Algebraic approach to
 the Quantified Constraint Satisfaction Problem

Dmitriy Zhuk ${ }^{1}$ Barnaby Martin ${ }^{2}$

${ }^{1}$ Lomonosov Moscow State University
${ }^{2}$ Durham University

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$.

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$,

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$,

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$,

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Let A be a (finite) set,
Γ be a set of relations on A, called a constraint language

QCSP(Г):

Given a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Main Question

What is the complexity of $\operatorname{QCSP}(\Gamma)$ for different Γ ?

Few facts about QCSP

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time (tractable).

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ can be solved in polynomial time (tractable).
- If $|A|=2$ then $\operatorname{QCSP}(\Gamma)$ is either tractable, or PSPACE-complete.

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP (Γ) can be solved in polynomial time (tractable).
- If $|A|=2$ then $\operatorname{QCSP}(\Gamma)$ is either tractable, or PSPACE-complete.
- For $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ an extension of Γ to $A^{\prime}, \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

Few facts about QCSP

- If Γ contains all relations then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP (Γ) can be solved in polynomial time (tractable).
- If $|A|=2$ then $\operatorname{QCSP}(\Gamma)$ is either tractable, or PSPACE-complete.
- For $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ an extension of Γ to $A^{\prime}, \operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$. QCSP (Γ) can be NP-complete.

Few facts about QCSP

Few facts about QCSP

- There exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.

Few facts about QCSP

- There exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- If $|A|=3$ and Γ contains all constants then $\operatorname{QCSP}(\Gamma)$ is either tractable, NP-complete, coNP-complete, or PSpace-complete.

Few facts about QCSP

- There exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- If $|A|=3$ and Γ contains all constants then $\operatorname{QCSP}(\Gamma)$ is either tractable, NP-complete, coNP-complete, or PSpace-complete.
- There exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.

Few facts about QCSP

- There exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- If $|A|=3$ and Γ contains all constants then $\operatorname{QCSP}(\Gamma)$ is either tractable, NP-complete, coNP-complete, or PSpace-complete.
- There exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where DP $=\mathrm{NP} \wedge$ coNP.
- There exists Γ on a 10 -element domain such that QCSP (Γ) is Θ_{2}^{P}-complete.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then QCSP $\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then QCSP $\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.
Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin)
Γ_{1} is definable by quantified conjunctive formulas over Γ_{2} IFF each surjective polymorphism of Γ_{2} is a polymorphism of Γ_{1}, i.e. $\operatorname{sPol}\left(\Gamma_{1}\right) \supseteq \operatorname{sPol}\left(\Gamma_{2}\right)$.

Surjective polymorphisms

Observation

Suppose each relation of Γ_{1} is definable from Γ_{2} using quantified conjunctive formulas

$$
R\left(x_{1}, \ldots, x_{n}\right)=\forall y_{1} \exists y_{2} \forall y_{3} \exists y_{4} \ldots R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)
$$

Then $\operatorname{QCSP}\left(\Gamma_{1}\right)$ is polynomially reducible to $\operatorname{QCSP}\left(\Gamma_{2}\right)$.
Theorem (Galois Correspondence, Börner, Bulatov, Chen, Jeavons, and Krokhin)
Γ_{1} is definable by quantified conjunctive formulas over Γ_{2} IFF each surjective polymorphism of Γ_{2} is a polymorphism of Γ_{1}, i.e. $\operatorname{sPol}\left(\Gamma_{1}\right) \supseteq \operatorname{sPol}\left(\Gamma_{2}\right)$.

Corollary

Suppose $\operatorname{sPol}\left(\Gamma_{1}\right) \supseteq \operatorname{sPol}\left(\Gamma_{2}\right)$. Then $\operatorname{QCSP}\left(\Gamma_{1}\right)$ is polynomially reducible to $Q C S P\left(\Gamma_{2}\right)$.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- We need to check that for all evaluations of x_{1}, \ldots, x_{t} there exists a solution of the $\operatorname{CSP}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- We need to check that for all evaluations of x_{1}, \ldots, x_{t} there exists a solution of the $\operatorname{CSP}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- How many tuples it is sufficient to check?

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

Examples

1. $A=\{0,1\}, F=\{x \vee y\} . d_{F}(n)=n+1$. It is sufficient to have $(0, \ldots, 0)$ and $(0, \ldots, 0,1,0, \ldots, 0)$ for any position of 1 to generate $\{0,1\}^{n}$.
2. $A=\{0,1\}, F=\{\neg x\} . d_{F}(n)=2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0,1\}^{n}$.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A) $d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.
Pair $\left(a_{i}, a_{i+1}\right)$ with $a_{i} \neq a_{i+1}$ is a switch in a tuple $\left(a_{1}, \ldots, a_{n}\right)$.
$(0,0,0,1,2,2,0,0,0,0)$ has 3 switches,
$(3,3,3,4,3,3,3,3,3,3)$ has 2 switches.

PGP vs EGP

For an algebra $(A ; F)$ (a set of operations F on a set A)
$d_{F}(n)$ is the minimal size of a generating set of A^{n}.

