Sufficient conditions for a Maltsev product of two varieties to be a variety

Tomasz Penza

10 October 2023

Maltsev product

For varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{U}$, the Maltsev product of varieties \mathcal{V} and \mathcal{W} relative to \mathcal{U} is the class
$\mathcal{V} \circ \mathcal{U} \mathcal{W}=\{A \in \mathcal{U}: \exists \theta \in \operatorname{Con}(A)$

$$
A / \theta \in \mathcal{W}, \quad \forall a \in A \quad(a / \theta \leqslant A \Rightarrow a / \theta \in \mathcal{V})\}
$$

$$
\left.\begin{array}{c}
A \in \mathcal{U} \quad \square \\
\therefore \because: \in \mathcal{W} \quad \square
\end{array}\right\} \in \mathcal{V}
$$

The Maltsev product of varieties \mathcal{V} and \mathcal{W} of a type Ω relative to the variety of all algebras of the type Ω will be called the (absolute) Maltsev product of \mathcal{V} and \mathcal{W} and will be denoted by $\mathcal{V} \circ \mathcal{W}$.

Research problem

The class $\mathcal{V} \circ \mathcal{W}$ is closed under subalgebras, arbitrary products, and isomorphic images, but it is not in general closed under homomorphic images, and thus not a variety.

Open question: When is $\mathcal{V} \circ \mathcal{W}$ a variety?

Term idempotents

Recall that an element a of an algebra A is an idempotent element (or an idempotent) of A if for every basic operation f, one has $f(a, \ldots, a)=a$, or equivalently if $\{a\}$ is a subalgebra of A.

A term $t\left(x_{1}, \ldots, x_{n}\right)$ is a term idempotent of a variety \mathcal{V} if for every $A \in \mathcal{V}$, the values of the corresponding term operation of A are idempotents of A.

Equivalently, $t\left(x_{1}, \ldots, x_{n}\right)$ is a term idempotent of \mathcal{V} if it is an idempotent of the free algebra of \mathcal{V} on generators x_{1}, \ldots, x_{n}.

Examples:

- The term $x x^{-1}$ in varieties of groups or inverse semigroups.
- In an idempotent variety, every term is a term idempotent.

A variety \mathcal{V} has a term idempotent iff every algebra in \mathcal{V} has an idempotent.

The role of term idempotents

Let \mathcal{V} be a variety. For every algebra A of the same type as \mathcal{V}, the set of congruences θ of A such that $A / \theta \in \mathcal{V}$ has the least element $\varrho^{\mathcal{V}}$. We call $A / \varrho^{\mathcal{V}}$ the \mathcal{V}-replica of A and we call $\varrho^{\mathcal{V}}$ the \mathcal{V}-replica congruence of A.

In order to find out whether an algebra A belongs to a Maltsev product $\mathcal{V} \circ \mathcal{W}$, we only need to check its \mathcal{W}-replica congruence: $\mathcal{V} \circ \mathcal{W}=\left\{A: \quad \forall a \in A \quad\left(a / \varrho^{\mathcal{W}} \leqslant A \Rightarrow a / \varrho^{\mathcal{W}} \in \mathcal{V}\right)\right\}$.

If $t(x)$ is a term idempotent of \mathcal{W}, then for any algebra A, the congruence class $a / \varrho^{\mathcal{W}}$ is a subalgebra iff it contains $t(a)$ for some $a \in A$.

Equational base

If $\mathcal{W} \models p=q$, then we will say that the terms p and q are \mathcal{W}-equivalent or equivalent in \mathcal{W}.

For varieties \mathcal{V} and \mathcal{W}, if $\Sigma_{\mathcal{V}}$ is an equational base for \mathcal{V}, then the variety generated by the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is defined by the following set of identities

$$
\begin{aligned}
\left\{u\left(p_{1}, \ldots, p_{n}\right)\right. & =v\left(p_{1}, \ldots, p_{n}\right) \mid \\
& \left(u\left(x_{1}, \ldots, x_{n}\right)=v\left(x_{1}, \ldots, x_{n}\right)\right) \in \Sigma_{\mathcal{V}} \\
& p_{1}, \ldots, p_{n} \text { are pairwise } \mathcal{W} \text {-equivalent } \\
& \text { term idempotents of } \mathcal{W}\},
\end{aligned}
$$

Example The variety $\mathcal{L} z$ of left-zero semigroups is defined by the identity $x y=x$. The variety \mathcal{S} of semilattices satisfies precisely all the identities $p=q$ such that $\operatorname{var}(p)=\operatorname{var}(q)$. Hence the variety $\mathcal{L} z \circ \mathcal{S}$ is defined by the identities $\{p q=p \mid \operatorname{var}(p)=\operatorname{var}(q)\}$.

