Algebraic approach to the Quantified Constraint Satisfaction Problem

Dmitriy Zhuk¹ Barnaby Martin²

¹Lomonosov Moscow State University

²Durham University

Let A be a (finite) set,

 Γ be a set of relations on A, called a constraint language

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

```
Given a sentence \exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots)), where R_1, \dots, R_s \in \Gamma.
Decide whether it holds.
```

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

$QCSP(\Gamma)$:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2),$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y),$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2),$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

```
Let A be a (finite) set,
```

 Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances: $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

Main Question

What is the complexity of $QCSP(\Gamma)$ for different Γ ?

• If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

- ▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- If |A| = 2 then QCSP(Γ) is either tractable, or PSPACE-complete.

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- If |A| = 2 then QCSP(Γ) is either tractable, or PSPACE-complete.
- For A' = A ∪ {*}, Γ' an extension of Γ to A', QCSP(Γ') is equivalent to CSP(Γ).

- If Γ contains all relations then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- If |A| = 2 then QCSP(Γ) is either tractable, or PSPACE-complete.
- For A' = A ∪ {*}, Γ' an extension of Γ to A', QCSP(Γ') is equivalent to CSP(Γ). QCSP(Γ) can be NP-complete.

 There exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.

- There exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- If |A| = 3 and Γ contains all constants then QCSP(Γ) is either tractable, NP-complete, coNP-complete, or PSpace-complete.

- There exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- If |A| = 3 and Γ contains all constants then QCSP(Γ) is either tractable, NP-complete, coNP-complete, or PSpace-complete.
- There exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.

- There exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- If |A| = 3 and Γ contains all constants then QCSP(Γ) is either tractable, NP-complete, coNP-complete, or PSpace-complete.
- There exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.

coNP

 There exists Γ on a 10-element domain such that QCSP(Γ) is Θ^P₂-complete.

PSPACE

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Surjective polymorphisms

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

$$R(x_1,\ldots,x_n) = \forall y_1 \exists y_2 \forall y_3 \exists y_4 \ldots R_1(\ldots) \land \cdots \land R_s(\ldots).$$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Surjective polymorphisms

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

$$R(x_1,\ldots,x_n) = \forall y_1 \exists y_2 \forall y_3 \exists y_4 \ldots R_1(\ldots) \land \cdots \land R_s(\ldots).$$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin)

 Γ_1 is definable by quantified conjunctive formulas over Γ_2 IFF each surjective polymorphism of Γ_2 is a polymorphism of Γ_1 , i.e. $sPol(\Gamma_1) \supseteq sPol(\Gamma_2)$.

Surjective polymorphisms

Observation

Suppose each relation of Γ_1 is definable from Γ_2 using quantified conjunctive formulas

$$R(x_1,\ldots,x_n)=\forall y_1\exists y_2\forall y_3\exists y_4\ldots R_1(\ldots)\wedge\cdots\wedge R_s(\ldots).$$

Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin)

 Γ_1 is definable by quantified conjunctive formulas over Γ_2 IFF each surjective polymorphism of Γ_2 is a polymorphism of Γ_1 , i.e. $sPol(\Gamma_1) \supseteq sPol(\Gamma_2)$.

Corollary

Suppose sPol(Γ_1) \supseteq sPol(Γ_2). Then $QCSP(\Gamma_1)$ is polynomially reducible to $QCSP(\Gamma_2)$.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

From Π_2 to NP

Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

From Π_2 to NP

Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

We need to check that for all evaluations of x₁,..., x_t there exists a solution of the CSP (R₁(...) ∧ ··· ∧ R_s(...)).

From Π_2 to NP

Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- We need to check that for all evaluations of x₁,..., x_t there exists a solution of the CSP (R₁(...) ∧ ··· ∧ R_s(...)).
- How many tuples it is sufficient to check?

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

Examples

1.
$$A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$$
. It is sufficient to have $(0, ..., 0)$ and $(0, ..., 0, 1, 0, ..., 0)$ for any position of 1 to generate $\{0, 1\}^n$.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

Examples

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

Examples

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.
 - If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

Examples

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.
 - If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
 - If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (a_i, a_{i+1}) with $a_i \neq a_{i+1}$ is a switch in a tuple (a_1, \ldots, a_n) . (0,0,0,1,2,2,0,0,0,0) has 3 switches, (3,3,3,4,3,3,3,3,3,3) has 2 switches.

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

- If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (a_i, a_{i+1}) with $a_i \neq a_{i+1}$ is a switch in a tuple (a_1, \ldots, a_n) . (0,0,0,1,2,2,0,0,0,0) has 3 switches, (3,3,3,4,3,3,3,3,3,3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra **A** has PGP IFF there exists k such that each **A**ⁿ is generated by all tuples with at most k switches.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If Γ is preserved by $x \lor y$ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If Γ is preserved by $x \lor y$ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) can be polynomially reduced to CSP($\Gamma \cup \{\{a\} \mid a \in A\}$).

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If Γ is preserved by $x \lor y$ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) can be polynomially reduced to CSP($\Gamma \cup \{\{a\} \mid a \in A\}$).