- If $d_{F}(n)$ is restricted by a polynomial in n, then the algebra has the Polynomially Generated Powers (PGP) property
- If $d_{F}(n)$ is exponential in n, then the algebra has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.
Pair $\left(a_{i}, a_{i+1}\right)$ with $a_{i} \neq a_{i+1}$ is a switch in a tuple $\left(a_{1}, \ldots, a_{n}\right)$.
($0,0,0,1,2,2,0,0,0,0$) has 3 switches,
$(3,3,3,4,3,3,3,3,3,3)$ has 2 switches.
Theorem[Zhuk, 2015]
A finite algebra \mathbf{A} has PGP IFF there exists k such that each \mathbf{A}^{n} is generated by all tuples with at most k switches.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If Γ is preserved by $x \vee y$ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If Γ is preserved by $x \vee y$ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If Γ is preserved by $x \vee y$ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.

Proof:

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Example

If Γ is preserved by $x \vee y$ then it is sufficient to check that $\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$ is satisfiable for $\left(x_{1}, \ldots, x_{t}\right)=(0, \ldots, 0)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right)=(0, \ldots, 0,1,0, \ldots, 0)$ for $\forall i$.

Observation

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ can be polynomially reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.

Proof: the instance is equivalent to the CSP instance

$$
\wedge \quad\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots) \wedge\left(x_{1}=a_{1}\right) \wedge \cdots \wedge\left(x_{t}=a_{t}\right)\right)
$$

$\left(a_{1}, \ldots, a_{t}\right)$ with
at most k switches

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof:

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof: Suppose $A=\left\{a_{1}, \ldots, a_{n}\right\}$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof: Suppose $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
Consider the equivalent instance \mathcal{I} of $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof: Suppose $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
Consider the equivalent instance \mathcal{I} of $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$. Replace each constraint $x=a_{i}$ by $x=z_{i}$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof: Suppose $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
Consider the equivalent instance \mathcal{I} of $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
Replace each constraint $x=a_{i}$ by $x=z_{i}$.
Then \mathcal{I} is equivalent to $\forall z_{1} \ldots \forall z_{n} \exists \ldots \exists \mathcal{I}$.

From Π_{2} to NP

$\Pi_{2}-\operatorname{CSP}(\Gamma):$

Given a sentence $\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Theorem

If $\operatorname{Pol}(\Gamma)$ has PGP , then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables, i.e.

$$
\forall z_{1} \ldots \forall z_{|A|} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Proof: Suppose $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
Consider the equivalent instance \mathcal{I} of $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
Replace each constraint $x=a_{i}$ by $x=z_{i}$.
Then \mathcal{I} is equivalent to $\forall z_{1} \ldots \forall z_{n} \exists \ldots \exists \mathcal{I}$.

Corollary

Suppose $\operatorname{Pol}(\Gamma)$ has $P G P$, then $\Pi_{2}-\operatorname{CSP}(\Gamma)$ is in NP

From PSpace to NP

From PSpace to NP

$$
\exists y \forall x \Phi
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall \Uparrow \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall \Uparrow \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

From Space to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \stackrel{\Phi_{1}}{\Uparrow} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\underset{\mathbb{\Downarrow}}{\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi}
$$

$\forall x_{1}^{1} \ldots \forall x_{1}^{n_{1}} \forall x_{2}^{1} \ldots \forall x_{2}^{n_{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{n_{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{m_{2}} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{m_{t}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall \Uparrow \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi
$$

$\forall x_{1}^{1} \ldots \forall x_{1}^{n_{1}} \forall x_{2}^{1} \ldots \forall x_{2}^{n_{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{n_{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{m_{2}} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{m_{t}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \\
\mathbb{v} \\
111 \ldots 11112 \ldots 2 \ldots 000 \ldots 0 \\
\forall x_{1}^{1} \ldots \forall x_{1}^{n_{1}} \quad \begin{array}{l}
\\
\forall x_{2}^{1} \ldots \forall x_{2}^{n_{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{n_{t}} \\
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{m_{2}} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{m_{t}} \Phi_{1} \wedge \Phi_{2} \wedge \ldots \wedge \Phi_{q}
\end{array}
\end{gathered}
$$

- For the PGP case it is sufficient to check tuples with at most k switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\underset{\mathbb{\Downarrow}}{\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi}
$$

111...11112...2... $0000 \ldots 0$
$\forall x_{1}^{1} \ldots \forall x_{1}^{n_{1}} \forall x_{2}^{1} \ldots \forall x_{2}^{n_{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{n_{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{m_{2}} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{m_{t}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches

From PSpace to NP

$$
\begin{gathered}
\exists y \forall x \Phi \\
\forall \Uparrow \\
\forall x^{1} \forall x^{2} \ldots \forall x^{|A|} \exists y \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{|A|}
\end{gathered}
$$

- Φ_{i} is obtained from Φ by renaming x by x^{i}

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi
$$

111...11112...2... $0000 \ldots 0$
$\forall x_{1}^{1} \ldots \forall x_{1}^{n_{1}} \forall x_{2}^{1} \ldots \forall x_{2}^{n_{2}} \ldots \forall x_{t}^{1} \ldots \forall x_{t}^{n_{t}}$

$$
\exists y_{1} \exists y_{2}^{1} \ldots \exists y_{2}^{m_{2}} \ldots \exists y_{t}^{1} \ldots \exists y_{t}^{m_{t}} \Phi_{1} \wedge \Phi_{2} \wedge \cdots \wedge \Phi_{q}
$$

- For the PGP case it is sufficient to check tuples with at most k switches
- We keep variables with the switches
- We assign $x_{1}^{1}=\cdots=x_{1}^{n_{1}}=1, \ldots, x_{t}^{1}=\cdots=x_{t}^{n_{t}}=0$

