A theory of gadget reductions for promise constraint satisfaction
 Part I

Jakub Opršal

18 Feb 2021

University

overview

[Kowz20] Andrei Krokhin, O, Marcin Wrochna, Standa Živný, Topology and adjunction in promise constraint satisfaction, arXiv:2003.11351.
[BBKO19] Libor Barto, Jakub Bulín, Andrei Krokhin, O, Algebraic approach to promise constraint satisfaction, arXiv:1811.00970v3.

an old story

- dichotomy of Boolean CSPs [Scheafer, "78]
- dichotomy of (undirected) graph CSPs [Hell, Nešetřil, "90]
- the dichotomy conjecture [Feder, Vardi, "98]
- pol-inv Galois correspondence [Cohen, Gyssens, Jeavons, "97]
- HSP closure [Bulatov, Jeavons, Krokhin, '05]
- Taylor implies WNU [Maróti, McKenzie, '08]
- algorithms given WNU polymorphisms [Bulatov, '17; Zhuk, '17]
a new story

reductions

Assume that \mathbf{A} and \mathbf{B} are two (finite) relational structures.

A reduction from $\operatorname{CSP}(\rho \mathbf{A})$ to $\operatorname{CSP}(\mathbf{A})$ is a mapping
λ : structures similar to $\rho \mathbf{A} \rightarrow$ structures similar to \mathbf{A}
such that

$$
\mathbf{I} \rightarrow \rho \mathbf{A} \quad \text { iff } \quad \lambda \mathbf{I} \rightarrow \mathbf{A} .
$$

This is called adjunction.

a gadget reduction λ

$$
\phi\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right) \in E \wedge\left(y_{1}, y_{2}\right) \in E \wedge x_{2}=y_{1}
$$

Example

a pp-power ρ

$\rho \mathbf{A}$ is a pp-power of \mathbf{A}.
Concretely, $\rho \mathbf{A}=\left(A^{2} ; E^{\rho \mathbf{A}}\right)$ where

$$
\begin{aligned}
\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right) & \in E^{\rho \mathbf{A}} \\
\text { iff } & \mathbf{A} \models \phi\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \\
\text { iff } & \left(a_{1}, a_{2}\right) \in E^{\mathbf{A}} \wedge\left(b_{1}, b_{2}\right) \in E^{\mathbf{A}} \wedge a_{2}=b_{1} .
\end{aligned}
$$

Observation

$$
\mathbf{I} \rightarrow \rho \mathbf{A} \quad \text { iff } \quad \lambda \mathbf{I} \rightarrow \mathbf{A}
$$

gadget reductions

Let σ and τ be two relational languages. An (σ, τ)-gadget ϕ is defined by:

1. a number n,
2. a primitive positive τ-formula ϕ_{R} with $k \cdot n$ free variables $x_{1}^{1}, \ldots, x_{k}^{n}$ for each $R \in \sigma$ of arity k.

A gadget reduction defined by such a gadget ϕ, assigns to a σ-structure I a structure $\lambda_{\phi} \mathbf{I}$ defined by:

- for each vertex $v \in I$, add to $\lambda_{\phi} I$ vertices v^{1}, \ldots, v^{n},
- for each $\left(v_{1}, \ldots, v_{k}\right) \in R^{1}$, ensure that

$$
\lambda_{\phi} \mathbf{I} \models \phi^{R}\left(v_{1}^{1}, \ldots, v_{k}^{n}\right)
$$

by adding necessary edges, or identifying vertices according to equalities in ϕ^{R}.

pp-powers

Let σ and τ be two relational languages. An (σ, τ)-gadget ϕ is defined by:

1. a number n,
2. a primitive positive τ-formula ϕ_{R} with k. n free variables $x_{1}^{1}, \ldots, x_{k}^{n}$ for each $R \in \sigma$ of arity k.

Let \mathbf{A} be a τ-structure. The pp-power of \mathbf{A} defined by ϕ is the following σ-structure $\rho_{\phi} \mathbf{A}$.

