A theory of gadget reductions for promise constraint satisfaction

Part I

Jakub Opršal

18 Feb 2021

overview

- [KOWZ20] Andrei Krokhin, **O**, Marcin Wrochna, Standa Živný, *Topology and adjunction in promise constraint satisfaction*, arXiv:2003.11351.
- [BBKO19] Libor Barto, Jakub Bulín, Andrei Krokhin, **O**, *Algebraic approach to promise constraint satisfaction*, arXiv:1811.00970v3.

an old story

- dichotomy of Boolean CSPs [Scheafer, "78]
- dichotomy of (undirected) graph CSPs [Hell, Nešetřil, "90]
- the dichotomy conjecture [Feder, Vardi, "98]
- pol-inv Galois correspondence [Cohen, Gyssens, Jeavons, "97]
- HSP closure [Bulatov, Jeavons, Krokhin, '05]
- Taylor implies WNU [Maróti, McKenzie, '08]
- algorithms given WNU polymorphisms [Bulatov, '17; Zhuk, '17]

reductions

Assume that **A** and **B** are two (finite) relational structures.

A reduction from $CSP(\rho A)$ to CSP(A) is a mapping

 λ : structures similar to $\rho A \rightarrow$ structures similar to A

such that

$$\mathbf{I} \rightarrow \rho \mathbf{A}$$
 iff $\lambda \mathbf{I} \rightarrow \mathbf{A}$.

This is called adjunction.

a gadget reduction λ

 $\phi(x_1, x_2, y_1, y_2) = (x_1, x_2) \in E \land (y_1, y_2) \in E \land x_2 = y_1.$

Example

a pp-power
$$ho$$

$$\begin{split} \rho \mathbf{A} \text{ is a pp-power of } \mathbf{A}. \\ \text{Concretely, } \rho \mathbf{A} &= (A^2; E^{\rho \mathbf{A}}) \text{ where} \\ & ((a_1, a_2), (b_1, b_2)) \in E^{\rho \mathbf{A}} \\ & \text{ iff } \mathbf{A} \models \phi(a_1, a_2, b_1, b_2) \\ & \text{ iff } (a_1, a_2) \in E^{\mathbf{A}} \land (b_1, b_2) \in E^{\mathbf{A}} \land a_2 = b_1. \end{split}$$

Observation

$$I \rightarrow \rho A$$
 iff $\lambda I \rightarrow A$

gadget reductions

Let σ and τ be two relational languages. An (σ, τ) -gadget ϕ is defined by:

- 1. a number n,
- 2. a primitive positive τ -formula ϕ_R with $k \cdot n$ free variables x_1^1, \ldots, x_k^n for each $R \in \sigma$ of arity k.

A gadget reduction defined by such a gadget ϕ , assigns to a σ -structure I a structure λ_{ϕ} I defined by:

- ▶ for each vertex $v \in I$, add to $\lambda_{\phi}I$ vertices $v^1, ..., v^n$,
- for each $(v_1, ..., v_k) \in R^{\mathsf{I}}$, ensure that

$$\lambda_{\phi} \mathbf{I} \models \phi^{R}(v_{1}^{1}, \dots, v_{k}^{n})$$

by adding necessary edges, or identifying vertices according to equalities in ϕ^R .

pp-powers

Let σ and τ be two relational languages. An (σ, τ) -gadget ϕ is defined by:

- 1. a number n,
- 2. a primitive positive τ -formula ϕ_R with $k \cdot n$ free variables x_1^1, \ldots, x_k^n for each $R \in \sigma$ of arity k.

Let **A** be a τ -structure. The pp-power of **A** defined by ϕ is the following σ -structure ρ_{ϕ} **A**.

the universe ρ_φ A is Aⁿ,
 ((a₁¹,..., a₁ⁿ), ..., (a_k¹,..., a_kⁿ)) ∈ R^{ρA} if
 A ⊨ φ^R(a₁¹,..., a_kⁿ).

gadget reductions and pp-powers

Observation

For all gadgets ϕ and all structures **I** and **A** of the corresponding signatures,

 $\mathbf{I}
ightarrow
ho_{\phi} \mathbf{A} \Leftrightarrow \lambda_{\phi} \mathbf{I}
ightarrow \mathbf{A}.$

• for each
$$(v_1, ..., v_k) \in R^{\mathsf{I}}$$
, ensure that

$$\boldsymbol{\lambda}_{\boldsymbol{\phi}} \mathbf{I} \models \boldsymbol{\phi}^{R}(v_{1}^{1}, \dots, v_{k}^{n})$$

by adding necessary edges, or identifying vertices according to equalities in ϕ^R .