From PSpace to NP

Theorem

Suppose $\operatorname{Pol}(\Gamma)$ is k-switchable, then $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$ holds IFF for every $1 \leq n_{1}<n_{2}<\cdots<n_{k} \leq t$ the sentence

$$
\begin{aligned}
& \forall z_{0} \forall z_{1} \ldots \forall z_{k} \exists y_{1} \ldots \exists y_{n_{1}} \forall x_{n_{1}} \exists y_{n_{1}+1} \ldots \exists y_{n_{2}} \forall x_{n_{2}} \ldots \\
& \ldots \exists y_{n_{k-1}+1} \ldots \exists y_{n_{k}} \forall x_{n_{k}} \exists y_{n_{k}+1} \ldots \exists y_{t} \Phi^{\prime},
\end{aligned}
$$

where Φ^{\prime} is obtained from Φ by renaming variables $x_{n_{i}+1}, \ldots, x_{n_{i+1}}$ to z_{i} for every i.

From PSpace to NP

Theorem

Suppose $\operatorname{Pol}(\Gamma)$ is k-switchable, then $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$ holds IFF for every $1 \leq n_{1}<n_{2}<\cdots<n_{k} \leq t$ the sentence

$$
\begin{aligned}
\forall z_{0} \forall z_{1} \ldots \forall z_{k} \exists y_{1} \ldots \exists y_{n_{1}} \forall x_{n_{1}} \exists y_{n_{1}+1} \ldots \exists y_{n_{2}} \forall x_{n_{2}} \ldots \\
\ldots \exists \exists y_{n_{k-1}+1} \ldots \exists y_{n_{k}} \forall x_{n_{k}} \exists y_{n_{k}+1} \ldots \exists y_{t} \Phi^{\prime},
\end{aligned}
$$

where Φ^{\prime} is obtained from Φ by renaming variables $x_{n_{i}+1}, \ldots, x_{n_{i+1}}$ to z_{i} for every i.

Corollary 1

Suppose $\operatorname{Pol}(\Gamma)$ has PGP, then $\operatorname{QCSP}(\Gamma)$ is in NP

From PSpace to NP

Theorem

Suppose $\operatorname{Pol}(\Gamma)$ is k-switchable, then $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$ holds IFF for every $1 \leq n_{1}<n_{2}<\cdots<n_{k} \leq t$ the sentence

$$
\begin{aligned}
\forall z_{0} \forall z_{1} \ldots \forall z_{k} \exists y_{1} \ldots \exists y_{n_{1}} \forall x_{n_{1}} \exists y_{n_{1}+1} \ldots \exists y_{n_{2}} \forall x_{n_{2}} \ldots \\
\ldots \exists \exists y_{n_{k-1}+1} \ldots \exists y_{n_{k}} \forall x_{n_{k}} \exists y_{n_{k}+1} \ldots \exists y_{t} \Phi^{\prime},
\end{aligned}
$$

where Φ^{\prime} is obtained from Φ by renaming variables $x_{n_{i}+1}, \ldots, x_{n_{i+1}}$ to z_{i} for every i.

Corollary 1

Suppose $\operatorname{Pol}(\Gamma)$ has PGP, then $\operatorname{QCSP}(\Gamma)$ is in NP

Corollary 2

Suppose $\operatorname{Pol}(\Gamma)$ has PGP, then $\operatorname{QCSP}(\Gamma)$ is equivalent to $\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universally quantified variables.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

How to prove PSpace-hardness?

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right)
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned} y_{2} \xrightarrow[{y_{1} \xrightarrow{x}}]{ }
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned} y_{2} .
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x \\
& y_{1} \xrightarrow{y_{2}} \\
& R_{1}\left(y_{1}, y_{2}, x\right)=\underset{x}{\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)} \\
& y_{1} \longrightarrow y_{2}
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x \\
& y_{1} \xrightarrow{y_{2}} \\
& R_{1}\left(y_{1}, y_{2}, x\right)=\underset{x}{\left.\underset{1}{y_{1}}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)} \\
& y_{1} \longrightarrow y_{2} \\
& \exists u_{1} \exists u_{2} R_{1}\left(y_{1}, u_{1}, x_{1}\right) \wedge R_{0}\left(u_{1}, u_{2}, x_{2}\right) \wedge R_{1}\left(u_{2}, y_{2}, x_{3}\right)
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1
$$

How to prove PSpace-hardness?

$$
\text { Let } \begin{aligned}
A=\{+,- & \left., 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. }
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\text { Let } A=\left\{+,-, \frac{0,11}{0, ~} \begin{array}{rl}
x_{1} \\
\forall x_{1} \forall x_{2} \forall x_{2}
\end{array}\right.
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{2}
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0, \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{2}
\end{aligned}
$$

How to prove PSpace-hardness?

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{2}
\end{aligned}
$$

Claim

QCSP (Γ) is coNP-hard.

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?
Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{2}$

$$
\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

How to prove PSpace-hardness?

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{2}$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
\Uparrow
$\neg\left(\exists x_{1} \forall x_{2} \exists x_{3} \quad\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.$

How to prove PSpace-hardness?

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

$$
\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{2}
$$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
\Uparrow

$$
\neg\left(\exists x_{1} \forall x_{2} \exists x_{3} \quad\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.
$$

Claim

QCSP (Γ) is PSpace-hard.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

How to go from NP to P?

