A theory of gadget reductions for promise constraint satisfaction

Part II

Jakub Opršal

25 Feb 2021

overview

Part I (last week)

- promise constraint satisfaction problems
- adjunctions give reductions between (P)CSPs
- gadget reductions (replacement) and pp-powers are adjoint.

Part II (today)

- describe the best gadget reduction
- show one more adjunction

previously...

Theorem. [Barto, Bulín, Krokhin, O, '19]

The following are equivalent for all pairs of similar relational structures $\mathbf{A}_{1}, \mathbf{A}_{2}$ and $\mathbf{B}_{1}, \mathbf{B}_{2}$:

1. there is a gadget reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
2. $\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ is a homomorphic relaxation a pp-power of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
3. ??!

the best gadget reduction

$$
\begin{aligned}
& \operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\sum_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathrm{I}_{\mathbf{A}_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \\
& \mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)
\end{aligned}
$$

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

formulation of $\operatorname{PCSP}(\mathscr{M}, \mathscr{N})$

Problem

Fix minions \mathscr{M} and \mathscr{N}. Given a minor (strong Mal'cev) condition Σ,

- accept if $\Sigma \rightarrow \mathscr{M}$,
- reject if $\Sigma \nrightarrow \mathscr{N}$.

A minion homomorphism is a mapping $\xi: \mathscr{M} \rightarrow \mathscr{N}$ s.t.

$$
\xi(f)^{\pi}=\xi\left(f^{\pi}\right) \text { for all } \pi:[n] \rightarrow[m] .
$$

Such homomorphisms preserve satisfaction of minor conditions. $\left(f^{\pi}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right)$.

The function minion consisting of projections on a two-element set is denoted by \mathscr{P}. We have $\mathscr{P} \rightarrow \mathscr{M}$ for all minions \mathscr{M}.

$\mathbf{I}_{\mathbf{A}_{1}}: \operatorname{PCSP}(\mathscr{P}, \mathscr{M}) \rightarrow \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$

Given a minor condition Σ, construct an instance $\mathbf{I}_{\mathbf{A}_{1}}(\Sigma)$ of $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$:

- for each symbol f of arity n in Σ, take a copy of \mathbf{A}_{1}^{n} with vertices labelled by $f\left(a_{1}, \ldots, a_{n}\right)$ for $a_{1, \ldots, n} \in \mathbf{A}_{1}$;
- for each identity

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx g\left(x_{1}, \ldots, x_{m}\right)
$$

where $\pi:[n] \rightarrow[m]$, and $a_{1, \ldots, m} \in \mathbf{A}_{1}$, identify vertices labelled

$$
f\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right) \text { and } g\left(a_{1}, \ldots, a_{m}\right) .
$$

adjoint to $\mathbf{I}_{\mathbf{A}_{1}}: \operatorname{pol}\left(\mathbf{A}_{1},-\right)$

We say that $f: A_{1}^{n} \rightarrow A_{2}$ is a polymorphism from \mathbf{A}_{1} to \mathbf{A}_{2} of arity n if f is a homomorphism from \mathbf{A}_{1}^{n} to \mathbf{A}_{2}.

The set of all such polymorphisms of arity n is denoted by $\operatorname{pol}^{(n)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$, and $\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{pol}^{(n)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

I \& pol: the second reduction

Observation. For all C, we have

$$
\Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{C}\right) \Longleftrightarrow \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}
$$

Proof.

Assume $\xi: \Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{C}\right)$ witnesses satisfcation of Σ. Define $h: \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}$ by

$$
h: f\left(a_{1}, \ldots, a_{n}\right) \mapsto \xi(f)\left(a_{1}, \ldots, a_{n}\right) .
$$

Observe that (1) h is well-defined, (2) h is a homomorphism. For the other implication, assume a homomorphism $h: \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}$, define ξ as

$$
\xi(f):\left(a_{1}, \ldots, a_{n}\right)=h\left(f\left(a_{1}, \ldots, a_{n}\right)\right) .
$$

I \& pol: the second reduction

Theorem
The indicator structure gives a reduction:

$$
\operatorname{PCSP}\left(\mathscr{P}, \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\right) \xrightarrow{\mathrm{I}_{\mathrm{A}_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

Proof. We have that $\mathbf{I}_{\mathbf{A}_{1}}$ is a reduction

$$
\operatorname{PCSP}\left(\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{1}\right), \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\right) \rightarrow \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

But $\mathscr{P} \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{1}\right)$, so we get the required reduction by homomorphic relaxation.

