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Maltsev product

For varieties V,W ⊆ U , the Maltsev product of varieties V and W
relative to U is the class

V ◦U W = {A ∈ U : ∃θ ∈ Con(A)

A/θ ∈ W, ∀a ∈ A (a/θ ¬ A ⇒ a/θ ∈ V)}.

The Maltsev product of varieties V and W of a type Ω relative to
the variety of all algebras of the type Ω will be called the (absolute)
Maltsev product of V and W and will be denoted by V ◦W.



Research problem

The class V ◦W is closed under subalgebras, arbitrary products,
and isomorphic images, but it is not in general closed under
homomorphic images, and thus not a variety.

Open question: When is V ◦W a variety?



Term idempotents

Recall that an element a of an algebra A is an idempotent element
(or an idempotent) of A if for every basic operation f , one has
f (a, . . . , a) = a, or equivalently if {a} is a subalgebra of A.

A term t(x1, . . . , xn) is a term idempotent of a variety V if for
every A ∈ V, the values of the corresponding term operation of A
are idempotents of A.

Equivalently, t(x1, . . . , xn) is a term idempotent of V if it is an
idempotent of the free algebra of V on generators x1, . . . , xn.

Examples:
▶ The term xx−1 in varieties of groups or inverse semigroups.
▶ In an idempotent variety, every term is a term idempotent.

A variety V has a term idempotent iff every algebra in V has an
idempotent.



The role of term idempotents
Let V be a variety. For every algebra A of the same type as V, the
set of congruences θ of A such that A/θ ∈ V has the least
element ϱV . We call A/ϱV the V-replica of A and we call ϱV the
V-replica congruence of A.

In order to find out whether an algebra A belongs to a Maltsev
product V ◦W, we only need to check its W-replica congruence:
V ◦W = {A : ∀a ∈ A (a/ϱW ¬ A ⇒ a/ϱW ∈ V)}.

If t(x) is a term idempotent of W, then for any algebra A,
the congruence class a/ϱW is a subalgebra iff it contains t(a) for
some a ∈ A.



Equational base

If W |= p = q, then we will say that the terms p and q are
W-equivalent or equivalent in W.

For varieties V and W, if ΣV is an equational base for V, then the
variety generated by the Maltsev product V ◦W is defined by the
following set of identities

{u(p1, . . . , pn) = v(p1, . . . , pn) |
(u(x1, . . . , xn) = v(x1, . . . , xn)) ∈ ΣV ,

p1, . . . , pn are pairwise W-equivalent
term idempotents of W},

Example The variety Lz of left-zero semigroups is defined by the
identity xy = x . The variety S of semilattices satisfies precisely all
the identities p = q such that var(p) = var(q). Hence the variety
Lz ◦ S is defined by the identities {pq = p | var(p) = var(q)}.



Term idempotent varieties

A variety V is term idempotent if for every nontrivial identity
p = q true in V, both terms p and q are term idempotents of V.
Examples:
▶ idempotent varieties,
▶ the variety of semigroups satisfying the identity xyz = xz ,
▶ the variety of semigroups satisfying the identity xyzxyz = xyz
(this is the largest term idempotent variety contained in the
variety of semigroups),

▶ the variety of constant semigroups (defined by the identity
xy = zt),

▶ the variety of constant algebras of a given type, i.e. the
algebras in which all basic operations have a common
constant value.

Term idempotent varieties of a type Ω form a complete sublattice
of the lattice of all varieties of the type Ω.



Characterization of term idempotent varieties

A variety W is term idempotent iff for every algebra A of the same
type as W, all congruence classes a/ϱW that are not subalgebras
are singletons.



Sufficient condition

Theorem
Let V and W be varieties and let W be term idempotent. If there
exist terms p(x , y , z), q(x , y , z), and t(x) such that

(a) V |= p(x , y , y) = x , q(x , x , y) = y ,

(b) W |= p(t(x), t(x), t(y)) = q(t(x), t(y), t(y)),

then the Maltsev product V ◦W is a variety.

Remark If W is a term idempotent variety, then for every A ∈ W,
the set I(A) of all idempotent elements of A is a subalgebra of A.
The condition (b) is equivalent to the following condition:

(b’) For every A ∈ W, I(A) |= p(x , x , y) = q(x , y , y).



Consequences

Let V be a congruence permutable variety and W be a term
idempotent variety. Let m(x , y , z) be a Maltsev term for V. Define
terms

p(x , y , z) = m(x , y , z),

q(x , y , z) = m(x , x , z),

t(x) = x .

Substituting these terms to conditions (a) and (b) we obtain
identities that are true:

(a) V |= m(x , y , y) = x , m(x , x , y) = y ,

(b) W |= m(x , x , y) = m(x , x , y).



Consequences

Theorem
If V is a congruence permutable variety and W is a term
idempotent variety, then V ◦W is a variety.

