Some Finiteness Results in Universal Algebraic Geometry via Clonoids

Patrick Wynne

University of Colorado Boulder Ulam Seminar

April 1, 2021

Universal Algebraic Geometry

- Classical algebraic geometry studies zero-sets of multivariate polynomials.
- Universal Algebraic Geometry generalizes this notion to arbitrary algebras.
- We associate with A = (A, (f_j)_{j∈J}) the solution set, S, of a system of algebraic equations over A.
- $S = \{(a_1, \ldots, a_n) \in A^n \mid f_i(a_1, \ldots, a_n) = g_i(a_1, \ldots, a_n) \text{ for } i \in I\}$ where f_i and g_i are *n*-ary term operations of \mathbb{A} .
- We call such a set an algebraic set.

Universal Algebraic Geometry

- Two algebras defined on the same base set are said to be **algebraically equivalent** if they share the same algebraic sets.
- The intersection of algebraic sets is again algebraic.
- An algebra A is called an equational domain if for all n ∈ N and all algebraic subsets S and T of Aⁿ, S ∪ T is again algebraic.
- It was shown by A.G. Pinus that on a finite set there are at most filitely many algebraically inequivalent equational domains.
- Aichinger and Rossi proved this theorem via a different method using clonoids.

Clonoids

Let A and B be sets, $k \in N$, and $f : A^k \to B$. For $n \in \mathbb{N}$ and $\sigma : [k] \to [n]$ we call the function f^{σ} a minor of f where

$$f^{\sigma}: A^n \to B$$

 $f^{\sigma}(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}).$

Clonoid

For a set A and an algebra \mathbb{B} and for $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$ we say that C is a clonoid from A to \mathbb{B} if

• C is closed under taking minors of functions, and

• for each $k \in \mathbb{N}$, $C^{[k]} := C \cap B^{A^k}$ is a subalgebra of B^{A^k} .

Definable Sets

The solution set of a term equation $s(x_1, \ldots, x_n) = t(x_1, \ldots, x_n)$ over an algebra \mathbb{A} can be written in the form

$$S = \{(a_1,\ldots,a_n) \mid \mathbb{A} \models \varphi(a_1,\ldots,a_n)\}.$$

This view point more easily generalizes to arbitrary first-order structures with both functional and relational symbols.

Definition

Let $\mathbb{A} = (A, (f_i)_{i \in I}, (\rho_j)_{j \in J})$ be a first order structure, Φ a set of first-order formulas in the language of \mathbb{A} , and $B \subseteq A^n$. We say B is Φ -definable if there is $\varphi \in \Phi$ with free variables among $\{x_1, \ldots, x_n\}$ such that

$$\mathsf{B} = \{(\mathsf{a}_1, \ldots, \mathsf{a}_n) \in \mathsf{A}^n \, | \, \mathbb{A} \models \varphi(\mathsf{a}_1, \ldots, \mathsf{a}_n)\}.$$

We denote by $Def^{[n]}(\mathbb{A}, \Phi)$ the set of Φ -definable subsets of A^n , and $Def(\mathbb{A}, \Phi) = \bigcup_{n \in \mathbb{N}} Def(\mathbb{A}, \Phi)$.

Minors (two more types)

We wish to study sets of formulas, Φ that are closed under taking minors in the following sense.

- We say that a formula φ is a minor of a formula φ' if there exists n ∈ N and σ : [n] → N such that φ is the result of substituting free occurrences of x₁,..., x_n in φ' by x_{σ(1)},..., x_{σ(n)}, φ = φ'(x_{σ(1)},..., x_{σ(n)}).
- We say B ⊆ A^m is a minor of B' ⊆ Aⁿ if there exists σ : [n] → [m] such that

$$B = \{(a_1,\ldots,a_m) \in A^m \mid (a_{\sigma(1)},\ldots,a_{\sigma(n)}) \in B'\}.$$

Proposition

Let A be a first-order structure and let Φ be a set of first-order formulas in the language of A closed under \wedge, \lor , and taking minors of formulas. Then $\mathsf{Def}(\mathbb{A}, \Phi)$ is closed under finite intersections, finite unions, and taking minors of sets.

From Subsets to Functions

For a subset $T \subseteq A^n$ we define the characteristic function of T, denoted $\mathbf{1}_T$ by

$$\mathbf{1}_T: \mathcal{A}^n o \{0, 1\}$$

 $\mathbf{1}_T(a_1, \dots, a_n) = egin{cases} 1 & ext{if } (a_1, \dots, a_n) \in T \ 0 & ext{otherwise }. \end{cases}$

Proposition

Let A be a finite set and let \mathcal{R} be a set of finitary relations on A that is closed under finite intersections, finite unions, and taking minors of sets. Then $C(\mathcal{R}) := \{\mathbf{1}_T \mid T \in \mathcal{R}\}$ is a clonoid from A to the two-element lattice, $(\{0, 1\}, \land, \lor)$.