Alternatively, we can show directly:

1. if Σ is trivial, then $\mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{A}_{1}$, and
2. if $\mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{A}_{2}$ then $\Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

the best gadget reduction

$$
\begin{aligned}
& \operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\sum_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathrm{I}_{\mathbf{A}_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \\
& \mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)
\end{aligned}
$$

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

$\Sigma: \operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \rightarrow \operatorname{PCSP}(\mathscr{P}, \mathscr{B})$

Starting with \mathbf{I} similar to \mathbf{B}_{1}, construct a minor condition $\Sigma\left(\mathbf{B}_{1}, \mathbf{I}\right)$:

- for each $v \in I$, add to Σ a symbol f_{v} of arity B_{1},
- for each $\left(v_{1}, \ldots, v_{k}\right) \in R^{\mathbf{l}}$, add to Σ a symbol $g_{\left(v_{1}, \ldots, v_{k}\right), R}$ of arity $R^{\mathbf{B}_{1}}$, and
- introduce identities

$$
\begin{aligned}
f_{v_{1}}\left(x_{b_{1}}, \ldots, x_{b_{n}}\right) & \approx g_{\left(v_{1}, \ldots, v_{k}\right), R}\left(x_{r_{1}(1)}, \ldots, x_{r_{m}(1)}\right) \\
& \vdots \\
f_{v_{k}}\left(x_{b_{1}}, \ldots, x_{b_{n}}\right) & \approx g_{\left(v_{1}, \ldots, v_{k}\right), R}\left(x_{r_{1}(k)}, \ldots, x_{r_{m}(k)}\right)
\end{aligned}
$$

where $R^{\mathbf{B}_{1}}=\left\{r_{i} \mid i \in[m]\right\}$ and $B_{1}=\left\{b_{i} \mid i \in[n]\right\}$.

examples of conditions from structures

- $\Sigma\left(K_{3}, \circlearrowleft\right)$ is the Siggers identity!

$$
\begin{aligned}
& v(x, y, z) \approx s(x, y, z, x, y, z) \\
& v(x, y, z) \approx s(y, x, x, z, z, y)
\end{aligned}
$$

- $\Sigma\left(K_{3}, K_{3}\right)$ is trivial!
- $\Sigma\left(1\right.$-in- $\left.3, \circlearrowleft_{3}\right)$ is (non-idempotent) ternary weak near unanimity!
(1-in-3 is the template of 1 in3-Sat.)

adjoint to Σ : the free structure \mathbf{F}

Given a minion \mathscr{M} and a (finite) structure \mathbf{B}_{1}, we define a structure $\mathrm{F}_{\mathscr{M}}\left(\mathbf{B}_{1}\right)$:

- the universe are the B_{1}-ary functions in \mathscr{M}, i.e., $F_{\mathscr{M}}\left(\mathbf{B}_{1}\right)=\mathscr{M}^{\left(B_{1}\right)}$,
- the relation $R^{\mathbf{F}}$ is defined to contain all tuples $\left(f_{1}, \ldots, f_{k}\right)$ such that there is $g \in \mathscr{M}^{\left(R^{B_{1}}\right)}$ satisfying

$$
\begin{aligned}
f_{1}\left(x_{b_{1}}, \ldots, x_{b_{n}}\right) & \approx g\left(x_{r_{1}(1)}, \ldots, x_{r_{m}(1)}\right) \\
& \vdots \\
f_{k}\left(x_{b_{1}}, \ldots, x_{b_{n}}\right) & \approx g\left(x_{r_{1}(k)}, \ldots, x_{r_{m}(k)}\right)
\end{aligned}
$$

where $R^{\mathbf{B}_{1}}=\left\{r_{i} \mid i \in[m]\right\}$ and $B_{1}=\left\{b_{i} \mid i \in[n]\right\}$.

example of a free structure

Example. The power structure [Feder, Vardi, "98] is the free structure of the semilattice clone.

Example. A variety is congruence permutable iff it has a Maltsev term [Maltsev, "54].