Example The variety Q of quasigroups (of the type {· , \, /}) is
congruence permutable. Let W be a term idempotent variety of
magmas (of the type {·}). We can take an equivalent variety W3
of the type {· , \, /} with 3 binary operations that are equal (i.e.
W3 |= x · y = x\y = x/y). Then Q ◦W3 is a variety.



Consequences

A variety V is congruence 3-permutable if for every A ∈ V and
every θ, ψ ∈ Con(A), one has θ ◦ ψ ◦ θ = ψ ◦ θ ◦ ψ.

Theorem
Let V and W be varieties and let W be term idempotent.
If V ∨W is congruence 3-permutable, then V ◦W is a variety.
Proof: There exist terms p(x , y , z) and q(x , y , z) such that

V ∨W |= x = p(x , y , y), p(x , x , y) = q(x , y , y), q(x , x , y) = y .

It follows that V and W also satisfy these identities, so conditions
(a) and (b) are satisfied with t(x) = x .



Consequences

A variety V is polarized if it has a term idempotent t(x) such that
V |= t(x) = t(y). The term t(x) is called a polar term of V.
E.g. varieties of groups are polarized with a polar term xx−1.

Theorem
If V is a variety and W is a polarized term idempotent variety,
then the Maltsev product V ◦W is a variety.
Proof: Let t(x) be a polar term of W. Define terms

p(x , y , z) = x , q(x , y , z) = z .

Substituting these terms to conditions (a) and (b) we obtain
identities that are true:

(a) V |= x = x , y = y ,

(b) W |= t(x) = t(y).

Ex. The variety C of constant algebras is polarized and term idem-
potent, so for any variety V, the Maltsev product V ◦ C is a variety.



Consequences

Theorem
Let V and W be varieties and let W be term idempotent. If there
exist terms p(x , y) i q(x , y) such that

(a) V |= p(x , y) = x , q(x , y) = y ,

(b) W |= p(x , y) = q(x , y),

then the Maltsev product V ◦W is a variety.

Example A group G is Boolean if every element of G is its own
inverse, or equivalently if G |= x2 = e. Let Bg be the subvariety of
the variety Sg of semigroups defined relative to Sg by the
identities xy2 = x = y2x . Then Bg is equivalent to the variety of
Boolean groups. Let Rs be the variety of semigroups that satisfy
the identity xyz = xz . It is a term idempotent variety. The Maltsev
product Bg ◦ Rs is a variety, because the conditions (a) and (b)
are satisfied for terms

p(x , y) = xy2, q(x , y) = x2y .



Consequences

Varieties V and W are independent if there exists a term p(x , y)
such that V |= p = x and W |= p = y . The term p is called the
decomposition term for V and W.

Theorem
Let V and W be varieties and let W be term idempotent. If V
and W are independent, then V ◦W is a variety.
Proof: Let p(x , y) be a decomposition term for V and W, and let
q(x , y) be the variable y . Substituting these terms to conditions
(a) and (b) we obtain identities that are true:

(a) V |= p(x , y) = x , y = y ,

(b) W |= p(x , y) = y .

Example The varieties Lz of left-zero semigroups (xy = x) and
Rz of right-zero semigroups (xy = y) are independent, so Lz ◦ Rz
is a variety.



Types of identities

An identity is

1. regular if it has the same variables on both sides, e.g. xy = yx ,

2. irregular if the variables on its two sides differ, e.g. xy = xx ,

3. strongly irregular if it is of the form t(x , y) = x , where the
term t contains both the variables x and y , e.g. xy = x .

A variety is

1. regular if it only satisfies regular identities, e.g. the variety of
semilattices,

2. irregular if it satisfies some irregular identity, e.g. the variety
of constant semigroups,

3. strongly irregular if it satisfies some strongly irregular identity,
e.g. the variety of groups (xyy−1 = x) or the variety of
lattices (x ∨ (x ∧ y) = x).



Ω-semilattices

For a given type Ω, let S denote the variety defined by all the
regular identities of the type Ω. If Ω has no symbols of constants
and it has at least one symbol of at least binary basic operation,
then S is the unique variety of the type Ω which is equivalent to
the variety of semilattices. The algebras in S are called
Ω-semilattices.

For a given variety V, algebras in the Maltsev product V ◦ S are
called semilattice sums of algebras in V.



Consequences

Theorem
If V is a strongly irregular variety, then the class V ◦ S of
semilattice sums of algebras in V is a variety.
Proof: Let t(x , y) = x be a strongly irregular identity satisfied
in V. Define terms

p(x , y) = t(x , y), q(x , y) = t(y , x).

Substituting these terms to conditions (a) and (b) we obtain
identities that are true:

(a) V |= t(x , y) = x , t(y , x) = y ,

(b) S |= t(x , y) = t(y , x).

Example Let L be a variety of lattices. Then L ◦ S is a variety.
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