Proof:

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If Γ is preserved by $x \lor y$ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Observation

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) can be polynomially reduced to CSP($\Gamma \cup \{\{a\} \mid a \in A\}$).

Proof: the instance is equivalent to the CSP instance

$$\bigwedge_{\substack{(a_1,\ldots,a_t) \text{ with} \\ \text{at most } k \text{ switches}}} (R_1(\ldots) \wedge \cdots \wedge R_s(\ldots) \wedge (x_1 = a_1) \wedge \cdots \wedge (x_t = a_t))$$

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|\mathcal{A}|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof:

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof: Suppose $A = \{a_1, \ldots, a_n\}$.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof: Suppose $A = \{a_1, \ldots, a_n\}$. Consider the equivalent instance \mathcal{I} of $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof: Suppose $A = \{a_1, ..., a_n\}$. Consider the equivalent instance \mathcal{I} of $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$. Replace each constraint $x = a_i$ by $x = z_i$.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof: Suppose $A = \{a_1, \ldots, a_n\}$. Consider the equivalent instance \mathcal{I} of CSP($\Gamma \cup \{\{a\} \mid a \in A\}$). Replace each constraint $x = a_i$ by $x = z_i$. Then \mathcal{I} is equivalent to $\forall z_1 \ldots \forall z_n \exists \ldots \exists \mathcal{I}$.

 Π_2 -CSP(Γ):

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Theorem

If Pol(Γ) has PGP, then Π_2 -CSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables, i.e.

$$\forall z_1 \ldots \forall z_{|A|} \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$$

Proof: Suppose $A = \{a_1, \ldots, a_n\}$. Consider the equivalent instance \mathcal{I} of CSP($\Gamma \cup \{\{a\} \mid a \in A\}$). Replace each constraint $x = a_i$ by $x = z_i$. Then \mathcal{I} is equivalent to $\forall z_1 \ldots \forall z_n \exists \ldots \exists \mathcal{I}$.

Corollary

Suppose $Pol(\Gamma)$ has PGP, then Π_2 -CSP(Γ) is in NP

$$\exists y \forall x \ \Phi \\ \uparrow \\ \forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|} \\ \Phi_i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i$$

$$\exists y \forall x \ \Phi \\ \uparrow \\ \forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|} \\ \Phi_i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i$$

 $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

• Φ_i is obtained from Φ by renaming x by x^i

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$$

$$\begin{array}{c} \forall x_1^1 \dots \forall x_1^{n_1} \ \forall x_2^1 \dots \forall x_2^{n_2} \dots \forall x_t^1 \dots \forall x_t^{n_t} \\ \exists y_1 \exists y_2^1 \dots \exists y_2^{m_2} \dots \ \exists y_t^1 \dots \exists y_t^{m_t} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q \end{array}$$

Φ_i is obtained from Φ by renaming x by xⁱ

$$\forall x_1^1 \dots \forall x_1^{n_1} \ \forall x_2^1 \dots \forall x_2^{n_2} \dots \forall x_t^1 \dots \forall x_t^{n_t} \\ \exists y_1 \exists y_2^1 \dots \exists y_2^{m_2} \dots \ \exists y_t^1 \dots \exists y_t^{m_t} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

 For the PGP case it is sufficient to check tuples with at most k switches

 For the PGP case it is sufficient to check tuples with at most k switches

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \ \Phi$$

$$\uparrow$$

$$1 \ 1 \ 1 \dots 1 \ 1 \ 1 \ 2 \dots 2 \dots 0 \ 0 \ 0 \ 0 \dots 0$$

$$\forall x_1^1 \dots \forall x_1^{n_1} \ \forall x_2^1 \dots \forall x_2^{n_2} \dots \forall x_t^1 \dots \forall x_t^{n_t}$$

$$\exists y_1 \exists y_2^1 \dots \exists y_2^{m_2} \dots \ \exists y_t^1 \dots \exists y_t^{m_t} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

Φ.

$$\begin{array}{c} \exists y \forall x \ \Phi \\ & \updownarrow \\ \forall x^1 \forall x^2 \dots \forall x^{|\mathcal{A}|} \exists y \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_{|\mathcal{A}|} \\ i \text{ is obtained from } \Phi \text{ by renaming } x \text{ by } x^i \end{array}$$

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \ \Phi$$

$$\uparrow$$

$$1 \ 1 \ 1 \dots 1 \ 1 \ 1 \ 2 \dots 2 \dots 0 \ 0 \ 0 \ 0 \dots 0$$

$$\forall x_1^1 \dots \forall x_1^{n_1} \ \forall x_2^1 \dots \forall x_2^{n_2} \dots \forall x_t^1 \dots \forall x_t^{n_t}$$

$$\exists y_1 \exists y_2^1 \dots \exists y_2^{m_2} \dots \ \exists y_t^1 \dots \exists y_t^{m_t} \ \Phi_1 \land \Phi_2 \land \dots \land \Phi_q$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

• We assign
$$x_1^1 = \cdots = x_1^{n_1} = 1, \dots, x_t^1 = \cdots = x_t^{n_t} = 0$$

Theorem

Suppose Pol(Γ) is k-switchable, then $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$ holds IFF for every $1 \leq n_1 < n_2 < \dots < n_k \leq t$ the sentence

$$\forall z_0 \forall z_1 \dots \forall z_k \exists y_1 \dots \exists y_{n_1} \forall x_{n_1} \exists y_{n_1+1} \dots \exists y_{n_2} \forall x_{n_2} \dots \\ \dots \exists y_{n_{k-1}+1} \dots \exists y_{n_k} \forall x_{n_k} \exists y_{n_k+1} \dots \exists y_t \Phi',$$

where Φ' is obtained from Φ by renaming variables $x_{n_i+1}, \ldots, x_{n_{i+1}}$ to z_i for every *i*.

