Counting Homomorphisms Modulo Primes

Andrei A. Bulatov
Simon Fraser University
Joint work with Amirhosein Kazeminia

Counting CSPs

Counting CSP: Given relational structure G and H, find the number of homomorphisms from G to H
\#CSP (H) if H is fixed
\#CSP (H) belongs to the class \# P

When every tuple from H is assigned weight, every homomorphism is assigned a weight
$W \operatorname{CSP}(H)$ is the problem of finding the total weight of all homomorphisms

Counting Graph Homomorphisms

Theorem (Dyer, Greenhill, 2000)
\#CSP $(H), H$ is a graph, is poly time if and only if every connected component of H is a complete reflexive graph or a complete bipartite graph.
Otherwise \#CSP (H) is \# P-complete

The hardness is from the N -graph

It is also a obstruction to a Mal'tsev polymorphism

Linear Equations

\#CSP $\left(H_{a f f}\right)$, where the relations of $H_{a f f}$ are given by systems of linear equations over $G F(q)$, is poly time:

- Every instance is a system of linear equations
- Find the dimensionality k of the solution space
- The number of homomorphisms/solutions is q^{k}

General Counting CSP

Theorem (B., 2008, Dyer,Richerby, 2010)
\#CSP $(H), H$ is a relational structure, is poly time if and only if for every pp -interpretable equivalence relations α, β the rank $\operatorname{rank}(M(\alpha, \beta))$ equals the number of $\alpha \vee \beta$-blocks. Otherwise \#CSP (H) is \# P-complete
$M(\alpha, \beta)$:

Beyond Just Counting

Weighted \#CSP:

- rational nonnegative weights, B. et al, 2009
- real and complex weights, Cai,Chen, 2012

Holant: multiple results by Cai and coauthors

Approximation:

- Boolean (partial for weighted), Dyer et al, 2010, B. et al, 2012
- conservative (partial), Chen et al, 2013
- graphs (partial), Galanis et al, 2015

Modular Counting

Counting CSP mod p : Given relational structure G and H, find the number of homomorphisms from G to H modulo p, p prime
$\#_{p} \operatorname{CSP}(H)$ if H is fixed
$\#_{p} C S P(H)$ belongs to the class $\#_{p} P$

Counting and Automorphisms

Counting 3-colorings mod 3

Counting and Fixed Points

Homomorphisms to a 3-star mod 3
$\#_{p} \operatorname{CSP}(H)$ is poly time equivalent to $\#_{p} \operatorname{CSP}\left(H^{\pi}\right)$ where H^{π} is the subgraph/substructure induced by the fixed points of automorphism π of order p

Repeating this we eventually obtain that $\#_{p} \operatorname{CSP}(H)$ is poly time equivalent to $\#_{p} \operatorname{CSP}\left(H^{\dagger}\right)$, where H^{\dagger} has no p-automorphisms

Conjectures and Results

Conjecture (Faben, Jerrum, 2015)
If graph H does not have p-automorphisms, then $\#_{p} \operatorname{CSP}(H)$ is hard whenever \#CSP (H) is hard.

Theorem

$\#_{p} \operatorname{CSP}(H), H$ is a graph, is poly time if and only if every connected component of H^{\dagger} is a complete reflexive graph or a complete bipartite graph.
Otherwise $\#_{p} \operatorname{CSP}(H)$ is $\#_{p} P$-complete

What We Know

- trees mod 2
- cactus graphs mod 2
- square-free mod 2
- K_{4}-minor free
- trees $\bmod p$
- square-free $\bmod p$
- $K_{3,3}$ and domino free $\bmod p$

Faben, Jerrum, 2015
Göbel et al, 2014
Göbel et al, 2016
Focke et al, 2021
Göbel et al, 2018
B., Kazeminia, 2019

Lagodzinski et al., 2020

Algebra for Modular Counting

The main steps of the algebraic approach go through, although with interesting twists

- adding constants
- conjunctions
- quantification
- pp-interpretations

Adding Constants

For a relational structure H let H^{c} denote the expansion of H with all the constant

Theorem

If H has no p-automorphisms, $\#_{p} C S P\left(H^{c}\right)$ is poly time reducible to $\#_{p} C S P(H)$

Proved in Faben/Jerrum 2015 for graphs (through quantum graphs) In the general case can be done through interpolation as in
B./Dalmau 2003

PP-Definitions

If R is a conjunction of predicates of H, then it is straightforward that $\#_{p} \operatorname{CSP}(H+\{R\})$ is poly time reducible to $\#_{p} \operatorname{CSP}(H)$

Quantification is trickier

PP-Definitions II

$\exists^{p} x$ stands for ${ }^{`}$ there exists $\not \equiv 0(\bmod p)$ values of x
$Q\left(x_{1}, \ldots, x_{k}\right)=\exists^{p} y R\left(x_{1}, \ldots, x_{k}, y\right)$ is defined in a natural way

Theorem

If $Q\left(x_{1}, \ldots, x_{k}\right)=\exists^{p} y R\left(x_{1}, \ldots, x_{k}, y\right)$ where R is a predicate of H, then $\#_{p} \operatorname{CSP}(H+\{Q\})$, is poly time reducible to $\#_{p} \operatorname{CSP}(H)$

Proved through old tricks and interpolation

PP-Definitions III

However, we need regular quantification

Theorem

If $Q\left(x_{1}, \ldots, x_{k}\right)=\exists y R\left(x_{1}, \ldots, x_{k}, y\right)$ where R is a predicate of H and H has no p-automorphisms, then $\#_{p} \operatorname{CSP}(H+\{Q\})$, is poly time reducible to $\#_{p} \operatorname{CSP}(H)$

Proof idea

Möbius Inversion

Lemma

If hom $\left(G_{1}, H\right) \equiv \operatorname{hom}\left(G_{2}, H\right)(\bmod p)$ for any G_{1}, G_{2} then H has a p-automorphism.