How to go from NP to P?
If $\operatorname{Pol}(\Gamma)$ has PGP then

If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers

How to go from NP to P?
If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers
- $\operatorname{QCSP}(\Gamma)$ can be reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.

How to go from NP to P?

If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers
- $\operatorname{QCSP}(\Gamma)$ can be reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
- if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is tractable then $\operatorname{QCSP}(\Gamma)$ is tractable.

How to go from NP to P?

If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers
- $\operatorname{QCSP}(\Gamma)$ can be reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
- if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is tractable then $\operatorname{QCSP}(\Gamma)$ is tractable.

What if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is not tractable?

How to go from NP to P?

If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers
- $\operatorname{QCSP}(\Gamma)$ can be reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
- if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is tractable then $\operatorname{QCSP}(\Gamma)$ is tractable.

What if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is not tractable?

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.

How to go from NP to P?

If $\operatorname{Pol}(\Gamma)$ has PGP then

- QCSP (Γ) can be reduced to $\operatorname{QCSP}(\Gamma)$ with bounded number of universal quantifiers
- $\operatorname{QCSP}(\Gamma)$ can be reduced to $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$.
- if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is tractable then $\operatorname{QCSP}(\Gamma)$ is tractable.

What if $\operatorname{CSP}(\Gamma \cup\{\{a\} \mid a \in A\})$ is not tractable?

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.

Γ	$\mathrm{CSP}(\Gamma)$	$\forall-\mathrm{CSP}(\Gamma)$	$\mathrm{CSP}\left(\Gamma^{*}\right)$
No-Rainbow, $\{0\}$	P	P	NPC
No-Rainbow, $\{0\},\{1\}$	P	NPC	NPC

where No-Rainbow $=\{(a, b, c\}| |\{a, b, c\} \mid<3\}$,
$\Gamma^{*}=\Gamma \cup\{\{a\} \mid a \in A\}$.

How to go from NP to P?
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$

How to go from NP to P?
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.

How to go from NP to P?
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.
$\forall-\operatorname{CSP}(\Gamma)$
What is the complexity for sentences
$\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.

How to go from NP to P?

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.
\forall-CSP (Г)
What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim $\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

How to go from NP to P?

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.
$\forall-\operatorname{CSP}(\Gamma)$
What is the complexity for sentences
$\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.
Claim
$\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

Proof.

How to go from NP to P?

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim

$\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim

```
\forall-CSP(\Gamma) is polynomially equivalent to CSP}(\mp@subsup{\Gamma}{}{|A|}\cup{(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{})})
```


Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$
- For each $a \in A$ we need to find a solution $\left(x, y_{1}, \ldots, y_{t}\right)=\left(a, b_{1}^{a}, \ldots, b_{t}^{a}\right)$,

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim

```
\forall-CSP(\Gamma) is polynomially equivalent to CSP}(\mp@subsup{\Gamma}{}{|A|}\cup{(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{})})
```


Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$
- For each $a \in A$ we need to find a solution $\left(x, y_{1}, \ldots, y_{t}\right)=\left(a, b_{1}^{a}, \ldots, b_{t}^{a}\right)$, equivalently, we need to find $\left(\left(b_{1}^{a_{1}}, \ldots, b_{1}^{a_{n}}\right), \ldots,\left(b_{t}^{a_{1}}, \ldots, b_{t}^{a_{n}}\right)\right)$

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim

```
\forall-CSP(\Gamma) is polynomially equivalent to CSP}(\mp@subsup{\Gamma}{}{|A|}\cup{(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{})})
```


Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$
- For each $a \in A$ we need to find a solution $\left(x, y_{1}, \ldots, y_{t}\right)=\left(a, b_{1}^{a}, \ldots, b_{t}^{a}\right)$, equivalently, we need to find $\left(\left(b_{1}^{a_{1}}, \ldots, b_{1}^{a_{n}}\right), \ldots,\left(b_{t}^{a_{1}}, \ldots, b_{t}^{a_{n}}\right)\right)$
- Introduce variables $\bar{y}_{i}=\left(y_{i}^{a_{1}}, \ldots, y_{i}^{a_{n}}\right)$ over the domain $A^{|A|}$.

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.

Claim

$\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$
- For each $a \in A$ we need to find a solution $\left(x, y_{1}, \ldots, y_{t}\right)=\left(a, b_{1}^{a}, \ldots, b_{t}^{a}\right)$, equivalently, we need to find $\left(\left(b_{1}^{a_{1}}, \ldots, b_{1}^{a_{n}}\right), \ldots,\left(b_{t}^{a_{1}}, \ldots, b_{t}^{a_{n}}\right)\right)$
- Introduce variables $\bar{y}_{i}=\left(y_{i}^{a_{1}}, \ldots, y_{i}^{a_{n}}\right)$ over the domain $A^{|A|}$.
- Replace $R_{i}\left(y_{1}, y_{2}\right)$ by $R_{i}\left(\bar{y}_{1}, \bar{y}_{2}\right):=\bigwedge_{j} R_{i}\left(y_{1}^{\mathrm{a}_{j}}, y_{2}^{a_{j}}\right)$

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim

$\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

Proof.