- the universe $\rho_{\phi} A$ is A^{n},
- $\left(\left(a_{1}^{1}, \ldots, a_{1}^{n}\right), \ldots,\left(a_{k}^{1}, \ldots, a_{k}^{n}\right)\right) \in R^{\rho \mathbf{A}}$ if

$$
\mathbf{A} \models \phi^{R}\left(a_{1}^{1}, \ldots, a_{k}^{n}\right) .
$$

gadget reductions and pp-powers

Observation
For all gadgets ϕ and all structures I and \mathbf{A} of the corresponding signatures,

$$
\mathbf{I} \rightarrow \rho_{\phi} \mathbf{A} \Leftrightarrow \lambda_{\phi} \mathbf{I} \rightarrow \mathbf{A} .
$$

- for each $\left(v_{1}, \ldots, v_{k}\right) \in R^{1}$, ensure that

$$
\lambda_{\phi} \mathbf{I} \models \phi^{R}\left(v_{1}^{1}, \ldots, v_{k}^{n}\right)
$$

by adding necessary edges, or identifying vertices according to equalities in ϕ^{R}.

- $\left(\left(a_{1}^{1}, \ldots, a_{1}^{n}\right), \ldots,\left(a_{k}^{1}, \ldots, a_{k}^{n}\right)\right) \in R^{\rho \mathbf{A}}$ if

$$
\mathbf{A} \models \phi^{R}\left(a_{1}^{1}, \ldots, a_{k}^{n}\right)
$$

algebraic approach in a nutshell

Theorem [Bulatov, Jeavons, Krokhin, '05; Barto, O, Pinsker, '17]
The following are equivalent for any finite relational structures
A, B:

1. there is a gadget reduction from $\operatorname{CSP}(\mathbf{B})$ to $\operatorname{CSP}(\mathbf{A})$;
2. \mathbf{B} is homomorphically equivalent to a pp-power of \mathbf{A};
3. there is a minion (h1 clone) homomorphism from $\operatorname{pol}(\mathbf{A})$ to $\operatorname{pol}(B)$.
promises

definition of promise contraint satisfaction

Fix two finite relational structures \mathbf{A}, \mathbf{B} in the same finite language with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.
$\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is the following problem:
Search
Given a finite structure I that maps homomorphically to A, find a homomorphism $h: \mathbf{I} \rightarrow \mathbf{B}$.

Decide
Given I arbitrary structure with the same language,

- accept if I $\rightarrow \mathbf{A}$,
- reject if $\mathbf{I} \nrightarrow \mathbf{B}$.

example: $1 \mathrm{in} 3-\mathrm{vs}$. NAE-Sat

- 1 in 3 -Sat is a CSP with the template $\mathbf{T}_{2}=(\{0,1\} ; 1$-in-3) where 1 -in- $3=\{(0,0,1),(0,1,0),(1,0,0)\}$.
- NAE-Sat is a CSP with the template $\mathbf{H}_{2}=(\{0,1\}$; nae 2$)$ where nae ${ }_{2}=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$.

Clearly, 1-in-3 \subseteq nae $_{2}$, and therefore $\mathbf{T}_{2} \rightarrow \mathbf{H}_{2}$.
The goal here is, given a solvable instance I of 1 in 3 -Sat, find a solution to I as a NAE-Sat instance.

Both 1 in3-Sat and NAE-Sat are NP-complete, but $\operatorname{PCSP}\left(\mathbf{T}_{2}, \mathbf{H}_{2}\right)$ is in P [Brakensiek, Guruswami, '16].

reductions of promise problems

A reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ is a mapping λ : such that

$$
\begin{aligned}
& \mathbf{I} \rightarrow \mathbf{B}_{1} \Rightarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_{1} \\
& \mathbf{I} \rightarrow \mathbf{B}_{2} \Leftarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_{2} .
\end{aligned}
$$

Example
Assuming λ is the identity (do nothing):

$$
\begin{array}{lll}
\mathbf{I} \rightarrow \mathbf{B}_{1} \Rightarrow \mathbf{I} \rightarrow \mathbf{A}_{1} & \text { iff } & \mathbf{B}_{1} \rightarrow \mathbf{A}_{1} \\
\mathbf{I} \rightarrow \mathbf{B}_{2} \Leftarrow \mathbf{I} \rightarrow \mathbf{A}_{2} & \text { iff } & \mathbf{B}_{2} \leftarrow \mathbf{A}_{2} .
\end{array}
$$

Definition. We say that $\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ is a homomorphic relaxation of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ if $\mathbf{B}_{1} \rightarrow \mathbf{A}_{1}$ and $\mathbf{A}_{2} \rightarrow \mathbf{B}_{2}$.