•
$$((a_1^1, ..., a_1^n), ..., (a_k^1, ..., a_k^n)) \in R^{\rho \mathbf{A}}$$
 if

$$\mathbf{A} \models \phi^R(a_1^1, \dots, a_k^n).$$

algebraic approach in a nutshell

Theorem [Bulatov, Jeavons, Krokhin, '05; Barto, **O**, Pinsker, '17] The following are equivalent for any finite relational structures **A**, **B**:

- 1. there is a gadget reduction from CSP(**B**) to CSP(**A**);
- 2. **B** is homomorphically equivalent to a pp-power of **A**;
- there is a minion (h1 clone) homomorphism from pol(A) to pol(B).

promises

definition of promise contraint satisfaction

Fix two finite relational structures A,B in the same finite language with a homomorphism $A \to B.$

PCSP(**A**, **B**) is the following problem:

Search Given a finite structure I that maps homomorphically to A, find a homomorphism $h: I \rightarrow B$.

Decide

Given I arbitrary structure with the same language,

• accept if $I \rightarrow A$,

 $\blacktriangleright \text{ reject if } \mathbf{I} \not\rightarrow \mathbf{B}.$

example: 1in3- vs. NAE-Sat

- ▶ 1in3-Sat is a CSP with the template $T_2 = (\{0, 1\}; 1\text{-in-3})$ where 1-in-3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
- ▶ NAE-Sat is a CSP with the template $\mathbf{H}_2 = (\{0, 1\}; nae_2)$ where $nae_2 = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}.$

Clearly, 1-in-3 \subseteq nae₂, and therefore $\mathbf{T}_2 \rightarrow \mathbf{H}_2$.

The goal here is, given a solvable instance **I** of 1in3-Sat, find a solution to **I** as a NAE-Sat instance.

Both 1in3-Sat and NAE-Sat are NP-complete, but $PCSP(T_2, H_2)$ is in P [Brakensiek, Guruswami, '16].

reductions of promise problems

A reduction from $PCSP(B_1, B_2)$ to $PCSP(A_1, A_2)$ is a mapping λ : such that

$$\begin{split} \mathbf{I} &\to \mathbf{B}_1 \Rightarrow \lambda \mathbf{I} \to \mathbf{A}_1 \\ \mathbf{I} &\to \mathbf{B}_2 \Leftarrow \lambda \mathbf{I} \to \mathbf{A}_2. \end{split}$$

Example

Assuming λ is the identity (do nothing):

$$\begin{split} \textbf{I} &\rightarrow \textbf{B}_1 \Rightarrow \textbf{I} \rightarrow \textbf{A}_1 \quad \text{iff} \quad \textbf{B}_1 \rightarrow \textbf{A}_1 \\ \textbf{I} &\rightarrow \textbf{B}_2 \Leftarrow \textbf{I} \rightarrow \textbf{A}_2 \quad \text{iff} \quad \textbf{B}_2 \leftarrow \textbf{A}_2. \end{split}$$

Definition. We say that (B_1, B_2) is a homomorphic relaxation of (A_1, A_2) if $B_1 \rightarrow A_1$ and $A_2 \rightarrow B_2$.

reductions of promise problems

A reduction from $PCSP(\mathbf{B}_1, \mathbf{B}_2)$ to $PCSP(\mathbf{A}_1, \mathbf{A}_2)$ is a mapping λ : such that

$$\mathbf{I}
ightarrow \mathbf{B}_1 \Rightarrow \mathbf{\lambda} \mathbf{I}
ightarrow \mathbf{A}_1$$

 $\mathbf{I}
ightarrow \mathbf{B}_2 \Leftarrow \mathbf{\lambda} \mathbf{I}
ightarrow \mathbf{A}_2$

Example

Assuming λ is a gadget replacement, we have (for i = 1, 2)

$$\mathbf{I} \rightarrow \rho \mathbf{A}_i \Leftrightarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_i$$

Therefore λ is a reduction from PCSP($\mathbf{B}_1, \mathbf{B}_2$) to PCSP($\mathbf{A}_1, \mathbf{A}_2$) iff $\mathbf{B}_1 \rightarrow \rho \mathbf{A}_1$ and $\rho \mathbf{A}_2 \rightarrow \mathbf{B}_2$.

Definition. We say that $(\rho A_1, \rho A_2)$ is a pp-power of (A_1, A_2) .