- WLOG assume that x appears only in constraints $x=y_{i}$
- For each $a \in A$ we need to find a solution $\left(x, y_{1}, \ldots, y_{t}\right)=\left(a, b_{1}^{a}, \ldots, b_{t}^{a}\right)$, equivalently, we need to find $\left(\left(b_{1}^{a_{1}}, \ldots, b_{1}^{a_{n}}\right), \ldots,\left(b_{t}^{a_{1}}, \ldots, b_{t}^{a_{n}}\right)\right)$
- Introduce variables $\bar{y}_{i}=\left(y_{i}^{a_{1}}, \ldots, y_{i}^{a_{n}}\right)$ over the domain $A^{|A|}$.
- Replace $R_{i}\left(y_{1}, y_{2}\right)$ by $R_{i}\left(\bar{y}_{1}, \bar{y}_{2}\right):=\bigwedge_{j} R_{i}\left(y_{1}^{a_{j}}, y_{2}^{a_{j}}\right)$
- Replace $x=y_{i}$ by $\bar{y}_{i}=\left(a_{1}, \ldots, a_{n}\right)$

How to go from NP to P?

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right)$.
\forall-CSP (Г)
What is the complexity for sentences

$$
\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right) .
$$

Claim
$\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.

Claim

 $\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.
Claim 2

$\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universal quantifiers is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|^{|A|}} \cup\left\{U_{1}, \ldots, U_{|A|}\right\}\right)$ for unary relations $U_{1}, \ldots, U_{|A|}$.

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.

Claim

 $\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.
Claim 2

$\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universal quantifiers is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|^{|A|}} \cup\left\{U_{1}, \ldots, U_{|A|}\right\}\right)$ for unary relations $U_{1}, \ldots, U_{|A|}$.

Corollary

Suppose $\operatorname{Pol}(\Gamma)$ has PGP, then $\operatorname{QCSP}(\Gamma)$ is equivalent to $\operatorname{CSP}\left(\Gamma^{|A|^{|A|}} \cup\left\{U_{1}, \ldots, U_{|A|}\right\}\right)$ for unary relations $U_{1}, \ldots, U_{|A|}$.

How to go from NP to P?

$$
\text { Let } A=\left\{a_{1}, \ldots, a_{n}\right\}, \Gamma=\left(A ; R_{1}, \ldots, R_{s}\right) \text {. }
$$

$\forall-\operatorname{CSP}(\Gamma)$

What is the complexity for sentences $\forall x \exists y_{1} \ldots \exists y_{t}\left(R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{s}}(\ldots)\right)$.

Claim

 $\forall-\operatorname{CSP}(\Gamma)$ is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|} \cup\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)$.
Claim 2

$\Pi_{2}-\operatorname{CSP}(\Gamma)$ with $|A|$ universal quantifiers is polynomially equivalent to $\operatorname{CSP}\left(\Gamma^{|A|^{|A|}} \cup\left\{U_{1}, \ldots, U_{|A|}\right\}\right)$ for unary relations $U_{1}, \ldots, U_{|A|}$.

Corollary

Suppose $\operatorname{Pol}(\Gamma)$ has PGP, then $\operatorname{QCSP}(\Gamma)$ is equivalent to $\operatorname{CSP}\left(\Gamma^{|A|^{|A|}} \cup\left\{U_{1}, \ldots, U_{|A|}\right\}\right)$ for unary relations $U_{1}, \ldots, U_{|A|}$.

Is there a better characterization than this?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

How to go from PSpace to coNP?

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
a QCSP instance: $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
a QCSP instance: $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$
We need a polynomial algorithm to choose an assignment $y_{1}=a$ s.t.

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \Longleftrightarrow \exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\Phi \wedge y_{1}=a\right)
$$

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
a QCSP instance: $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$
We need a polynomial algorithm to choose an assignment $y_{1}=a$ s.t.

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \Longleftrightarrow \exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\Phi \wedge y_{1}=a\right) \\
\Downarrow \\
\exists y_{1} \forall x_{1} \ldots \forall x_{t} \exists y_{2} \ldots \exists y_{t}\left(\Phi \wedge y_{1}=a\right)
\end{gathered}
$$

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
a QCSP instance: $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$
We need a polynomial algorithm to choose an assignment $y_{1}=a$ s.t.

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \Longleftrightarrow \exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\Phi \wedge y_{1}=a\right) \\
\Downarrow \\
\exists y_{1} \forall x_{1} \ldots \forall x_{t} \exists y_{2} \ldots \exists y_{t}\left(\Phi \wedge y_{1}=a\right) \\
\Downarrow
\end{gathered}
$$

$\Phi \wedge y_{1}=a \wedge x_{1}=\cdots=x_{t}=c$ is satisfiable for every $c \in A$

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
a QCSP instance: $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi$
We need a polynomial algorithm to choose an assignment $y_{1}=a$ s.t.

$$
\begin{gathered}
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t} \Phi \Longleftrightarrow \exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(\Phi \wedge y_{1}=a\right) \\
\Downarrow \\
\exists y_{1} \forall x_{1} \ldots \forall x_{t} \exists y_{2} \ldots \exists y_{t}\left(\Phi \wedge y_{1}=a\right) \\
\Downarrow
\end{gathered}
$$

$\Phi \wedge y_{1}=a \wedge x_{1}=\cdots=x_{t}=c$ is satisfiable for every $c \in A$

How to choose between $y_{1}=a$ and $y_{2}=b$ if both satisfy this condition?

How to go from PSpace to coNP?