reductions of promise problems

A reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ is a mapping λ : such that

$$
\begin{aligned}
& \mathbf{I} \rightarrow \mathbf{B}_{1} \Rightarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_{1} \\
& \mathbf{I} \rightarrow \mathbf{B}_{2} \Leftarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_{2} .
\end{aligned}
$$

Example
Assuming λ is a gadget replacement, we have (for $i=1,2$)

$$
\mathbf{I} \rightarrow \rho \mathbf{A}_{i} \Leftrightarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_{i}
$$

Therefore λ is a reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ iff $\mathbf{B}_{1} \rightarrow \rho \mathbf{A}_{1}$ and $\rho \mathbf{A}_{2} \rightarrow \mathbf{B}_{2}$.

Definition. We say that $\left(\rho \mathbf{A}_{1}, \rho \mathbf{A}_{2}\right)$ is a pp-power of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

Theorem ([Barto, Bulín, Krokhin, O, '19])
The following are equivalent for finite structures $\mathbf{A}_{1,2}, \mathbf{B}_{1,2}$:

1. there is a gadget reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
2. $\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ is a homomorphic relaxation of a pp-power of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
3. ???!

the best gadget reduction

$\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\lambda_{1}} \operatorname{PCSP}\left(\mathscr{P}, ?_{\mathrm{B}}\right) \xrightarrow{\text { id }} \operatorname{PCSP}\left(\mathscr{P}, ?_{\mathrm{A}}\right) \xrightarrow{\lambda_{2}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$

Both λ_{1} and λ_{2} are essentially 'gadget reductions'. I will also describe the corresponding 'pp-powers'.

- λ_{1} and ρ_{1}, so that

$$
\mathbf{I} \rightarrow \rho_{1} \mathscr{M} \Longleftrightarrow \lambda_{1} \mathbf{I} \rightarrow \mathscr{M}
$$

- λ_{2} and ρ_{2}, so that

$$
\Sigma \rightarrow \rho_{2} \mathbf{A} \Longleftrightarrow \lambda_{2} \Sigma \rightarrow \mathbf{A}
$$

formulation of $\operatorname{CSP}(\mathscr{P})$

Problem

Given a minor (strong Mal'cev) condition Σ, decide whether Σ is trivial, i.e., satisfied by projections on a set of size at least 2 .

A minor condition is a finite set of identities of the form

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx g\left(x_{1}, \ldots, x_{m}\right)
$$

for some $\pi:[n] \rightarrow[m]$. We often use a shorthand $f^{\pi} \approx g$ for the above.

ρ_{2} : polymorphisms

We say that $f: A_{1}^{n} \rightarrow A_{2}$ is a polymorphism from \mathbf{A}_{1} to \mathbf{A}_{2} of arity n if one of the following equivalent conditions is satisfied:

- f is a homomorphism from \mathbf{A}_{1}^{n} to \mathbf{A}_{2},
- for each relation $R^{\mathbf{A}_{1}}$ and all tuples $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in R^{\mathbf{A}_{1}}$ we have

$$
f\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \in R^{\mathbf{A}_{2}}
$$

The set of all such polymorphisms of arity n is denoted by $\operatorname{pol}^{(n)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$, and $\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{pol}^{(n)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

ρ_{2} : polymorphisms

If $f \in \operatorname{pol}^{(n)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ and $\pi:[n] \rightarrow[m]$, then

$$
f^{\pi}:\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \in \operatorname{pol}^{(m)}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

The function f^{π} is called the minor of f defined by π.
A non-empty set of functions from a set A_{1} to a set A_{2} that is closed under taking minors is called a function minion.

- any (function) clone is a function minion.
- we say that a minor condition Σ is satisfied in \mathscr{M} (and write $\Sigma \rightarrow \mathscr{M})$ if there is $\xi: \Sigma \rightarrow \mathscr{M}$ s.t.

$$
\xi(f)^{\pi}=\xi(g) \text { for each identity } f^{\pi} \approx g .
$$

formulation of $\operatorname{PCSP}(\mathscr{M}, \mathscr{N})$

Problem

Fix minion \mathscr{M} and \mathscr{N}. Given a minor (strong Mal'cev) condition Σ,

- accept if $\Sigma \rightarrow \mathscr{M}$,
- reject if $\Sigma \nrightarrow \mathscr{N}$.