Theorem ([Barto, Bulín, Krokhin, O, '19])

The following are equivalent for finite structures $A_{1,2}$, $B_{1,2}$:

- 1. there is a gadget reduction from $PCSP(B_1, B_2)$ to $PCSP(A_1, A_2)$;
- (B₁, B₂) is a homomorphic relaxation of a pp-power of (A₁, A₂);
 ???!

the best gadget reduction

 $\mathsf{PCSP}(\mathbf{B}_1, \mathbf{B}_2) \xrightarrow{\lambda_1} \mathsf{PCSP}(\mathscr{P}, ?_{\mathbf{B}}) \xrightarrow{\mathsf{id}} \mathsf{PCSP}(\mathscr{P}, ?_{\mathbf{A}}) \xrightarrow{\lambda_2} \mathsf{PCSP}(\mathbf{A}_1, \mathbf{A}_2)$

Both λ_1 and λ_2 are essentially 'gadget reductions'. I will also describe the corresponding 'pp-powers'.

•
$$\lambda_1$$
 and ρ_1 , so that

$$\mathsf{I} o
ho_1 \mathscr{M} \iff \lambda_1 \mathsf{I} o \mathscr{M}$$

 \blacktriangleright λ_2 and ρ_2 , so that

 $\Sigma
ightarrow
ho_2 \mathbf{A} \iff \lambda_2 \Sigma
ightarrow \mathbf{A}$

formulation of $CSP(\mathscr{P})$

Problem

Given a minor (strong Mal'cev) condition Σ , decide whether Σ is trivial, i.e., satisfied by projections on a set of size at least 2.

A minor condition is a finite set of identities of the form

$$f(x_{\pi(1)},\ldots,x_{\pi(n)})\approx g(x_1,\ldots,x_m)$$

for some $\pi \colon [n] \to [m]$. We often use a shorthand $f^{\pi} \approx g$ for the above.

ρ_2 : polymorphisms

We say that $f : A_1^n \to A_2$ is a polymorphism from A_1 to A_2 of arity n if one of the following equivalent conditions is satisfied:

- f is a homomorphism from \mathbf{A}_1^n to \mathbf{A}_2 ,
- ▶ for each relation R^{A_1} and all tuples $a_1, ..., a_n \in R^{A_1}$ we have

$$f(\mathbf{a}_1,\ldots,\mathbf{a}_n)\in R^{\mathbf{A}_2}.$$

The set of all such polymorphisms of arity *n* is denoted by $pol^{(n)}(\mathbf{A}_1, \mathbf{A}_2)$, and $pol(\mathbf{A}_1, \mathbf{A}_2) = \bigcup_{n \in \mathbb{N}} pol^{(n)}(\mathbf{A}_1, \mathbf{A}_2)$.

ρ_2 : polymorphisms

If $f \in \mathsf{pol}^{(n)}(\mathsf{A}_1, \mathsf{A}_2)$ and $\pi \colon [n] \to [m]$, then

$$f^{\pi}$$
: $(\mathbf{x}_1, \dots, \mathbf{x}_n) \mapsto f(\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(n)}) \in \mathsf{pol}^{(m)}(\mathbf{A}_1, \mathbf{A}_2).$

The function f^{π} is called the minor of f defined by π .

A non-empty set of functions from a set A_1 to a set A_2 that is closed under taking minors is called a function minion.

- any (function) clone is a function minion.
- we say that a minor condition Σ is satisfied in \mathcal{M} (and write $\Sigma \to \mathcal{M}$) if there is $\xi \colon \Sigma \to \mathcal{M}$ s.t.

 $\xi(f)^{\pi} = \xi(g)$ for each identity $f^{\pi} \approx g$.

formulation of $\mathsf{PCSP}(\mathcal{M}, \mathcal{N})$

Problem

Fix minion \mathscr{M} and \mathscr{N} . Given a minor (strong Mal'cev) condition Σ ,

- $\blacktriangleright \text{ accept if } \Sigma \to \mathscr{M},$
- reject if $\Sigma \not\rightarrow \mathcal{N}$.

The function minion consisting of projections on a two-element set is denoted by \mathscr{P} . We have $\mathscr{P} \to \mathscr{M}$ for all minions \mathscr{M} .

A minion homomorphism is a mapping $\xi: \mathcal{M} \to \mathcal{N}$ s.t.

 $\xi(f)^{\pi} = \xi(f^{\pi})$ for all $\pi \colon [n] \to [m]$.

Such homomorphisms preserve satisfaction of minor conditions.

Note. Σ is trivial iff $\Sigma \to \mathscr{P}$ iff $\Sigma \to \mathscr{M}$ for all minions \mathscr{M} .