How to go from PSpace to coNP?

$$
\begin{array}{llllllll}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{lllllllll}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\}
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{ccccccccc}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\} \\
a & 0 & & 0 & \cdots & & 0 & &
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{ccccccccc}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\} \\
& & & & & & & & \\
a & 0 & 0 & \cdots & 0 & & \\
a & 1 & 1 & \cdots & 1 & &
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{ccccccccc}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\} \\
& & & & & & & & \\
a & 0 & 0 & \cdots & 0 & & \\
a & 1 & 1 & \cdots & 1 & & \\
a & 2 & 2 & \cdots & 2 & &
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{ccccccccc}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\} \\
& & & & & & & & \\
a & 0 & c_{2}^{0} & 0 & \cdots & c_{t}^{0} & 0 & \in \Phi & \\
a & 1 & c_{2}^{1} & 1 & \cdots & c_{t}^{1} & 1 & \in \Phi & \\
a & 2 & c_{2}^{2} & 2 & \cdots & c_{t}^{2} & 2 & \in \Phi &
\end{array}
$$

How to go from PSpace to coNP?

$$
\begin{array}{ccccccccc}
\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\} \\
& & & & & & & & \\
a & 0 & c_{2}^{0} & 0 & \cdots & c_{t}^{0} & 0 & \in \Phi & \\
a & 1 & c_{2}^{1} & 1 & \cdots & c_{t}^{1} & 1 & \in \Phi & \\
a & 2 & c_{2}^{2} & 2 & \cdots & c_{t}^{2} & 2 & \in \Phi & \\
b & 0 & & 0 & \cdots & & 0 & &
\end{array}
$$

How to go from PSpace to coNP?
$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$
$\begin{array}{llllllll}a & 0 & c_{2}^{0} & 0 & \cdots & c_{t}^{0} & 0 & \in \Phi \\ a & 1 & c_{2}^{1} & 1 & \cdots & c_{t}^{1} & 1 & \in \Phi \\ a & 2 & c_{2}^{2} & 2 & \cdots & c_{t}^{2} & 2 & \in \Phi \\ b & 0 & & 0 & \cdots & & 0 & \\ b & 1 & & 1 & \cdots & & 1 & \end{array}$

How to go from PSpace to coNP?
$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$

a	0	c_{2}^{0}	0	\cdots	c_{t}^{0}	0	$\in \Phi$
a	1	c_{2}^{1}	1	\cdots	c_{t}^{1}	1	$\in \Phi$
a	2	c_{2}^{2}	2	\cdots	c_{t}^{2}	2	$\in \Phi$
b	0		0	\cdots		0	
b	1		1	\cdots		1	
b	2		2	\cdots		2	

How to go from PSpace to coNP?
$\begin{array}{lllllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\}\end{array}$
$\begin{array}{llllllll}a & 0 & c_{2}^{0} & 0 & \cdots & c_{t}^{0} & 0 & \in \Phi \\ a & 1 & c_{2}^{1} & 1 & \cdots & c_{t}^{1} & 1 & \in \Phi \\ a & 2 & c_{2}^{2} & 2 & \cdots & c_{t}^{2} & 2 & \in \Phi \\ b & 0 & d_{2}^{0} & 0 & \cdots & d_{t}^{0} & 0 & \in \Phi \\ b & 1 & d_{2}^{1} & 1 & \cdots & d_{t}^{1} & 1 & \in \Phi \\ b & 2 & d_{2}^{2} & 2 & \cdots & d_{t}^{2} & 2 & \in \Phi\end{array}$

How to go from PSpace to coNP?
$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$

How to go from PSpace to coNP?
$\begin{array}{lllllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\}\end{array}$
$\begin{array}{llllllll}a & 0 & c_{2}^{0} & 0 & \cdots & c_{t}^{0} & 0 & \in \Phi \\ a & 1 & c_{2}^{1} & 1 & \cdots & c_{t}^{1} & 1 & \in \Phi \\ a & 2 & c_{2}^{2} & 2 & \cdots & c_{t}^{2} & 2 & \in \Phi \\ b & 0 & d_{2}^{0} & 0 & \cdots & d_{t}^{0} & 0 & \in \Phi \\ b & 1 & d_{2}^{1} & 1 & \cdots & d_{t}^{1} & 1 & \in \Phi \\ b & 2 & d_{2}^{2} & 2 & \cdots & d_{t}^{2} & 2 & \in \Phi \\ b & x_{1} & f_{2}\left(x_{1}\right) & x_{2} & \cdots\end{array}$

How to go from PSpace to coNP?
$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$

a	0	0	\cdots	0	$\in \Phi$
a	1	1	\cdots	1	$\in \Phi$
a	2	2	\cdots	2	$\in \Phi$
b	0	0	\cdots	0	$\in \Phi$
b	1	1	\cdots	1	$\in \Phi$
b	2	2	\cdots	2	$\in \Phi$
b	x_{1}	x_{2}	\cdots	x_{t}	$\in \Phi$
a	x_{1}	x_{2}	\cdots	x_{t}	$\notin \Phi$

How to go from PSpace to coNP?
$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$

a	0	0	0

How to go from PSpace to coNP?

$\begin{array}{llllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi\end{array} \quad A=\{0,1,2\}$

a	0	0	0	$\in \Phi$
a	1	1	1	$\in \Phi$
a	2	2	2	$\in \Phi$
b	0	0	0	$\in \Phi$
b	1	1	1	$\in \Phi$
b	2	2	2	$\in \Phi$
b	0	1	2	$\in \Phi$
		1	2	$\notin \Phi$

- either there exists a pp-definable relation $R_{b} \mathrm{~s}$. t. $\forall c, d(c, d, d, d) \in R_{b},(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$,

How to go from PSpace to coNP?