Consider hom (H, H). Let $\operatorname{Part}(H)$ be the set of all partitions of $V(H)$ Möbius inversion $\operatorname{inj}(H, H)=\sum_{\theta \in \operatorname{Part}(H)} \omega_{\theta} \operatorname{hom}(H / \theta, H)$, where $\omega_{=}=1$ and $\omega_{\theta}=-\sum_{\eta<\theta} \omega_{\eta}$ Since $\sum_{\theta \in \operatorname{Part}(H)} \omega_{\theta}=0$ and $\operatorname{hom}(H / \theta, H) \equiv N(\bmod p)$,

$$
\begin{aligned}
|A u t(H)| & =\operatorname{inj}(H, H)=\sum_{\theta \in \operatorname{Part}(H)} \omega_{\theta} \operatorname{hom}(H / \theta, H) \\
& \equiv N \cdot \sum_{\theta \in \operatorname{Part}(H)} \omega_{\theta} \equiv 0(\bmod p)
\end{aligned}
$$

PP-Interpretations

Theorem

If H^{\prime} is pp-interpretable in H and H has no p-automorphisms then $\#_{p} \operatorname{CSP}\left(H^{\prime}\right)$ is poly time reducible to $\#_{p} \operatorname{CSP}(H)$

Interpolation + Möbius inversion

Non-Bipartite Graphs

Any 2-element structure can be pp-interpreted in H^{c}, where H is a nontrivial nonbipartite graph (B. 2005)

Therefore, Faben/Jerrum conjecture holds for nonbipartite graphs.
More generally

Theorem

If H is a relational structure such that it has no p-automorphisms and $\operatorname{CSP}(H)$ is NPC then $\#_{p} \operatorname{CSP}(H)$ is $\#_{p}$-hard

Bipartite Graphs: \#BIS

\#BIS $\left(\#_{p} B I S\right)$ counting the number of independent sets in a bipartite graph (modulo p)
$\# B I S\left(\#_{p} B I S\right)$ is equivalent to $\# \operatorname{CSP}\left(H_{N}\right)\left(\#_{p} \operatorname{CSP}\left(H_{N}\right)\right)$
$\# B I S(\alpha, \beta): \sum_{I \in I S} \alpha^{|I \cap U|} \cdot \beta^{|I \cap D|}$

There is a problem with $\#_{p} B I S$

N-Graphs and PP-Definitions

Observation:

If H is a nontrivial bipartite graph then some N-graph is pp-definable in H^{c}

If $|A|,|B|,|C|,|D| \not \equiv 0(\bmod p)$, we are done, as some weighted $\#_{p} B I S$ is reducible to $\#_{p} \operatorname{CSP}(H)$
Otherwise we have a problem

Homomorphism Vectors

$G x$ denotes graph G with a distinguished vertex x
$\operatorname{hom}(G x, H v)$ is the number of homs φ such that $\varphi(x)=v$
$\operatorname{hom}(G x, H W)=\sum_{v \in W} \operatorname{hom}(G x, H v)$

Lemma

There is $G x$ such that $\operatorname{hom}(G x, H A), \operatorname{hom}(G x, H C) \not \equiv 0(\bmod p)$

Homomorphism Vectors II

With a gadget $G x$ like this we can reduce weighted $\#_{p} B I S$

Homomorphism Vectors III

We only look at A. There are 3 cases.
Case 1. There is $G x$ such that $\operatorname{hom}\left(G x, H v_{1}\right) \equiv 0, \operatorname{hom}\left(G x, H v_{2}\right) \not \equiv$ $0(\bmod p)$
Then we can manufacture a smaller N -graph

Case 2. $\operatorname{hom}\left(G x, H v_{1}\right) \equiv \operatorname{hom}\left(G x, H v_{2}\right)(\bmod p)$ for all $G x$, $v_{1}, v_{2} \in A$
Then H has a p-automorphism

Homomorphism Vectors IV

Case 3. There is $G x$ such that $\operatorname{hom}\left(G x, H v_{1}\right) \not \equiv$
$\operatorname{hom}\left(G x, H v_{2}\right)(\bmod p)$ for some $v_{1}, v_{2} \in A$
$G x$ induces an equivalence relation on $A: v_{1} \sim v_{2}$ iff
$\operatorname{hom}\left(G x, H v_{1}\right) \equiv \operatorname{hom}\left(G x, H v_{2}\right)(\bmod p)$
Let L_{1}, \ldots, L_{s} be the corresponding partition
Then either hom $\left(G^{(i)} x, H A\right) \not \equiv 0(\bmod p)$, or $\left|L_{j}\right| \equiv 0(\bmod p)$

Homomorphism Vectors V

Let $s=2, L_{1}, L_{2}$, and a_{1}, a_{2} the corresponding numbers hom ($G x, H v$)
Then

$$
\begin{gathered}
\operatorname{hom}(G x, H A) \equiv a_{1}\left|L_{1}\right|+a_{2}\left|L_{2}\right| \\
\operatorname{hom}\left(G^{(2)} x, H A\right) \equiv a_{1}^{2}\left|L_{1}\right|+a_{2}^{2}\left|L_{2}\right|
\end{gathered}
$$

If both equal 0 then $\left|L_{1}\right| \equiv\left|L_{2}\right| \equiv 0(\bmod p)$

Finally, if $\left|L_{1}\right| \equiv \cdots \equiv\left|L_{s}\right| \equiv 0(\bmod p)$ for all $G x$, then H has a p automorphism

Thank You!

