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overview

Part | (last week)
P promise constraint satisfaction problems
P adjunctions give reductions between (P)CSPs

P> gadget reductions (replacement) and pp-powers are adjoint.

Part Il (today)
» describe the best gadget reduction

» show one more adjunction



previously...

Theorem.
The following are equivalent for all pairs of similar relational
structures A1, A, and By, Bs:
1. there s a gadget reduction from PCSP(B1, By) to
PCSP(AL Az);
2. (B1, By) is a homomorphic relaxation a pp-power of (Ay, A);
3. 727



the best gadget reduction

PCSP(By, B) % PCSP(22, ) % PCSP(2, o) ™ PCSP(A1, Ay)

o = po|(A1, Ag),% = pO|(Bl, Bz)

S(A,B) = .7 iff B—F,(A)
Ia(X) > B iff ¥ — pol(A,B)



formulation of PCSP(.Z, A1)

Problem
Fix minions .# and 4. Given a minor (strong Mal'cev) condition X,

» acceptif X — A,
» rejectif X A A

A minion homomorphism is a mapping &: 4 — A s.t.
()T =¢&(f7) forall w: [n] — [m].

Such homomorphisms preserve satisfaction of minor conditions.
(FT(x1, ..o, Xm) = f(Xﬁ(l), 1X7r(n)))'

The function minion consisting of projections on a two-element set is
denoted by 7. We have & — _# for all minions .Z .



la,: PCSP(2, .#) — PCSP(A1, A,)

Given a minor condition X, construct an instance la, (X) of
PCSP(AL AQ)Z

» for each symbol f of arity nin X, take a copy of Af with vertices
labelled by f(ay, ..., a,) for a

.....

» for each identity

F(Xe (1) o Xn(m) = &(X1, o Xm)

where 7: [n] — [m], and a1, m € Ay, identify vertices labelled

f(a,r(l), o a,r(,,)) and g(a, ..., am)-



adjoint to la,: pol(A1, —)

We say that f: Al — A; is a polymorphism from A; to A of arity
nif f is a homomorphism from A7 to A,.

The set of all such polymorphisms of arity n is denoted by
pol( (A1, A2), and pol(A1, Az) = U,y pol (A1, Ay).



| & pol: the second reduction

Observation. For all C, we have

Y — pol(A1,C) <= Ia (X)) — C.

Proof.
Assume ¢: X — pol(Ay, C) witnesses satisfcation of X. Define
h: 1a,(Z) — C by

h: f(a1, ..., an) — &(F)(a1, ..., an).

Observe that (1) h is well-defined, (2) h is a homomorphism.
For the other implication, assume a homomorphism h: I, (X) — C,
define ¢ as

&(7): (ar, ..., an) = h(f (a1, ..., an)).



| & pol: the second reduction

Theorem
The indicator structure gives a reduction:

I
PCSP(2, pol(A1, A2)) —% PCSP(Ay, Ay)

Proof. We have that la, is a reduction
PCSP(pO'(Al, Al), p0|(A1, Az)) — PCSP(AL A2)

But & — pol(Ay, A1), so we get the required reduction by homomorphic
relaxation.

Alternatively, we can show directly:

1. if X is trivial, then 15, (X) — Ay, and
2. if |A1(Z) — Ay then ¥ — p0|(A1, A2) [ |



the best gadget reduction

PCSP(By, B) % PCSP(22, ) % PCSP(2, o) ™ PCSP(A1, Ay)

o = po|(A1, Ag),% = pO|(Bl, Bz)

S(A,B) = ./ iff B—F,(A)
Ia(X) > B iff ¥ — pol(A, B)



Starting with I similar to By, construct a minor condition X(By, I):

» foreach v € [, add to X a symbol f, of arity By,

» foreach (vi,...,v) € R', add to ¥ a symbol g,, _,,)r of arity R®,
and

» introduce identities

s (Xbys o Xb,) R 8, v ) R(Xn (1)1 o X (1))

foe(Xbyr -0 Xb,) = &lur, ) R(Xr (k) - X))

where RB = {r; | i € [m]} and By = {b; | i € [n]}.



examples of conditions from structures

» Y (K3, O) is the Siggers identity!

vix,y,z) =s(x,y,z,x,y,2) z
v(x,y,z) =s(y,x,x,2,2,Y) x/—\y

» Y (K3, K3) is trivial!

» 3 (1-in-3, O3) is (non-idempotent) ternary weak near
unanimity!
(1-in-3 is the template of 1in3-Sat.)



adjoint to X: the free structure F

Given a minion .# and a (finite) structure B1, we define a structure
F./(B1):

> the universe are the Bj-ary functions in ., i.e., F.,(B1) = .48V,
» the relation RF is defined to contain all tuples (f, ..., fi) such that
there is g € .#R™) satisfying

fi(Xbys oo Xb,) = 8 (Xny (1)) o Xrn(1))

fc(Xbys oy Xb,) A2 g(x,l(k), ,X,m(k))

where R = {r; | i € [m]} and By = {b; | i € [n]}.



example of a free structure

Example. The power structure is the free
structure of the semilattice clone.