$\begin{array}{lllllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\}\end{array}$

a	0	0	0	$\in \Phi$
a	1	1	1	$\in \Phi$
a	2	2	2	$\in \Phi$
b	0	0	0	$\in \Phi$
b	1	1	1	$\in \Phi$
b	2	2	2	$\in \Phi$
b	0	1	2	$\in \Phi$
		1	2	$\notin \Phi$

- either there exists a pp-definable relation $R_{b} \mathrm{~s}$. t. $\forall c, d(c, d, d, d) \in R_{b},(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$,
- or there exists a polymorphism f s.t. $f(x, 0,1,2)=x$ and $f(b, 0,1,2)=a$.

How to go from PSpace to coNP?

$\begin{array}{lllllllll}\exists y_{1} & \forall x_{1} & \exists y_{2} & \forall x_{2} & \cdots & \exists y_{t} & \forall x_{t} & \Phi & A=\{0,1,2\}\end{array}$

a	0	0	0	$\in \Phi$
a	1	1	1	$\in \Phi$
a	2	2	2	$\in \Phi$
b	0	0	0	$\in \Phi$
b	1	1	1	$\in \Phi$
b	2	2	2	$\in \Phi$
b	0	1	2	$\in \Phi$
a	0	1	2	$\notin \Phi$

- either there exists a pp-definable relation $R_{b} \mathrm{~s}$. t. $\forall c, d(c, d, d, d) \in R_{b},(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$,
- or there exists a polymorphism f s.t. $f(x, 0,1,2)=x$ and $f(b, 0,1,2)=a$. We choose a over b

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b}$;

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b}$;
- $(a, 0,1,2) \in R_{a},(b, 0,1,2) \notin R_{a}$;

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b}$;
- $(a, 0,1,2) \in R_{a},(b, 0,1,2) \notin R_{a}$;
- $(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$;

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b}$;
- $(a, 0,1,2) \in R_{a},(b, 0,1,2) \notin R_{a}$;
- $(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$;

Claim 1
$\operatorname{QCSP}\left(\left\{\{a, b\}^{3} \backslash\{(b, b, a)\}, R_{b}\right\}\right)$ is PSpace-complete.

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b} ;$
- $(a, 0,1,2) \in R_{a},(b, 0,1,2) \notin R_{a}$;
- $(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$;

Claim 1

$\operatorname{QCSP}\left(\left\{\{a, b\}^{3} \backslash\{(b, b, a)\}, R_{b}\right\}\right)$ is PSpace-complete.

Claim 2

$\operatorname{QCSP}\left(\left\{\{a, b\}^{3} \backslash\{(a, a, b)\}, R_{a}\right\}\right)$ is PSpace-complete.

How to go from PSpace to coNP?

Suppose 「 admits a WNU and contains all constants.
R_{a} and R_{b} are pp-definable, i.e

- $\forall c, d(c, d, d, d) \in R_{b},(c, d, d, d) \in R_{b}$;
- $(a, 0,1,2) \in R_{a},(b, 0,1,2) \notin R_{a}$;
- $(b, 0,1,2) \in R_{b},(a, 0,1,2) \notin R_{b}$;

Claim 1

$\operatorname{QCSP}\left(\left\{\{a, b\}^{3} \backslash\{(b, b, a)\}, R_{b}\right\}\right)$ is PSpace-complete.

Claim 2

$\operatorname{QCSP}\left(\left\{\{a, b\}^{3} \backslash\{(a, a, b)\}, R_{a}\right\}\right)$ is PSpace-complete.

- Unless there is minority or majority on $\{a, b\}$ (all relations are linear or conjunction of binary relations), the problem is PSpace-hard.

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

Algebraic approach

- Surjective polymorphisms determine the complexity of QCSP
- How to go from PSpace to NP?
- How to go from PSpace to coNP?
- How to prove PSpace-hardness?
- How to go from NP to P?
- How to go from coNP to P?

How to go from coNP to P ?

How to go from coNP to P?

$$
\mathrm{EGP} \Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n} \text { for every } n
$$

How to go from coNP to P?

$$
\mathrm{EGP} \Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n} \text { for every } n
$$

For idempotent case (Γ contains all constants).

How to go from coNP to P?

$$
\mathrm{EGP} \Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n} \text { for every } n
$$

For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

How to go from coNP to P?

$$
\mathrm{EGP} \Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n} \text { for every } n
$$

For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

Below $\operatorname{Pol}(\Gamma)$ has EGP and Γ contains all constants.

How to go from coNP to P?

EGP $\Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n}$ for every n.
For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

Below $\operatorname{Pol}(\Gamma)$ has EGP and Γ contains all constants.
$\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)$ is pp-definable over Γ.

How to go from coNP to P?

EGP $\Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n}$ for every n.
For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

Below $\operatorname{Pol}(\Gamma)$ has EGP and Γ contains all constants.
$\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)$ is pp-definable over Γ.

$$
\neg \forall x_{1} \ldots \forall x_{3 n}\left(\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right)
$$

How to go from coN to P?