Theorem

Suppose Pol(Γ) is k-switchable, then $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$ holds IFF for every $1 \leq n_1 < n_2 < \dots < n_k \leq t$ the sentence

$$\forall z_0 \forall z_1 \dots \forall z_k \exists y_1 \dots \exists y_{n_1} \forall x_{n_1} \exists y_{n_1+1} \dots \exists y_{n_2} \forall x_{n_2} \dots \\ \dots \exists y_{n_{k-1}+1} \dots \exists y_{n_k} \forall x_{n_k} \exists y_{n_k+1} \dots \exists y_t \Phi',$$

where Φ' is obtained from Φ by renaming variables $x_{n_i+1}, \ldots, x_{n_{i+1}}$ to z_i for every *i*.

Corollary 1

Suppose $Pol(\Gamma)$ has PGP, then $QCSP(\Gamma)$ is in NP

Theorem

Suppose Pol(Γ) is k-switchable, then $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$ holds IFF for every $1 \leq n_1 < n_2 < \dots < n_k \leq t$ the sentence

$$\forall z_0 \forall z_1 \dots \forall z_k \exists y_1 \dots \exists y_{n_1} \forall x_{n_1} \exists y_{n_1+1} \dots \exists y_{n_2} \forall x_{n_2} \dots \\ \dots \exists y_{n_{k-1}+1} \dots \exists y_{n_k} \forall x_{n_k} \exists y_{n_k+1} \dots \exists y_t \Phi',$$

where Φ' is obtained from Φ by renaming variables $x_{n_i+1}, \ldots, x_{n_{i+1}}$ to z_i for every *i*.

Corollary 1

Suppose $Pol(\Gamma)$ has PGP, then $QCSP(\Gamma)$ is in NP

Corollary 2

Suppose Pol(Γ) has PGP, then QCSP(Γ) is equivalent to Π_2 -CSP(Γ) with |A| universally quantified variables.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

How to prove PSpace-hardness?

How to prove PSpace-hardness? Let $A = \{+, -, 0, 1\}$

How to prove PSpace-hardness?

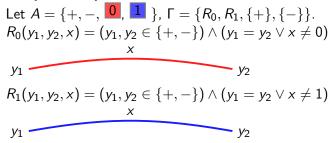
Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

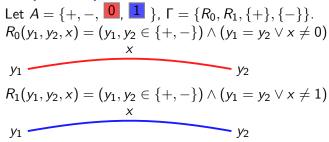
Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2
 y_2
 y_2

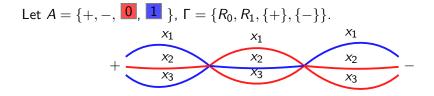
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

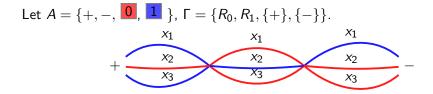




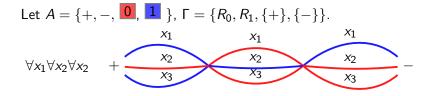
 $\exists u_1 \exists u_2 R_1(y_1, u_1, x_1) \land R_0(u_1, u_2, x_2) \land R_1(u_2, y_2, x_3)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

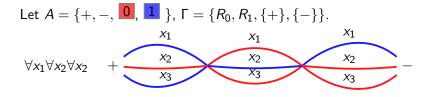




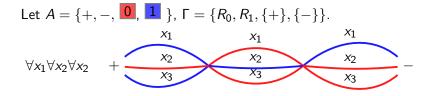
 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

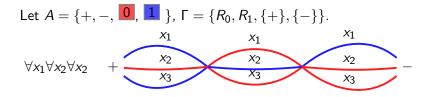


 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



 $\forall x_1 \forall x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$





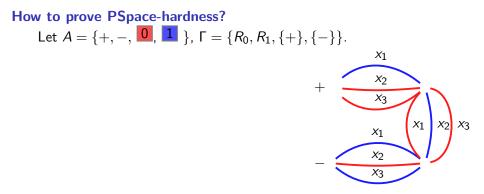
Claim

 $QCSP(\Gamma)$ is coNP-hard.