Proof. Consider

$$
\mathbf{F}_{\text {clo } \mathcal{V}}(\{x, y\} ; B=\{(x, x),(x, y),(y, y)\})
$$

Note that $\mathbb{B}^{\boldsymbol{F}} \in \mathcal{V}$, so the two kernels of projections permute which means

$$
\exists q \in B^{\mathrm{F}} \text { s.t. } y \approx q(x, x, y) \text { and } x \approx q(x, y, y)
$$

$\Sigma \& F$: the first reduction

Observation. for all C, we have

$$
\mathbf{C} \rightarrow \mathbf{F}_{\mathscr{M}}\left(\mathbf{B}_{1}\right) \Longleftrightarrow \Sigma\left(\mathbf{B}_{1}, \mathbf{C}\right) \rightarrow \mathscr{M}
$$

Theorem
The assignment $\mathbf{I} \mapsto \Sigma\left(\mathbf{B}_{1}, \mathbf{I}\right)$ gives a reduction:

$$
\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\Sigma\left(\mathbf{B}_{1,-}\right)} \operatorname{PCSP}\left(\mathscr{P}, \operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)\right)
$$

the best gadget reduction

$$
\begin{aligned}
& \operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\sum_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathrm{I}_{\mathbf{A}_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \\
& \mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)
\end{aligned}
$$

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

the best gadget reduction

$\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\Sigma_{\boldsymbol{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathbf{A}_{1}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$
$\mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$
To make the middle reduction work, we need

$$
\mathscr{P} \rightarrow \mathscr{P} \quad \text { and } \quad \mathscr{A} \rightarrow \mathscr{B} .
$$

Therefore, if $\mathscr{A} \rightarrow \mathscr{B}$, then $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ reduces to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

Theorem. $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is log-space equivalent to $\operatorname{PCSP}(\mathscr{P}, \operatorname{pol}(\mathbf{A}, \mathbf{B}))$.

the best gadget reduction

Theorem
The discussed reduction is the best among gadget reductions.

Lemma [Wrochna, Živný]

If ρ preserves products, then there is a minion homomorphism

$$
\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \rightarrow \operatorname{pol}\left(\rho \mathbf{A}_{1}, \rho \mathbf{A}_{2}\right)
$$

for all relational structures $\mathbf{A}_{1}, \mathbf{A}_{2}$.
Observation. For each gadget ϕ, ρ_{ϕ} preserves products.

an application

Goal. a reduction from $\operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{H}_{k}\right)$ to $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$.
\mathbf{H}_{k} is the structure with domain $H_{k}=[k]$ and one ternary relation $n \mathrm{na}_{k}=[k]^{3} \backslash\{(a, a, a) \mid a \in[k]\}$.

Theorem. [Dinur, Regev, Smyth, '05]
For all $k \geq 2, \operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{H}_{k}\right)$ is NP-hard.

$$
\operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{F}_{\mathscr{K}_{3,5}}\left(\mathbf{H}_{2}\right)\right) \xrightarrow{\Sigma_{\mathbf{H}_{2}}} \operatorname{PCSP}\left(\mathscr{P}, \mathscr{K}_{3,5}\right) \xrightarrow{\mathbf{I}_{3}} \operatorname{PCSP}\left(K_{3}, K_{5}\right)
$$

where $\mathscr{K}_{3,5}=\operatorname{pol}\left(K_{3}, K_{5}\right)$.
Need. $\quad \mathbf{F}_{\mathscr{K}, 5}\left(\mathbf{H}_{2}\right) \rightarrow \mathbf{H}_{n}$ for some n.

$\mathbf{F}_{\mathrm{pol}\left(K_{3}, K_{5}\right)}\left(\mathbf{H}_{2}\right)$

- vertices: $F=\operatorname{pol}^{(2)}\left(K_{3}, K_{5}\right)$,
- hyperedges: $\left(f_{1}, f_{2}, f_{3}\right) \in R^{\mathbf{F}}$ if $\exists g \in \operatorname{pol}^{(6)}\left(K_{3}, K_{5}\right)$ with

$$
\begin{aligned}
& f_{1}(x, y) \approx g(x, x, y, y, y, x) \\
& f_{2}(x, y) \approx g(x, y, x, y, x, y) \\
& f_{3}(x, y) \approx g(y, x, x, x, y, y) .
\end{aligned}
$$

