A brief history of the Constraint Satisfaction Problem

Alexandr Kazda

CU Boulder

January 14th 2021

Introduction

- This semester: Math motivated by the Constraint Satisfaction Problem
- Overlaps with computer science. .
- ... but focused on nice mathematics, we will ignore e.g. SAT solvers used in practice
- Grad students: You get credit for giving a talk
- Talks are not recorded
- Some international presence, but I want a "small local seminar" feel
- Seminar time???

Formula satisfiability (SAT)

- Input: A formula of the form

$$
\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{7} \vee \neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{7} \vee x_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge \ldots
$$

- Decision version: Does there exist an assignment $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ satisfying Ψ ?
- Search version: Find an assignment $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ satisfying Ψ if one exists
- 3-SAT: Like SAT, but 3 literals per clause:

$$
\begin{aligned}
\Psi\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) & =\left(x_{7} \vee \neg x_{5} \vee x_{1}\right) \wedge\left(\neg x_{7} \vee x_{1} \vee x_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee t\right) \\
& \wedge\left(\neg t \vee \neg x_{3} \vee \neg x_{4}\right) \wedge \ldots
\end{aligned}
$$

- SAT and 3-SAT: The first problems shown to be NP-complete (S. Cook, The complexity of theorem-proving procedures, 1971)

Modifying 3-SAT

- 3-SAT rewritten

$$
\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{m} R_{i}\left(x_{i 1}, x_{i 2}, x_{i 3}\right)
$$

- Where R_{i} is one of 8 predicates; example is $F(a, b, c)=a \vee \neg b \vee c$
- What if we take a different set of predicates(= Constraint language)?
- Example: Say our formulas will be

$$
\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{m}\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right)
$$

- $x_{i}=1$ for all i always satisfies ψ
- Deciding satsifiability is easy!

Linear equations as formula satisfiability

- More interesting example:

$$
\begin{array}{rlrl}
S(a, b, c) & =1 & \text { iff } a+b+c=0 & \\
(\bmod 2) \\
C_{0}(a) & =1 & & \text { iff } a=0 \\
C_{1}(a) & =1 & & \text { iff } a=1
\end{array}
$$

- This constraint language lets us write systems of linear equations over \mathbb{Z}_{2}
- Example

$$
\begin{aligned}
x_{1}+x_{2}+x_{4}+x_{5} & =1 \\
x_{1}+x_{3} & =0
\end{aligned}
$$

- is equivalent to the formula (note the extra variables t_{1}, \ldots, t_{4})

$$
S\left(x_{1}, x_{2}, t_{1}\right) \wedge S\left(t_{1}, x_{4}, t_{2}\right) \wedge S\left(t_{2}, x_{5}, t_{3}\right) \wedge C_{1}\left(t_{3}\right) \wedge S\left(x_{1}, x_{3}, t_{4}\right) \wedge C_{0}\left(t_{4}\right)
$$

Horn 3-SAT

- Alfred Horn, On Sentences Which are True of Direct Unions of Algebras, 1951.
- Constraint language $C_{0}(a), C_{1}(a)$, and $R(a, b, c)=\neg a \vee \neg b \vee c$,
- Observe: $R(a, b, c)=(a \wedge b) \Rightarrow c$
- Example:

$$
R\left(x_{1}, x_{2}, x_{3}\right) \wedge C_{1}\left(x_{1}\right) \wedge C_{1}\left(x_{2}\right) \wedge C_{0}\left(x_{3}\right)
$$

- x_{1} and x_{2} are forced to be 1
- Use R to propagate the forced 1 from x_{1}, x_{2} to x_{3}
- We see that x_{3} has to be 0 and 1 at the same time - inconsistent
- This is (roughly) how local consistency checking works
- Consistency checking solves Horn 3-SAT

Schaefer's dichotomy

- Complete classification for variables over $\{0,1\}$ by T. Schaefer, The Complexity of Satisfiability Problems, 1978
- Depending on the constraint language, the problem is either NP-complete or in P
- We have a dichotomy (assume $P \neq N P$)
- The easy cases are:
- Always satisfiable Ψ,
- always unsatisfiable Ψ,
- linear equations,
- problems solvable by local consistency

Digraph homomorphisms

- G, H be directed graphs (digraphs)
- Homomorphism is a map $V(G) \rightarrow V(H)$ that maps edges to edges

3

- Given G, H, how to decide if there is a homomorphism?
- There is a formula for that!

$$
E\left(x_{0}, x_{1}\right) \wedge E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{2}\right) \wedge E\left(x_{4}, x_{3}\right) \wedge E\left(x_{0}, x_{4}\right)
$$