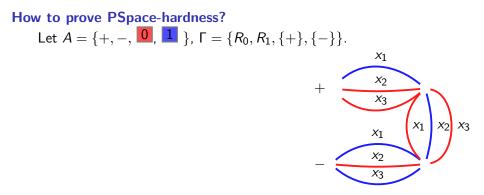
Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

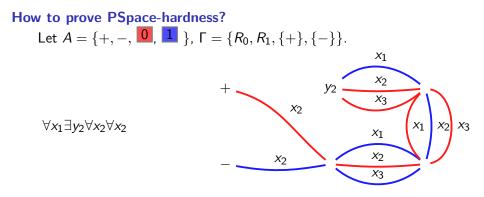
 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



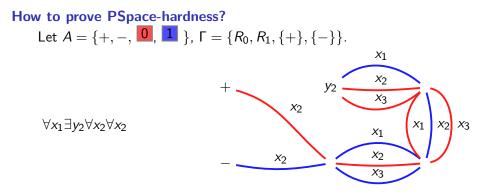
 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

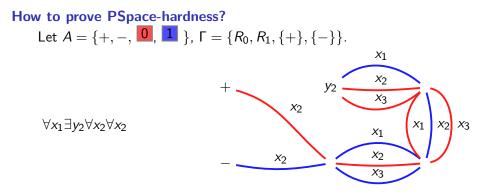


 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$





Claim

 $QCSP(\Gamma)$ is PSpace-hard.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

How to go from NP to P? If $Pol(\Gamma)$ has PGP then

- If $Pol(\Gamma)$ has PGP then
 - QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers

If $Pol(\Gamma)$ has PGP then

- QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers
- $QCSP(\Gamma)$ can be reduced to $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$.

If $Pol(\Gamma)$ has PGP then

- QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers
- QCSP(Γ) can be reduced to CSP($\Gamma \cup \{\{a\} \mid a \in A\}$).
- If CSP(Γ ∪ {{a} | a ∈ A}) is tractable then QCSP(Γ) is tractable.

If $Pol(\Gamma)$ has PGP then

- QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers
- QCSP(Γ) can be reduced to CSP($\Gamma \cup \{\{a\} \mid a \in A\}$).
- If CSP(Γ ∪ {{a} | a ∈ A}) is tractable then QCSP(Γ) is tractable.

What if $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$ is not tractable?

If $Pol(\Gamma)$ has PGP then

- QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers
- $QCSP(\Gamma)$ can be reduced to $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$.
- If CSP(Γ ∪ {{a} | a ∈ A}) is tractable then QCSP(Γ) is tractable.

What if $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$ is not tractable?

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

If $Pol(\Gamma)$ has PGP then

- QCSP(Γ) can be reduced to QCSP(Γ) with bounded number of universal quantifiers
- $QCSP(\Gamma)$ can be reduced to $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$.
- If CSP(Γ ∪ {{a} | a ∈ A}) is tractable then QCSP(Γ) is tractable.

What if $CSP(\Gamma \cup \{\{a\} \mid a \in A\})$ is not tractable?

∀-CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$.

Г	CSP(Г)	∀-CSP(Γ)	CSP(Γ*)
No-Rainbow, {0}	Р	Р	NPC
No-Rainbow, $\{0\},\{1\}$	Р	NPC	NPC
where No-Rainbow = $\{(a, b, c) \mid \{a, b, c\} < 3\}$,			
$\Gamma^* = \Gamma \cup \{\{a\} \mid a \in A\}.$			

How to go from NP to P? Let $A = \{a_1, \ldots, a_n\}$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

• WLOG assume that x appears only in constraints $x = y_i$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

- WLOG assume that x appears only in constraints $x = y_i$
- ► For each $a \in A$ we need to find a solution $(x, y_1, ..., y_t) = (a, b_1^a, ..., b_t^a)$,

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

- WLOG assume that x appears only in constraints $x = y_i$
- ▶ For each $a \in A$ we need to find a solution $(x, y_1, ..., y_t) = (a, b_1^a, ..., b_t^a)$, equivalently, we need to find $((b_1^{a_1}, ..., b_1^{a_n}), ..., (b_t^{a_1}, ..., b_t^{a_n}))$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

- WLOG assume that x appears only in constraints $x = y_i$
- ► For each $a \in A$ we need to find a solution $(x, y_1, ..., y_t) = (a, b_1^a, ..., b_t^a)$, equivalently, we need to find $((b_1^{a_1}, ..., b_1^{a_n}), ..., (b_t^{a_1}, ..., b_t^{a_n}))$

▶ Introduce variables $\overline{y}_i = (y_i^{a_1}, \dots, y_i^{a_n})$ over the domain $A^{|A|}$.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

- WLOG assume that x appears only in constraints $x = y_i$
- ► For each $a \in A$ we need to find a solution $(x, y_1, ..., y_t) = (a, b_1^a, ..., b_t^a)$, equivalently, we need to find $((b_1^{a_1}, ..., b_1^{a_n}), ..., (b_t^{a_1}, ..., b_t^{a_n}))$

▶ Introduce variables $\overline{y}_i = (y_i^{a_1}, \dots, y_i^{a_n})$ over the domain $A^{|A|}$.

• Replace $R_i(y_1, y_2)$ by $R_i(\overline{y}_1, \overline{y}_2) := \bigwedge_j R_i(y_1^{a_j}, y_2^{a_j})$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Proof.