Definable Sets From Those of Bounded Arity

Theorem (A. Sparks)

Let A be a finite set and \mathbb{B} a finite algebra with an *n*-ary near-unanimity term for some $n \ge 3$. Then for any two clonoids, C and D from A to \mathbb{B} , C = D if and only if $C^{[|A|^{n-1}]} = D^{[|A|^{n-1}]}$.

We note that a lattice has a ternary near-unanimity term $(x \land y) \lor (x \land z) \lor (y \land z)$, and so we get the following:

Theorem

Let \mathbb{A}_1 and \mathbb{A}_2 be two first-order structures on a finite set A. For each $i \in \{1, 2\}$ let Φ_i be a set of first-order formulas in the language of \mathbb{A}_i that is closed under \wedge , \vee , and taking minors of formulas. Then

$$\mathsf{Def}(\mathbb{A}_1,\Phi_1)=\mathsf{Def}(\mathbb{A}_2,\Phi_2)$$

if and only if

$$\mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_1,\Phi_1)=\mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_2,\Phi_2)$$

Back to Universal Algebraic Geometry

- Let A be an algebra. The set of finite conjunctions of atomic formulas in the language of A is closed under ∧ and taking minors of formulas, but is not closed under ∨ in general.
- So we cannot apply the theorem to the algebraic geometry of every finite algebra.
- We can however apply the theorem to equational domains, where the union of two algebraic sets is again algebraic.
- Fields are equational domains.

Corollary

Let A be a finite set. There are only finitely many algebraically inequivalent equational domains with universe A.

Proof:

- Let (A_i)_{i∈I} be a collection of algebraically inequivalent equational domains on A.
- Φ_i finite conjunctions of atomic formulas of \mathbb{A}_i .
- Φ'_i minimal containing Φ_i and closed under \wedge and \vee .
- By induction on number of ∨ in φ' ∈ Φ', the set defined by φ' is in Def(A_i, Φ_i).
- Hence $Def(\mathbb{A}_i, \Phi_i) = Def(\mathbb{A}_i, \Phi'_i)$.
- $\alpha: I \hookrightarrow \mathcal{P}(\mathcal{P}(\mathcal{A}^{|\mathcal{A}|^2})), \ \alpha(i) := \mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_i, \Phi'_i)$ is injective.

Proof continued

•
$$\alpha: I \hookrightarrow \mathcal{P}(\mathcal{P}(\mathcal{A}^{|\mathcal{A}|^2})), \ \alpha(i) := \mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_i, \Phi'_i).$$

• Suppose $\alpha(i) = \alpha(j)$.

•
$$\mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_i, \Phi_i') = \mathsf{Def}^{[|\mathcal{A}|^2]}(\mathbb{A}_j, \Phi_j')$$

- $\mathsf{Def}(\mathbb{A}_i, \Phi'_i) = \mathsf{Def}(\mathbb{A}_j, \Phi'_j)$ by the previous theorem.
- $\mathsf{Def}(\mathbb{A}_i, \Phi_i) = \mathsf{Def}(\mathbb{A}_j, \Phi_j)$
- So i = j and α is injective.
- Hence $|I| \leq 2^{2^{|A|^{|A|^2}}}$

Back to Universal Algebraic Geometry

Another application of this theorem comes from L_0 -logical geometry.

- For an algebra A, let Φ be the set of all quantifier-free formulas in the language of A.
- Note that Φ is closed under \vee as well as \wedge and taking minors of formulas.
- The L_0 -logical geometry of \mathbb{A} is $Def(\mathbb{A}, \Phi)$.
- We say two algebras \mathbb{A}_1 and \mathbb{A}_2 on the same set A are L_0 -logically equivalent if $\text{Def}(\mathbb{A}_1, \Phi_1) = \text{Def}(\mathbb{A}_2, \Phi_2)$.

Corollary

There are only finitely many L_0 -logically inequivalent algebras on a finite set.

- This talk was based on the paper of E. Aichinger and B. Rossi titled "A clonoid based approach to some finiteness results in universal algebraic geometry." https://link.springer.com/article/10.1007/s00012-019-0638-9
- A. Sparks, "On the number of clonoids" https://arxiv.org/abs/1810.12422

Thanks!