Claim. $\quad \mathbf{F}_{\text {pol }\left(K_{3}, K_{5}\right)}\left(\mathbf{H}_{2}\right) \rightarrow \mathbf{H}_{n}$ for some n.
Since \mathbf{F} is finite, it is enough to show that \mathbf{F} does not have a 'hyperloop' (f, f, f). Such a hyperloop would give

$$
g(x, x, y, y, y, x) \approx g(x, y, x, y, x, y) \approx g(y, x, x, x, y, y)
$$

a.k.a. an Olšák polymorphism.

without Olšák things are hard

Proof. $\mathbf{I}_{\mathbf{K}_{3}}$ (Olšák) contains:

Corollary [Bulín, Krokhin, Opršal, '19]
For all $d \geq 3, \operatorname{PCSP}\left(K_{d}, K_{2 d-1}\right)$ is NP-hard.
Corollary
If $\operatorname{pol}(\mathbf{A}, \mathbf{B})$ contains no Olšák function, then $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is NP-hard.
beyond gadget reductions

the other adjoint to arc-graph [Wrochna, Živný, 20]

Reminder. The arc-graph ρG is the second pp-power defined by

$$
\left(x_{1}, x_{2}\right) \in E \wedge\left(y_{1}, y_{2}\right) \in E \wedge x_{2}=y_{1} .
$$

- use the arc-graph pp-power as a reduction - this is the other way than you would expect!
- they obtain NP-hardness of $\left.\operatorname{PCSP}\left(K_{k}, K_{\left(\left\lfloor k^{k}\right]\right)}{ }^{k}\right)-1\right)$ for all $k \geq 4$.
- gives a reduction from $\operatorname{PCSP}\left(K_{6}, K_{c}\right)$ to $\operatorname{PCSP}\left(K_{4}, K_{c^{\prime}}\right)$ which cannot be done by a gadget reduction.

the other adjoint to arc-graph [Wrochna, Živný, '20]

The right adjoint to the arc graph ωG is defined

- $V(\omega G)=\left\{\left(A^{-}, A^{+}\right): A^{ \pm} \subseteq V(G)\right.$ and $\left.A^{-} \times A^{+} \subseteq E(G)\right\}$
- $E(\omega G)=\left\{\left(\left(A^{-}, A^{+}\right),\left(B^{-}, B^{+}\right)\right): A^{+} \cap B^{-} \neq \emptyset\right\}$.

Theorem. gives a reduction from $\operatorname{PCSP}\left(K_{6}, K_{c}\right)$ to
$\operatorname{PCSP}\left(K_{4}, K_{c^{\prime}}\right)$ which cannot be done by a gadget reduction.
Proof sketch.

- Need that $K_{6} \rightarrow \omega K_{4}$.
- The vertices of graph ωK_{4} are pairs of disjoint subsets of [4].
- Fix the domain of K_{6} to be $\binom{[4]}{2}$. Define

$$
h: A \mapsto(A,[4] \backslash A) .
$$

- Observe that if $A \neq B$ then $A \cap([4] \backslash B) \neq \emptyset$.

conclusion

$\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\Sigma_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathbf{I A}_{1}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$

- generalised loop conditions $\mathbf{C} \mapsto \Sigma(\mathbf{A}, \mathbf{C})$;
- free structure $\mathscr{M} \mapsto \mathbf{F}_{\mathscr{M}}(\mathbf{A})$;
- indicator structure $\Sigma \mapsto I_{\mathbf{A}}(\Sigma)$;
- polymorphisms $\mathbf{C} \mapsto \operatorname{pol}(\mathbf{A}, \mathbf{C})$.

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

There are reductions beyond the algebraic approach!

credits

- pol-inv Galois correspondence [Pippenger, '02]
- polymorphisms in promise constraint satisfaction [Austrin, Håstad, Guruswami, '17]
- inclusions of function minions [Brakensiek, Guruswami, '18]
- h1 clone homomorphisms for CSPs [Barto, O, Pinsker, '18]
- minion homomorphisms [Barto, Bulín, Krokhin, O, '19]
- adjunctions [Wrochna, Živný, '20]