- WLOG assume that x appears only in constraints $x = y_i$
- ► For each $a \in A$ we need to find a solution $(x, y_1, ..., y_t) = (a, b_1^a, ..., b_t^a)$, equivalently, we need to find $((b_1^{a_1}, ..., b_1^{a_n}), ..., (b_t^{a_1}, ..., b_t^{a_n}))$

▶ Introduce variables $\overline{y}_i = (y_i^{a_1}, \dots, y_i^{a_n})$ over the domain $A^{|A|}$.

• Replace $R_i(y_1, y_2)$ by $R_i(\overline{y}_1, \overline{y}_2) := \bigwedge_j R_i(y_1^{a_j}, y_2^{a_j})$

• Replace
$$x = y_i$$
 by $\overline{y}_i = (a_1, \ldots, a_n)$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \ldots, a_n)\})$.

Claim 2

 $\begin{array}{l} \Pi_2\text{-}\mathsf{CSP}(\Gamma) \text{ with } |\mathcal{A}| \text{ universal quantifiers is polynomially equivalent} \\ \text{to } \mathsf{CSP}(\Gamma^{|\mathcal{A}|^{|\mathcal{A}|}} \cup \{U_1, \ldots, U_{|\mathcal{A}|}\}) \text{ for unary relations } U_1, \ldots, U_{|\mathcal{A}|}. \end{array}$

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \dots, a_n)\})$.

Claim 2

 Π_2 -CSP(Γ) with |A| universal quantifiers is polynomially equivalent to CSP($\Gamma^{|A|^{|A|}} \cup \{U_1, \ldots, U_{|A|}\}$) for unary relations $U_1, \ldots, U_{|A|}$.

Corollary

Suppose $Pol(\Gamma)$ has PGP, then $QCSP(\Gamma)$ is equivalent to $CSP(\Gamma^{|A|^{|A|}} \cup \{U_1, \ldots, U_{|A|}\})$ for unary relations $U_1, \ldots, U_{|A|}$.

Let
$$A = \{a_1, ..., a_n\}$$
, $\Gamma = (A; R_1, ..., R_s)$.

\forall -CSP(Γ)

What is the complexity for sentences $\forall x \exists y_1 \dots \exists y_t (R_{i_1}(\dots) \land \dots \land R_{i_s}(\dots)).$

Claim

 \forall -CSP(Γ) is polynomially equivalent to CSP($\Gamma^{|A|} \cup \{(a_1, \dots, a_n)\})$.

Claim 2

 Π_2 -CSP(Γ) with |A| universal quantifiers is polynomially equivalent to CSP($\Gamma^{|A|^{|A|}} \cup \{U_1, \ldots, U_{|A|}\}$) for unary relations $U_1, \ldots, U_{|A|}$.

Corollary

Suppose $Pol(\Gamma)$ has PGP, then $QCSP(\Gamma)$ is equivalent to $CSP(\Gamma^{|\mathcal{A}|^{|\mathcal{A}|}} \cup \{U_1, \ldots, U_{|\mathcal{A}|}\})$ for unary relations $U_1, \ldots, U_{|\mathcal{A}|}$.

Is there a better characterization than this?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Suppose Γ admits a WNU and contains all constants.

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

We need a polynomial algorithm to choose an assignment $y_1 = a$ s.t.

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t \Phi \iff \exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (\Phi \land y_1 = a)$$

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

We need a polynomial algorithm to choose an assignment $y_1 = a$ s.t.

$$\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi \iff \exists y_1 \forall x_1 \dots \exists y_t \forall x_t (\Phi \land y_1 = a)$$

$$\Downarrow$$

$$\exists y_1 \forall x_1 \dots \forall x_t \exists y_2 \dots \exists y_t (\Phi \land y_1 = a)$$

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

We need a polynomial algorithm to choose an assignment $y_1 = a$ s.t.

 $\Phi \wedge y_1 = a \wedge x_1 = \cdots = x_t = c$ is satisfiable for every $c \in A$

Suppose Γ admits a WNU and contains all constants.

a QCSP instance: $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t \Phi$

We need a polynomial algorithm to choose an assignment $y_1 = a$ s.t.

 $\Phi \wedge y_1 = a \wedge x_1 = \cdots = x_t = c$ is satisfiable for every $c \in A$

How to choose between $y_1 = a$ and $y_2 = b$ if both satisfy this condition?

 $\exists y_1 \quad \forall x_1 \quad \exists y_2 \quad \forall x_2 \quad \cdots \quad \exists y_t \quad \forall x_t \quad \Phi$

 $\exists y_1 \quad \forall x_1 \quad \exists y_2 \quad \forall x_2 \quad \cdots \quad \exists y_t \quad \forall x_t \quad \Phi \qquad A = \{0, 1, 2\}$

 $\exists y_1 \quad \forall x_1 \quad \exists y_2 \quad \forall x_2 \quad \cdots \quad \exists y_t \quad \forall x_t \quad \Phi \qquad A = \{0, 1, 2\}$

a 0 0 ··· 0

 $\exists y_1 \quad \forall x_1 \quad \exists y_2 \quad \forall x_2 \quad \cdots \quad \exists y_t \quad \forall x_t \quad \Phi \qquad A = \{0, 1, 2\}$ $a \quad 0 \qquad 0 \quad \cdots \quad 0 \\ a \quad 1 \qquad 1 \quad \cdots \qquad 1$