λ_2 : PCSP(\mathscr{P} , \mathscr{M}) \rightarrow PCSP(A_1 , A_2)

Given a minor condition Σ , construct an instance $I_{A_1}(\Sigma)$ of PCSP(A_1, A_2):

- ► for each symbol f of arity n in Σ , take a copy of \mathbf{A}_1^n with vertices labelled by $f(a_1, ..., a_n)$ for $a_{1,...,n} \in \mathbf{A}_1$;
- for each identity

$$f(x_{\pi(1)},\ldots,x_{\pi(n)}) \approx g(x_1,\ldots,x_m)$$

where $\pi : [n] \rightarrow [m]$, and $a_{1,...,m} \in \mathbf{A}_1$, identify vertices labelled

$$f(a_{\pi(1)}, ..., a_{\pi(n)})$$
 and $g(a_1, ..., a_m)$.

λ_2 & ρ_2 : the second reduction

Observation. For all C, we have

$$\Sigma
ightarrow \mathsf{pol}(\mathsf{A}_1,\mathsf{C}) \iff \mathsf{I}_{\mathsf{A}_1}(\Sigma)
ightarrow \mathsf{C}.$$

Proof. Assume $\xi \colon \Sigma \to \mathsf{pol}(\mathbf{A}_1, \mathbf{C})$ witnesses satisfcation of Σ . Define $h \colon \mathbf{I}_{\mathbf{A}_1}(\Sigma) \to \mathbf{C}$ by

$$h: f(a_1, \ldots, a_n) \mapsto \xi(f)(a_1, \ldots, a_n).$$

Observe that (1) *h* is well-defined, (2) *h* is a homomorphism. For the other implication, assume a homomorphism $h: I_{A_1}(\Sigma) \to C$, define ξ as

$$\xi(f): (a_1,\ldots,a_n) = h(f(a_1,\ldots,a_n)).$$

λ_2 & ho_2 : the second reduction

Theorem The indicator structure gives a reduction:

$$\mathsf{PCSP}(\mathscr{P},\mathsf{pol}(\mathsf{A}_1,\mathsf{A}_2)) \xrightarrow{\mathsf{I}_{\mathsf{A}_1}} \mathsf{PCSP}(\mathsf{A}_1,\mathsf{A}_2)$$

Proof. We have that I_{A_1} is a reduction

 $\mathsf{PCSP}(\mathsf{pol}(\mathsf{A}_1, \mathsf{A}_1), \mathsf{pol}(\mathsf{A}_1, \mathsf{A}_2)) \to \mathsf{PCSP}(\mathsf{A}_1, \mathsf{A}_2)$

But $\mathscr{P} \to \mathsf{pol}(\mathsf{A}_1, \mathsf{A}_1)$, so we get the required reduction by homomorphic relaxation.

Alternatively, we can show directly:

1. if
$$\Sigma$$
 is trivial, then $\mathbf{I}_{\mathbf{A}_1}(\Sigma) \to \mathbf{A}_1$
—this follows since $\mathscr{P} \to \mathsf{pol}(\mathbf{A}_1, \mathbf{A}_1)$, and

2. if
$$\mathbf{I}_{\mathbf{A}_1}(\Sigma) \to \mathbf{A}_2$$
 then $\Sigma \to \mathsf{pol}(\mathbf{A}_1, \mathbf{A}_2)$.

overview

- 1. If λ and ρ are adjoint, i.e., $\mathbf{A} \rightarrow \rho \mathbf{B} \Leftrightarrow \lambda \mathbf{A} \rightarrow \mathbf{B}$, then λ is a reduction from PCSP($\rho \mathbf{A}_1, \rho \mathbf{A}_2$) to PCSP($\mathbf{A}_1, \mathbf{A}_2$).
- 2. we showed that I_{A_1} and pol $(A_1, -)$ are adjoint.
- 3. this gives a reduction

$$\mathsf{PCSP}(\mathscr{P}, \mathsf{pol}(\mathsf{A}_1, \mathsf{A}_2)) \xrightarrow{\mathsf{I}_{\mathsf{A}_1}} \mathsf{PCSP}(\mathsf{A}_1, \mathsf{A}_2)$$

next time...

1. Introduce λ_1 , ρ_1 to complete the picture

 $\mathsf{PCSP}(\mathbf{B}_1,\mathbf{B}_2) \xrightarrow{\lambda_1} \mathsf{PCSP}(\mathscr{P},\mathscr{B}) \xrightarrow{\mathsf{id}} \mathsf{PCSP}(\mathscr{P},\mathscr{A}) \xrightarrow{\mathbf{I}_{\mathbf{A}_1}} \mathsf{PCSP}(\mathbf{A}_1,\mathbf{A}_2).$

2. Show some application(s).