- Different H gives a different predicate " E "
- $\operatorname{CSP}(H)$ be the problem "Given G, decide if $G \rightarrow H$."
- Can generalize this to $\operatorname{CSP}(\mathbb{A})$ where \mathbb{A} is some relational structure $\mathbb{A}=\left(A ; R_{1}, \ldots, R_{n}\right)$

Hell-Nešetřil's dichotomy

- $\operatorname{CSP}(H)$ be the problem "Given G, decide if $G \rightarrow H$."
- Let H be a symmetric graph $(E(a, b) \Leftrightarrow E(b, a))$
- If H is bipartite, $\operatorname{CSP}(H)$ is easy:

- For any other symmetric graph $H, \operatorname{CSP}(H)$ is NP-complete
- P. Hell, J. Nešetřil, On the complexity of H-coloring, 1990
- Again P vs. NP-complete

Monotone Monadic SNP without inequality I

- So far we always got problems in P or NP-complete
- If $P \neq N P$ then there are infinitely many intermediate classes between P and NP (R. Ladner, On the Structure of Polynomial Time Reducibility, 1975)
- T. Feder, M. Vardi, Monotone Monadic SNP and Constraint Satisfaction, 1993 (journal version 1998)
- MMSNP without inequality is a subclass of NP
- Feder and Vardi conjecture: MMSNP without inequality contains no intermediate problems

Monotone Monadic SNP without inequality II

- Feder and Vardi: Each MMSNP without inequality is computationally equivalent to $\operatorname{CSP}(\mathbb{A})$ for some \mathbb{A} finite
- Dichotomy conjecture: Each $\operatorname{CSP}(\mathbb{A})$ is either in P or NP-complete; no intermediate problems
- Thus complexity $\operatorname{CSP}(\mathbb{A})$ is a way to characterize the complexity of a sizeable part of NP

Algebraic approach to $\operatorname{CSP}(\mathbb{A})$ I

- Around 2000: A. Bulatov, D. Cohen, P. Jeavons, M. Gyssens, A. Krokhin, J. Pearson
- Reductions from logic and universal algebra
- Example: If $\mathbb{A}=\left(A ; R_{1}, R_{2}\right)$ and $\mathbb{B}=(A ; S)$ where

$$
S(a, b)=\exists c, R_{1}(a, c) \wedge R_{2}(c, b, b)
$$

then $\operatorname{CSP}(\mathbb{B})$ reduces to $\operatorname{CSP}(\mathbb{A})$

- How? Given $\operatorname{CSP}(\mathbb{B})$ formula such as

$$
S\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge S\left(x_{1}, x_{1}\right)
$$

add new variables and rewrite S 's:

$$
\begin{aligned}
R_{1}\left(x_{1}, y_{1}\right) & \wedge R_{2}\left(y_{1}, x_{2}, x_{2}\right) \\
\wedge R_{1}\left(x_{2}, y_{2}\right) & \wedge R_{2}\left(y_{2}, x_{3}, x_{3}\right) \\
\wedge R_{1}\left(x_{1}, y_{3}\right) & \wedge R_{2}\left(y_{3}, x_{1}, x_{1}\right)
\end{aligned}
$$

Algebraic approach to $\operatorname{CSP}(\mathbb{A})$ II

- A few other reductions give us that complexity of $\operatorname{CSP}(\mathbb{A})$ depends only on the set of polymorphisms of \mathbb{A}
- Polymorphims: Mappings $\mathbb{A}^{n} \rightarrow \mathbb{A}$ that preserve the relations of \mathbb{A}
- $\operatorname{Pol}(\mathbb{A})$ is a clone of operations: Contains projections and is closed under composition
- If $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ then $\operatorname{CSP}(\mathbb{B})$ reduces to $\operatorname{CSP}(\mathbb{A})$
- Later improved to $\operatorname{Pol}(\mathbb{A}) \rightarrow \operatorname{Pol}(\mathbb{B})$ where \rightarrow preserves identities
- Later improved to $\operatorname{Pol}(\mathbb{A}) \rightarrow \operatorname{Pol}(\mathbb{B})$ where \rightarrow preserves identities without composition
- Universal algebraic approach to CSP

Example of a polymorphism

- Polymorphisms of $\mathbb{A} \approx$ higher arity symmetries of \mathbb{A}
- Consider $\mathbb{A}=\left(\{0,1\} ; S, C_{0}, C_{1}\right)$ with

$$
\begin{array}{rlrl}
S(a, b, c) & =1 & \text { iff } a+b+c=0 & \\
(\bmod 2) \\
C_{0}(a) & =1 & & \text { iff } a=0 \\
C_{1}(a) & =1 & & \text { iff } a=1
\end{array}
$$