Example. A variety is congruence permutable iff it has a Maltsev
term

Proof. Consider

Faov({x,y}; B ={(x.x). (x.¥), (¥, ¥)})

Note that BF € V, so the two kernels of projections permute which
means

Jg € BF sit. y =~ q(x,x,y)and x = q(x, y, y). [ |



> & F: the first reduction

Observation. for all C, we have

C—F4(B;) < %X(B1,C)— #

Theorem
The assignment | — ¥ (B, ) gives a reduction:

=(

Bi,—)
it

PCSP(BL BQ) PCSP(,@, pO|(Bl, BQ))



the best gadget reduction

PCSP(By, B) % PCSP(22, ) % PCSP(2, o) ™ PCSP(A1, Ay)

o = po|(A1, Ag),% = pO|(Bl, Bz)

S(A,B) = ./ iff B—F,(A)
Ia(X) > B iff ¥ — pol(A, B)



the best gadget reduction

2B, id Ia
PCSP(B1, By) — PCSP(Z, #) — PCSP(2, /) — PCSP(A1, A)

o = p0|(A1, Ag),% = pO|(Bl, Bz)

To make the middle reduction work, we need

Y - P and A — AB.

Therefore, if &7 — 2, then PCSP(B1, B) reduces to
PCSP(A1, Ap).

Theorem. PCSP(A, B) is log-space equivalent to
PCSP(Z, pol(A, B)).



the best gadget reduction

Theorem
The discussed reduction is the best among gadget reductions.

Lemma
If p preserves products, then there is a minion homomorphism

pO|(A1, A2) — pO|(pA1, [)AQ)
for all relational structures Ay, As.

Observation. For each gadget ¢, p, preserves products.



an application

Goal. areduction from PCSP(Hz, Hy) to PCSP(K3, Ks).

H, is the structure with domain Hy = [k] and one ternary relation
nae, = [k]*\ {(a,a,3) | a € [K]}.

Theorem.
For all k > 2, PCSP(H3, Hy) is NP-hard.

ZH2 IK
PCSP(Ha, F 45, (Ha)) —% PCSP(2, #35) — PCSP(K3, Ks)

where J#3 5 = pol(K3, Ks).

Need. F;,(H2) — H,for some n.



FP0|(K3,K5)(H2)

> vertices: F = pol®®) (K3, Ks),

> hyperedges: (f1, 2, f3) € RF if 3g € pol®) (K3, Ks) with

—~~

fix.y) = g(x. .y, y.y,x
fa(x,y) = g(x,y, x, ¥y, x,y
f3(X’y) ~ g(YvaXvay.y

~— — ~—

Claim.  Fpoi(ks,k5)(H2) — Hj, for some n.

Since F is finite, it is enough to show that F does not have a
‘hyperloop’ (f, f, ). Such a hyperloop would give

gx.x, v,y y. x)=gx y. x. vy, x.y) =gy, x,.x,x,y.y)

a.k.a. an Olsak polymorphism.



without OISak things are hard

Proof. Ik, (OI34k) contains:

g(100,011) g(012,120)
121,212 g(201, 012 |
g
g(220,002) g(120,201)

Corollary
For all d > 3, PCSP(Ky, Kag—1) is NP-hard.

Corollary
If pol(A, B) contains no Ol3dk function, then PCSP(A, B) is NP-hard.



beyond gadget reductions



the other adjoint to arc-graph

Reminder. The arc-graph pG is the second pp-power defined by

(x1.x) € EAN(y1.y2) € ENX = y1.

» use the arc-graph pp-power as a reduction — this is the other way
than you would expect!
» they obtain NP-hardness of PCSP (K, K(L ; J)71) forall k > 4.
k/2

» gives a reduction from PCSP(Ks, K.) to PCSP(K., K./) which
cannot be done by a gadget reduction.



the other adjoint to arc-graph

The right adjoint to the arc graph wG is defined

> V(WG)={(A,A"):A* CV(G)and A~ x A" C E(G)}
> E(wG)={((A,A"),(B~,B")): A" nB #0}.

Theorem. gives a reduction from PCSP(Ks, K¢) to
PCSP(K4, K./) which cannot be done by a gadget reduction.

Proof sketch.

» Needthat K — wKj.
» The vertices of graph wKj are pairs of disjoint subsets of [4].
» Fix the domain of K; to be ([‘2‘]). Define

h: Aes (A [4]\ A).

» Observe thatif A # Bthen AN ([4]\ B) # 0.



conclusion

Xg, id Ia
PCSP(Bl, Bz) — PCSP(@,%) — PCSP(@, ,Q/) = PCSP(Al, Ag)

» generalised loop conditions C — ¥ (A, C);
» free structure .# — F_4(A);

» indicator structure ¥ — Iao(X);

» polymorphisms C — pol(A, C).

S(AB)— .7 iff B—F ,(A)
Ia(X) > B iff ¥ — pol(A, B)

There are reductions beyond the algebraic approach!
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credits

pol-inv Galois correspondence

polymorphisms in promise constraint satisfaction

inclusions of function minions
h1 clone homomorphisms for CSPs
minion homomorphisms

adjunctions
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