$\exists y_1$	$\forall x_1$	$\exists y_2$	$\forall x_2$	•••	$\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0	c_{2}^{0}	0		c_t^0	0	$\in \Phi$	
		4			c_t^1			
а	2	c_2^2	2		c_t^2	2	$\in \Phi$	
b	0	d_2^0	0		d_t^0	0	$\in \Phi$	
b	1	d_2^1	1	•••	d_t^1	1	$\in \Phi$	
b	2	d_2^2	2		d_t^2	2	$\in \Phi$	

 $A = \{0, 1, 2\}$ $\exists y_1$ $\forall x_1$ $\exists y_2$ $\forall x_2$ $\cdots \exists y_t$ $\forall x_t$ φ $c_{2}^{0}c_{2}^{1}c_{2}^{2}c_{2}^{0}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d$ 0 0 c_t^0 c_t^1 c_t^2 c_t^2 d_t^0 0 а $\in \Phi$. . . 1 1 1 а $\in \Phi$. . . 2 2 2 а $\in \Phi$. . . 0 0 0 b $\in \Phi$. . . d_t^1 1 1 b 1 $\in \Phi$. . . d_t^2 2 b 2 2 $\in \Phi$. . . Fe(+1, ..., +t, 1) $f_2(x_1)$ x_1 *x*₂ хt $\in \Phi$ b . . .

 $\cdots \exists y_t$ $A = \{0, 1, 2\}$ $\exists y_1$ $\forall x_1$ $\exists y_2$ $\forall x_2$ $\forall x_t$ φ $c_{2}^{0}c_{2}^{1}c_{2}^{2}c_{2}^{0}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d_{2}^{2}d_{2}^{0}d_{2}^{1}d$ 0 c_t^0 c_t^1 c_t^2 c_t^2 d_t^0 0 а 0 $\in \Phi$. . . 1 1 1 а . . . $\in \Phi$ 2 2 2 $\in \Phi$ а . . . 0 0 0 b $\in \Phi$. . . d_t^1 1 1 b 1 $\in \Phi$. . . d_t^2 2 b 2 2 $\in \Phi$. . . Fe(+1, ..., +1, -1) $f_2(x_1)$ *x*1 *x*₂ хt $\in \Phi$ b . . . F((+1,...,+1,-1) $f_{2}'(x_{1})$ x_1 xt а x_2 . . . ∉Φ

$\exists y_1$		∃ <i>y</i> 2	$\forall x_2$		$\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0		0			0	$\in \Phi$	
а	1		1	•••		1	$\in \Phi$	
а	2		2			2	$\in \Phi$	
b	0		0			0	$\in \Phi$	
b	1		1			1	$\in \Phi$	
Ь	2		2			2	$\in \Phi$	
b	<i>x</i> ₁		<i>x</i> ₂			x _t	$\in \Phi$	

 $a \quad x_1 \qquad x_2 \quad \cdots \qquad x_t \notin \phi$

	-						
$\exists y_1$	$\forall x_1$	$\exists y_2$	$\forall x_2$	 $\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0		0		0	$\in \Phi$	
а	1		1		1		
а	2		2		2	$\in \Phi$	
b	0		0		0	$\in \Phi$	
b	1		1		1	$\in \Phi$	
b	2		2		2		
b	0		1		2	$\in \Phi$	
а	0		1		2	∉ Φ	

$\exists y_1$	$\forall x_1$	$\exists y_2 \forall x_2$	 $\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0	0		0	$\in \Phi$	
а	1	1		1	$\in \Phi$	
а	2	2		2	$\in \Phi$	
Ь	0	0		0	$\in \Phi$	
Ь	1	1		1	$\in \Phi$	
b	2	2		2	$\in \Phi$	
b	0	1		2	$\in \Phi$	
а	0	1		2	∉ Φ	

• either there exists a pp-definable relation R_b s. t. $\forall c, d (c, d, d, d) \in R_b, (b, 0, 1, 2) \in R_b, (a, 0, 1, 2) \notin R_b,$

$\exists y_1$	$\forall x_1$	$\exists y_2$	$\forall x_2$	 $\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0		0		0	$\in \Phi$	
а	1		1		1	$\in \Phi$	
а	2		2		2	$\in \Phi$	
b	0		0		0	$\in \Phi$	
b	1		1		1	$\in \Phi$	
b	2		2		2	$\in \Phi$	
Ь	0		1		2	$\in \Phi$	
а	0		1		2	∉ Φ	

- either there exists a pp-definable relation R_b s. t. $\forall c, d \ (c, d, d, d) \in R_b$, $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$,
- or there exists a polymorphism f s.t. f(x, 0, 1, 2) = x and f(b, 0, 1, 2) = a.