The function minion consisting of projections on a two-element set is denoted by \mathscr{P}. We have $\mathscr{P} \rightarrow \mathscr{M}$ for all minions \mathscr{M}.

A minion homomorphism is a mapping $\xi: \mathscr{M} \rightarrow \mathscr{N}$ s.t.

$$
\xi(f)^{\pi}=\xi\left(f^{\pi}\right) \text { for all } \pi:[n] \rightarrow[m] .
$$

Such homomorphisms preserve satisfaction of minor conditions.
Note. $\quad \Sigma$ is trivial iff $\Sigma \rightarrow \mathscr{P}$ iff $\Sigma \rightarrow \mathscr{M}$ for all minions \mathscr{M}.

$\lambda_{2}: \operatorname{PCSP}(\mathscr{P}, \mathscr{M}) \rightarrow \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$

Given a minor condition Σ, construct an instance $\mathbf{I}_{\mathbf{A}_{1}}(\Sigma)$ of $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$:

- for each symbol f of arity n in Σ, take a copy of \mathbf{A}_{1}^{n} with vertices labelled by $f\left(a_{1}, \ldots, a_{n}\right)$ for $a_{1, \ldots, n} \in \mathbf{A}_{1}$;
- for each identity

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx g\left(x_{1}, \ldots, x_{m}\right)
$$

where $\pi:[n] \rightarrow[m]$, and $a_{1, \ldots, m} \in \mathbf{A}_{1}$, identify vertices labelled

$$
f\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right) \text { and } g\left(a_{1}, \ldots, a_{m}\right) .
$$

$\lambda_{2} \& \rho_{2}$: the second reduction

Observation. For all C, we have

$$
\Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{C}\right) \Longleftrightarrow \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}
$$

Proof.
Assume $\xi: \Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{C}\right)$ witnesses satisfcation of Σ. Define $h: \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}$ by

$$
h: f\left(a_{1}, \ldots, a_{n}\right) \mapsto \xi(f)\left(a_{1}, \ldots, a_{n}\right)
$$

Observe that (1) h is well-defined, (2) h is a homomorphism. For the other implication, assume a homomorphism $h: \mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{C}$, define ξ as

$$
\xi(f):\left(a_{1}, \ldots, a_{n}\right)=h\left(f\left(a_{1}, \ldots, a_{n}\right)\right)
$$

$\lambda_{2} \& \rho_{2}$: the second reduction

Theorem
The indicator structure gives a reduction:

$$
\operatorname{PCSP}\left(\mathscr{P}, \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\right) \xrightarrow{\mathrm{I}_{\mathrm{A}_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

Proof. We have that $\mathbf{I}_{\mathbf{A}_{1}}$ is a reduction

$$
\operatorname{PCSP}\left(\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{1}\right), \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\right) \rightarrow \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

But $\mathscr{P} \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{1}\right)$, so we get the required reduction by homomorphic relaxation.

Alternatively, we can show directly:

1. if Σ is trivial, then $\mathbf{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{A}_{1}$ - this follows since $\mathscr{P} \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{1}\right)$, and
2. if $\mathrm{I}_{\mathbf{A}_{1}}(\Sigma) \rightarrow \mathbf{A}_{2}$ then $\Sigma \rightarrow \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

overview

1. If λ and ρ are adjoint, i.e., $\mathbf{A} \rightarrow \rho \mathbf{B} \Leftrightarrow \lambda \mathbf{A} \rightarrow \mathbf{B}$, then λ is a reduction from $\operatorname{PCSP}\left(\rho \mathbf{A}_{1}, \rho \mathbf{A}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.
2. we showed that $\mathbf{I}_{\mathbf{A}_{1}}$ and $\operatorname{pol}\left(\mathbf{A}_{1},-\right)$ are adjoint.
3. this gives a reduction

$$
\operatorname{PCSP}\left(\mathscr{P}, \operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\right) \xrightarrow{\mathrm{I}_{A_{1}}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)
$$

next time...

1. Introduce λ_{1}, ρ_{1} to complete the picture

$$
\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\lambda_{1}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathbf{A}_{1}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) .
$$

2. Show some application(s).
