨ · · · ∨ (x3n−2 ∼ x3n−1 ∼ x3n) is pp-definable over Γ.

¬∀x1 . . . ∀x3n((x1 ∼ x2 ∼ x3) ∨ · · · ∨ (x3n−2 ∼ x3n−1 ∼ x3n))

m
∃x1 . . . ∃x3n(¬(x1 ∼ x2 ∼ x3) ∧ · · · ∧ ¬(x3n−2 ∼ x3n−1 ∼ x3n))

I If there exists a polynomial (and efficiently computable)
pp-definition of ((x1 ∼ x2 ∼ x3)∨ · · · ∨ (x3n−2 ∼ x3n−1 ∼ x3n))
then QCSP(Γ) is coNP-Hard
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How to go from coNP to P?

Pol(Γ) has EGP, Γ contains all constants.

∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . ))

I We need to check exponentially many assignments
(x1, . . . , xt).

I We can check all tuples with at most k switches.
Let R(x1, . . . , xt) = ∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . )).

I If R can omit exponentially many tuples then, probably,
(x1 ∼ x2) ∨ · · · ∨ (x2n−1 ∼ x2n) has a pp-definition of
polynomial size.

I If R can omit only polynomially many tuples
I we calculate these tuples looking at R1(. . . ) ∧ · · · ∧ Rs(. . . )
I we check that the instance holds on these tuples.

Conjecture

QCSP(Γ) is coNP-Hard IFF (x1 ∼ x2) ∨ · · · ∨ (x2n−1 ∼ x2n) admits
a pp-definition over Γ of polynomial size for some ∼.
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Open Questions

I Find a criterion for QCSP(Γ) to be in coNP.

I Describe the complexity of QCSP(Γ) for every Γ on a
3-element domain (nonidempotent)

I Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is
tractable.

I Describe all Γ such that QCSP(Γ) is tractable.

My Conjecture

Suppose {x = a | a ∈ A} ⊆ Γ, then QCSP(Γ)

I is NP-hard if Pol(Γ) has no WNU.

I is coNP-hard if (x1 ∼ x2) ∨ · · · ∨ (x2n−1 ∼ x2n) admits a
pp-definition over Γ of polynomial size for a nontrivial reflexive
symmetric relation ∼.

I is tractable otherwise.
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Thank you for your attention
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