$\exists y_1$	$\forall x_1$	$\exists y_2$	$\forall x_2$	 $\exists y_t$	$\forall x_t$	Φ	$A = \{0, 1, 2\}$
а	0		0		0	$\in \Phi$	
а	1		1		1	$\in \Phi$	
а	2		2		2	$\in \Phi$	
b	0		0		0	$\in \Phi$	
b	1		1		1	$\in \Phi$	
b	2		2		2	$\in \Phi$	
Ь	0		1		2	$\in \Phi$	
а	0		1		2	∉ Φ	

- either there exists a pp-definable relation R_b s. t. $\forall c, d \ (c, d, d, d) \in R_b$, $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$,
- or there exists a polymorphism f s.t. f(x, 0, 1, 2) = x and f(b, 0, 1, 2) = a. We choose a over b

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

►
$$\forall c, d (c, d, d, d) \in R_b$$
, $(c, d, d, d) \in R_b$;

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

►
$$\forall c, d (c, d, d, d) \in R_b$$
, $(c, d, d, d) \in R_b$;

►
$$(a, 0, 1, 2) \in R_a$$
, $(b, 0, 1, 2) \notin R_a$;

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

- ► $\forall c, d (c, d, d, d) \in R_b$, $(c, d, d, d) \in R_b$;
- ► $(a, 0, 1, 2) \in R_a$, $(b, 0, 1, 2) \notin R_a$;
- ▶ $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$;

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

- ► $\forall c, d (c, d, d, d) \in R_b$, $(c, d, d, d) \in R_b$;
- ► $(a, 0, 1, 2) \in R_a$, $(b, 0, 1, 2) \notin R_a$;
- ► $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$;

Claim 1

 $QCSP(\{\{a, b\}^3 \setminus \{(b, b, a)\}, R_b\})$ is PSpace-complete.

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

- ► $\forall c, d (c, d, d, d) \in R_b$, $(c, d, d, d) \in R_b$;
- ► $(a, 0, 1, 2) \in R_a$, $(b, 0, 1, 2) \notin R_a$;
- ▶ $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$;

Claim 1

 $QCSP(\{\{a, b\}^3 \setminus \{(b, b, a)\}, R_b\})$ is PSpace-complete.

Claim 2

 $\mathsf{QCSP}(\{\{a, b\}^3 \setminus \{(a, a, b)\}, R_a\}) \text{ is PSpace-complete.}$

Suppose Γ admits a WNU and contains all constants.

 R_a and R_b are pp-definable, i.e

► $\forall c, d (c, d, d, d) \in R_b$, $(c, d, d, d) \in R_b$;

►
$$(a, 0, 1, 2) \in R_{a}$$
, $(b, 0, 1, 2) \notin R_{a}$;

► $(b, 0, 1, 2) \in R_b$, $(a, 0, 1, 2) \notin R_b$;

Claim 1

 $QCSP(\{\{a, b\}^3 \setminus \{(b, b, a)\}, R_b\})$ is PSpace-complete.

Claim 2

 $QCSP(\{\{a, b\}^3 \setminus \{(a, a, b)\}, R_a\})$ is PSpace-complete.

Unless there is minority or majority on {a, b}
 (all relations are linear or conjunction of binary relations),
 the problem is PSpace-hard.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- ► How to go from NP to P?
- ► How to go from coNP to P?

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every *n*.

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every *n*.

Below $Pol(\Gamma)$ has EGP and Γ contains all constants.

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every n.

Below $Pol(\Gamma)$ has EGP and Γ contains all constants.

 $(x_1 \sim x_2 \sim x_3) \lor \cdots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n})$ is pp-definable over Γ .

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every n.

Below $Pol(\Gamma)$ has EGP and Γ contains all constants.

 $(x_1 \sim x_2 \sim x_3) \lor \cdots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n})$ is pp-definable over Γ .

$$\neg \forall x_1 \ldots \forall x_{3n} ((x_1 \sim x_2 \sim x_3) \lor \cdots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n}))$$

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every *n*.

Below $Pol(\Gamma)$ has EGP and Γ contains all constants.

$$(x_1 \sim x_2 \sim x_3) \lor \cdots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n})$$
 is pp-definable over Γ .

$$\neg \forall x_1 \dots \forall x_{3n} ((x_1 \sim x_2 \sim x_3) \lor \dots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n}))$$

$$\Downarrow$$

$$\exists x_1 \dots \exists x_{3n} (\neg (x_1 \sim x_2 \sim x_3) \land \dots \land \neg (x_{3n-2} \sim x_{3n-1} \sim x_{3n}))$$

$$\mathsf{EGP} \Longleftrightarrow \langle (x_1 = x_2) \lor \cdots \lor (x_{2n-1} = x_{2n}) \rangle_{\mathsf{Pol}(\Gamma)} \neq A^{2n} \text{ for every } n.$$

For idempotent case (Γ contains all constants).

EGP \iff there exists a reflexive symmetric relation $x \sim y$ s.t. $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ is pp-definable Γ for every n.

Below $Pol(\Gamma)$ has EGP and Γ contains all constants.

$$(x_1 \sim x_2 \sim x_3) \lor \cdots \lor (x_{3n-2} \sim x_{3n-1} \sim x_{3n})$$
 is pp-definable over Γ .

If there exists a polynomial (and efficiently computable) pp-definition of ((x₁ ~ x₂ ~ x₃) ∨···∨ (x_{3n-2} ~ x_{3n-1} ~ x_{3n})) then QCSP(Γ) is coNP-Hard

 $Pol(\Gamma)$ has EGP, Γ contains all constants.