EGP $\Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n}$ for every n.
For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

Below $\operatorname{Pol}(\Gamma)$ has EGP and Γ contains all constants.
$\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)$ is pp-definable over Γ.

$$
\begin{gathered}
\neg \forall x_{1} \ldots \forall x_{3 n}\left(\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right) \\
\hat{\Downarrow} \\
\exists x_{1} \ldots \exists x_{3 n}\left(\neg\left(x_{1} \sim x_{2} \sim x_{3}\right) \wedge \cdots \wedge \neg\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right)
\end{gathered}
$$

How to go from coNP to P?

EGP $\Longleftrightarrow\left\langle\left(x_{1}=x_{2}\right) \vee \cdots \vee\left(x_{2 n-1}=x_{2 n}\right)\right\rangle_{\text {Pol }(\Gamma)} \neq A^{2 n}$ for every n.
For idempotent case (Γ contains all constants).
EGP \Longleftrightarrow there exists a reflexive symmetric relation $x \sim y$ s.t. $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ is pp-definable Γ for every n.

Below Pol (Γ) has EGP and Γ contains all constants.
$\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)$ is pp-definable over Γ.

$$
\begin{gathered}
\neg \forall x_{1} \ldots \forall x_{3 n}\left(\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right) \\
\forall \\
\exists x_{1} \ldots \exists x_{3 n}\left(\neg\left(x_{1} \sim x_{2} \sim x_{3}\right) \wedge \cdots \wedge \neg\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right)
\end{gathered}
$$

- If there exists a polynomial (and efficiently computable) pp-definition of $\left(\left(x_{1} \sim x_{2} \sim x_{3}\right) \vee \cdots \vee\left(x_{3 n-2} \sim x_{3 n-1} \sim x_{3 n}\right)\right)$ then $\operatorname{QCSP}(\Gamma)$ is coNP-Hard

How to go from coNP to P?
Pol (Γ) has EGP, Γ contains all constants.

How to go from coNP to P?
Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches.

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- If R can omit exponentially many tuples then, probably, $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ has a pp-definition of polynomial size.

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- If R can omit exponentially many tuples then, probably, $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- If R can omit exponentially many tuples then, probably, $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
- we calculate these tuples looking at $R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.

$$
\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- If R can omit exponentially many tuples then, probably, $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
- we calculate these tuples looking at $R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$
- we check that the instance holds on these tuples.

How to go from coNP to P?

Pol (Γ) has EGP, Γ contains all constants.
$\forall x_{1} \ldots \forall x_{t} \exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$

- We need to check exponentially many assignments $\left(x_{1}, \ldots, x_{t}\right)$.
- We can check all tuples with at most k switches. Let $R\left(x_{1}, \ldots, x_{t}\right)=\exists y_{1} \ldots \exists y_{q}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.
- If R can omit exponentially many tuples then, probably, $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ has a pp-definition of polynomial size.
- If R can omit only polynomially many tuples
- we calculate these tuples looking at $R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$
- we check that the instance holds on these tuples.

Conjecture

$\operatorname{QCSP}(\Gamma)$ is coNP-Hard IFF $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ admits a pp-definition over Γ of polynomial size for some \sim.

Open Questions

Open Questions

- Find a criterion for $\operatorname{QCSP}(\Gamma)$ to be in coNP.

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.

Open Questions

- Find a criterion for $\operatorname{QCSP}(\Gamma)$ to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.
- Describe all Γ such that $\operatorname{QCSP}(\Gamma)$ is tractable.

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.
- Describe all Γ such that $\operatorname{QCSP}(\Gamma)$ is tractable.

My Conjecture

Suppose $\{x=a \mid a \in A\} \subseteq \Gamma$, then $\operatorname{QCSP}(\Gamma)$

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.
- Describe all Γ such that $\operatorname{QCSP}(\Gamma)$ is tractable.

My Conjecture

Suppose $\{x=a \mid a \in A\} \subseteq \Gamma$, then $\operatorname{QCSP}(\Gamma)$

- is NP-hard if $\operatorname{Pol}(\Gamma)$ has no WNU.

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.
- Describe all Γ such that $\operatorname{QCSP}(\Gamma)$ is tractable.

My Conjecture

Suppose $\{x=a \mid a \in A\} \subseteq \Gamma$, then $\operatorname{QCSP}(\Gamma)$

- is NP-hard if $\operatorname{Pol}(\Gamma)$ has no WNU.
- is coNP-hard if $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ admits a pp-definition over Γ of polynomial size for a nontrivial reflexive symmetric relation \sim.

Open Questions

- Find a criterion for QCSP (Γ) to be in coNP.
- Describe the complexity of QCSP(Г) for every Γ on a 3-element domain (nonidempotent)
- Describe all Γ such that $\operatorname{Pol}(\Gamma)$ has PGP and $\operatorname{QCSP}(\Gamma)$ is tractable.
- Describe all Γ such that $\operatorname{QCSP}(\Gamma)$ is tractable.

My Conjecture

Suppose $\{x=a \mid a \in A\} \subseteq \Gamma$, then $\operatorname{QCSP}(\Gamma)$

- is NP-hard if $\operatorname{Pol}(\Gamma)$ has no WNU.
- is coNP-hard if $\left(x_{1} \sim x_{2}\right) \vee \cdots \vee\left(x_{2 n-1} \sim x_{2 n}\right)$ admits a pp-definition over Γ of polynomial size for a nontrivial reflexive symmetric relation \sim.
- is tractable otherwise.

Thank you for your attention