- This has the polymorphism $p(a, b, c)=a+b+c(\bmod 2)$
- $C_{0}(a), C_{0}(b), C_{0}(c) \Rightarrow p(a, b, c)=0 \Rightarrow C_{0}(p(a, b, c)$

$$
S\left(\begin{array}{c}
a \\
a^{\prime} \\
a^{\prime \prime}
\end{array}\right), S\left(\begin{array}{c}
b \\
b^{\prime} \\
b^{\prime \prime}
\end{array}\right), S\left(\begin{array}{c}
c \\
c^{\prime} \\
c^{\prime \prime}
\end{array}\right) \Rightarrow S\left(\begin{array}{c}
p(a, b, c) \\
p\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \\
p\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)
\end{array}\right)
$$

- Whenever $\operatorname{Pol}(\mathbb{A})$ contains p such that $p(x, x, y)=y$ and $p(x, y, y)=x$ for all x, y then $\operatorname{CSP}(\mathbb{A})$ is in $\mathrm{P}(\mathrm{A}$. Bulatov, Mal'tsev Constraints Are Tractable, 2002)

The hard cases of CSP

- The smaller $\operatorname{Pol}(\mathbb{A})$, the harder $\operatorname{CSP}(\mathbb{A})$
- Smallest possible $\operatorname{Pol}(\mathbb{A})$: Only projections

$$
\pi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
$$

- If $\operatorname{CSP}(\mathbb{A})$ contains only projection-like operations, then $\operatorname{CSP}(\mathbb{A}) \rightarrow \operatorname{Pol}(3-S A T)$
- Then 3-SAT reduces to $\operatorname{CSP}(\mathbb{A}) \Rightarrow \operatorname{CSP}(\mathbb{A})$ is NP-complete
- Algebraic dichotomy conjecture: If $\operatorname{Pol}(\mathbb{A})$ contains an operation that is not projection-like, then $\operatorname{CSP}(\mathbb{A})$ in P

Towards dichotomy for CSP

- It remains "only" to give a P-time algorithm for any $\operatorname{CSP}(\mathbb{A})$ when \mathbb{A} has a nontrivial polymorphism
- L. Barto, M. Kozik: Characterized $\operatorname{CSP}(\mathbb{A})$ solvable by local consistency methods (published 2014)
- "Local consistency works iff $\operatorname{CSP}(\mathbb{A})$ cannot simulate linear equations."
- Group theory-like (or Gaussian elimination-like) algorithm for a big class of CSPs (Paweł Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard, Tractability and learnability arising from algebras with few subpowers, 2007)
- Attempts were made at unifying the two approaches (the most sophisticated by Miklós Maróti)...
- ... but there was only minimal overall progress

The proofs of dichotomy

- The year is 2017...
- A. Bulatov and D. Zhuk independently announce their CSP algorithms that work for any \mathbb{A} with nontrivial $\operatorname{Pol}(\mathbb{A})$
- Published at the FOCS 2017 conference
- Ongoing project: Simplify the proofs and extract new mathematics from them
- Another proof was announced by A. Rafiey, J. Kinne and T. Feder, but R. Willard found a counterexample

What's next

- Valued CSP: Find a minimum of a sum of functions such as

$$
f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+g\left(x_{3}\right)
$$

- For f and g with values 0 and ∞ we get CSP
- VCSP dichotomy conditional on CSP dichotomy proven in 2015 (Vladimir Kolmogorov, Andrei Krokhin and Michal Rolínek, The Complexity of General-Valued CSPs, 2015)
- (V)CSP with infinite templates (M. Bodirsky, M. Pinsker and friends)
- $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$: Assume $\mathbb{A} \rightarrow \mathbb{B}$. Input is a structure \mathbb{C} and the goal is to decide between $\mathbb{C} \rightarrow \mathbb{A}$ and $\mathbb{C} \nrightarrow \mathbb{B}$
- Example: Distinguish 3-colorable graphs from graphs that are not even 100-colorable
- Complexity of PCSP is an open problem

Further reading

- L. Barto, A. Krokhin, R. Willard, Polymorphisms, and how to use them, in "The Constraint Satisfaction Problem: Complexity and Approximability", Dagstuhl Follow-Ups, vol. 7, 1-44, 2017 http://drops.dagstuhl.de/opus/volltexte/2017/6959/pdf/ DFU-Vol7-15301-1.pdf
- Andrei A. Bulatov. 2018. Constraint satisfaction problems: complexity and algorithms. ACM SIGLOG News 5, 4 (October 2018), 4-24. DOI: https://doi.org/10.1145/3292048.3292050

