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Main Question
What is the complexity of QCSP(I") for different '?
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There exists [ on a 3-element domain such that QCSP(I') is
coNP-complete.

If |JA] = 3 and I contains all constants then QCSP(I) is either
tractable, NP-complete, coNP-complete, or PSpace-complete.

There exists [ on a 4-element domain such that QCSP(T) is
DP-complete, where DP = NP A coNP.

There exists [ on a 10-element domain such that DP
QCSP(I) is ©F-complete. v
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Theorem[Zhuk, 2015]
Every finite algebra either has PGP, or has EGP.

Pair (a;, aj+1) with a; # ajy1 is a switch in a tuple (a1, ..., an).
(0,0,0,1,2,2,0,0,0,0) has 3 switches,
(3,3,3,4,3,3,3,3,3,3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each A" is
generated by all tuples with at most k switches.
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Theorem

Suppose Pol(I") is k-switchable, then Jy;1Vx; ... y:Vx; @ holds IFF
forevery 1 < n; < np < --- < ng <t the sentence
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where ¢’ is obtained from ® by renaming variables xp,y1,. .., X,
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Corollary 1
Suppose Pol(I") has PGP, then QCSP(I') is in NP

Corollary 2

Suppose Pol(I") has PGP, then QCSP(I") is equivalent to
My-CSP(T) with |A| universally quantified variables.
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If Pol(T") has PGP then

» QCSP(I) can be reduced to QCSP(I") with bounded number
of universal quantifiers

» QCSP(I') can be reduced to CSP(I'uU {{a} | a € A}).

» if CSP(I'u{{a} | a € A}) is tractable then QCSP(I') is
tractable.

What if CSP(I' U {{a} | a € A}) is not tractable?

V-CSP(T)
What is the complexity for sentences
Vx3yr...3ye(Ri(...)A---ARs(...)), where Ry,...,Rs €T.

r CSP(I) | V-CSP(I') | CSP(T™*)
No-Rainbow, {0} P P NPC
No-Rainbow, {0},{1} P NPC NPC

where No-Rainbow = {(a, b, c} | [{a, b, c}| < 3},
M=ru{{a}|acA}.
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How to go from NP to P?
Let A= {al,...,a,,}, M= (A, Rl,...,RS).
V-CSP(I)

What is the complexity for sentences
Vx3dy; ... Elyt(R,-l(. .. ) JARERIVAN R,'s(. .. ))

Claim

V-CSP(T) is polynomially equivalent to CSP(TA U {(ay,...,an)}).

Claim 2
M>-CSP(T) with |A| universal quantifiers is polynomially equivalent
to CSP(F'AHA| U{U1,...,Ua}) for unary relations Ui, ..., U

Corollary

Suppose Pol(I") has PGP, then QCSP(I") is equivalent to
CSP(I"A“A‘ U{Ui,...,Ua}) for unary relations Uy, ..., U

Is there a better characterization than this?
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How to go from PSpace to coNP?

Suppose I' admits a WNU and contains all constants.

a QCSP instance: Jy1Vxy ... 3y:Vx: ®

We need a polynomial algorithm to choose an assignment y; = a s.t.

VX1 .. eV ® <= FyaVxg .. Ty xe (P A y1 = a)

!
Ay1Vx1 ... VxeTyo ... Iy (P A yp = a)
)
OPAyp =aAxg =---=xt = c is satisfiable for every c € A

How to choose between y; = a and y» = b if both satisfy this
condition?
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Claim 1
QCSP({{a, b}3\ {(b, b,a)}, Rp}) is PSpace-complete.

Claim 2
QCSP({{a, b}3\ {(a, a, b)}, R,}) is PSpace-complete.

» Unless there is minority or majority on {a, b}
(all relations are linear or conjunction of binary relations),
the problem is PSpace-hard.
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EGP <— <(X1 = X2) VeV (in,1 = X2,,)>p0|(r) 75 A2 for every n.J

For idempotent case (I contains all constants).

EGP <= there exists a reflexive symmetric relation x ~ y s.t.
(x1 ~ x2) V-V (xap—1 ~ X2p) is pp-definable I for every n.

Below Pol(I") has EGP and I contains all constants.

(x1 ~x2 ~x3) V-V (X3p—2 ~ X3p—1 ~ X3p) is pp-definable over F.J

—Vxq .. .VX3,,((X1 ~ Xp ~ X3) VeV (X3,,_2 ~ X3p—1 ~ X3n))

)

dx1... E]X3,,(‘\(X1 ~ Xp ~ X3) VANREIVAN —\(X3n_2 ~ X3p—1 "~ X3n))

> If there exists a polynomial (and efficiently computable)
pp-definition of ((x1 ~ x2 ~ x3) V-V (X3p-2 ~ X3p—1 ~ X3p))
then QCSP(T") is coNP-Hard
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How to go from coNP to P?
Pol(T") has EGP, T contains all constants.

Vxp .. Vxe3yr .. 3Ayg(Ri(c- ) A ARs(..)) ]

> We need to check exponentially many assignments
(X1, vy Xt)-

» We can check all tuples with at most k switches.

Let R(x1,...,x¢) =3y ... dyg(Ru(--. ) A ARs(...)).

» If R can omit exponentially many tuples then, probably,
(x1 ~x2) V-V (xop—1 ~ Xx2p) has a pp-definition of
polynomial size.

» If R can omit only polynomially many tuples

» we calculate these tuples looking at Ri(...) A+~ ARs(...)
» we check that the instance holds on these tuples.

Conjecture

QCSP(F) is coNP-Hard IFF (X1 ~ X2) VeV (X2n—1 ~ X2n) admits
a pp-definition over ' of polynomial size for some ~.
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Find a criterion for QCSP(I") to be in coNP.

Describe the complexity of QCSP(I") for every I on a
3-element domain (nonidempotent)

Describe all T such that Pol(I') has PGP and QCSP(T) is
tractable.

Describe all T such that QCSP(T') is tractable.

My Conjecture
Suppose {x =a|a€ A} CT, then QCSP(I)

>

>

is NP-hard if Pol(I') has no WNU.

is coNP-hard if (x1 ~ x2) V - -+ V (x2p—1 ~ X25) admits a
pp-definition over I of polynomial size for a nontrivial reflexive
symmetric relation ~.

is tractable otherwise.




Thank you for your attention
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