 $Pol(\Gamma)$ has EGP, Γ contains all constants.

 $Pol(\Gamma)$ has EGP, Γ contains all constants.

 $\forall x_1 \ldots \forall x_t \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$

▶ We need to check exponentially many assignments (x₁,..., x_t).

Pol(Γ) has EGP, Γ contains all constants.

- ▶ We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most *k* switches.

Pol(Γ) has EGP, Γ contains all constants.

- ▶ We need to check exponentially many assignments (x₁,..., x_t).
- ▶ We can check all tuples with at most *k* switches. Let $R(x_1, ..., x_t) = \exists y_1 ... \exists y_q (R_1(...) \land \cdots \land R_s(...)).$

Pol(Γ) has EGP, Γ contains all constants.

- ► We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most k switches. Let R(x₁,...,x_t) = ∃y₁...∃y_q(R₁(...) ∧···∧ R_s(...)).
- If R can omit exponentially many tuples then, probably, (x₁ ∼ x₂) ∨ · · · ∨ (x_{2n-1} ∼ x_{2n}) has a pp-definition of polynomial size.

Pol(Γ) has EGP, Γ contains all constants.

- ► We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most k switches. Let R(x₁,...,x_t) = ∃y₁...∃y_q(R₁(...) ∧···∧ R_s(...)).
- If R can omit exponentially many tuples then, probably, (x₁ ~ x₂) ∨ · · · ∨ (x_{2n-1} ~ x_{2n}) has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples

Pol(Γ) has EGP, Γ contains all constants.

- ► We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most k switches. Let R(x₁,...,x_t) = ∃y₁...∃y_q(R₁(...) ∧···∧ R_s(...)).
- If R can omit exponentially many tuples then, probably, (x₁ ~ x₂) ∨ · · · ∨ (x_{2n-1} ~ x_{2n}) has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
 - ▶ we calculate these tuples looking at $R_1(...) \land \cdots \land R_s(...)$

Pol(Γ) has EGP, Γ contains all constants.

- ► We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most k switches. Let R(x₁,...,x_t) = ∃y₁...∃y_q(R₁(...) ∧···∧ R_s(...)).
- If R can omit exponentially many tuples then, probably, (x₁ ~ x₂) ∨ · · · ∨ (x_{2n-1} ~ x_{2n}) has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
 - we calculate these tuples looking at $R_1(\dots) \wedge \dots \wedge R_s(\dots)$
 - we check that the instance holds on these tuples.

Pol(Γ) has EGP, Γ contains all constants.

 $\forall x_1 \ldots \forall x_t \exists y_1 \ldots \exists y_q (R_1(\ldots) \land \cdots \land R_s(\ldots))$

- ► We need to check exponentially many assignments (x₁,..., x_t).
- We can check all tuples with at most k switches. Let R(x₁,...,x_t) = ∃y₁...∃y_q(R₁(...) ∧···∧ R_s(...)).
- If R can omit exponentially many tuples then, probably, (x₁ ~ x₂) ∨ · · · ∨ (x_{2n-1} ~ x_{2n}) has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
 - ▶ we calculate these tuples looking at $R_1(...) \land \cdots \land R_s(...)$
 - we check that the instance holds on these tuples.

Conjecture

QCSP(Γ) is coNP-Hard IFF $(x_1 \sim x_2) \lor \cdots \lor (x_{2n-1} \sim x_{2n})$ admits a pp-definition over Γ of polynomial size for some \sim .

Find a criterion for QCSP(Γ) to be in coNP.

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.
- Describe all Γ such that QCSP(Γ) is tractable.

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.
- Describe all Γ such that QCSP(Γ) is tractable.

My Conjecture

```
Suppose \{x = a \mid a \in A\} \subseteq \Gamma, then QCSP(\Gamma)
```

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.
- Describe all Γ such that QCSP(Γ) is tractable.

My Conjecture

Suppose $\{x = a \mid a \in A\} \subseteq \Gamma$, then QCSP(Γ)

is NP-hard if Pol(Γ) has no WNU.

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.
- Describe all Γ such that QCSP(Γ) is tractable.

My Conjecture

Suppose $\{x = a \mid a \in A\} \subseteq \Gamma$, then QCSP(Γ)

- is NP-hard if Pol(Γ) has no WNU.
- Is coNP-hard if (x₁ ~ x₂) ∨··· ∨ (x_{2n-1} ~ x_{2n}) admits a pp-definition over Γ of polynomial size for a nontrivial reflexive symmetric relation ~.

- Find a criterion for QCSP(Γ) to be in coNP.
- Describe the complexity of QCSP(Γ) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that Pol(Γ) has PGP and QCSP(Γ) is tractable.
- Describe all Γ such that QCSP(Γ) is tractable.

My Conjecture

Suppose $\{x = a \mid a \in A\} \subseteq \Gamma$, then QCSP(Γ)

- is NP-hard if Pol(Γ) has no WNU.
- Is coNP-hard if (x₁ ~ x₂) ∨··· ∨ (x_{2n-1} ~ x_{2n}) admits a pp-definition over Γ of polynomial size for a nontrivial reflexive symmetric relation ~.
- is tractable otherwise.

Thank you for your attention