Term idempotent varieties

A variety \mathcal{V} is term idempotent if for every nontrivial identity $p=q$ true in \mathcal{V}, both terms p and q are term idempotents of \mathcal{V}.
Examples:

- idempotent varieties,
- the variety of semigroups satisfying the identity $x y z=x z$,
- the variety of semigroups satisfying the identity $x y z x y z=x y z$ (this is the largest term idempotent variety contained in the variety of semigroups),
- the variety of constant semigroups (defined by the identity $x y=z t$),
- the variety of constant algebras of a given type, i.e. the algebras in which all basic operations have a common constant value.

Term idempotent varieties of a type Ω form a complete sublattice of the lattice of all varieties of the type Ω.

Characterization of term idempotent varieties

A variety \mathcal{W} is term idempotent iff for every algebra A of the same type as \mathcal{W}, all congruence classes $a / \varrho^{\mathcal{W}}$ that are not subalgebras are singletons.
$\mathcal{W}:$
general
idempotent
term idemp.

Sufficient condition

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If there exist terms $p(x, y, z), q(x, y, z)$, and $t(x)$ such that
(a) $\mathcal{V} \models p(x, y, y)=x, q(x, x, y)=y$,
(b) $\mathcal{W} \models p(t(x), t(x), t(y))=q(t(x), t(y), t(y))$,
then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.

Remark If \mathcal{W} is a term idempotent variety, then for every $A \in \mathcal{W}$, the set $\mathrm{I}(A)$ of all idempotent elements of A is a subalgebra of A. The condition (b) is equivalent to the following condition:
(b') For every $A \in \mathcal{W}, \mathrm{I}(A) \models p(x, x, y)=q(x, y, y)$.

Consequences

Let \mathcal{V} be a congruence permutable variety and \mathcal{W} be a term idempotent variety. Let $m(x, y, z)$ be a Maltsev term for \mathcal{V}. Define terms

$$
\begin{aligned}
& p(x, y, z)=m(x, y, z), \\
& q(x, y, z)=m(x, x, z), \\
& t(x)=x .
\end{aligned}
$$

Substituting these terms to conditions (a) and (b) we obtain identities that are true:
(a) $\mathcal{V} \models m(x, y, y)=x, m(x, x, y)=y$,
(b) $\mathcal{W} \models m(x, x, y)=m(x, x, y)$.

Consequences

Theorem
If \mathcal{V} is a congruence permutable variety and \mathcal{W} is a term idempotent variety, then $\mathcal{V} \circ \mathcal{W}$ is a variety.

Example The variety \mathcal{Q} of quasigroups (of the type $\{\cdot, \backslash, /\}$) is congruence permutable. Let \mathcal{W} be a term idempotent variety of magmas (of the type $\{\cdot\}$). We can take an equivalent variety \mathcal{W}_{3} of the type $\{\cdot, \backslash, /\}$ with 3 binary operations that are equal (i.e. $\left.\mathcal{W}_{3}=x \cdot y=x \backslash y=x / y\right)$. Then $\mathcal{Q} \circ \mathcal{W}_{3}$ is a variety.

Consequences

A variety \mathcal{V} is congruence 3-permutable if for every $A \in \mathcal{V}$ and every $\theta, \psi \in \operatorname{Con}(A)$, one has $\theta \circ \psi \circ \theta=\psi \circ \theta \circ \psi$.

Theorem
Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If $\mathcal{V} \vee \mathcal{W}$ is congruence 3-permutable, then $\mathcal{V} \circ \mathcal{W}$ is a variety.
Proof: There exist terms $p(x, y, z)$ and $q(x, y, z)$ such that

$$
\mathcal{V} \vee \mathcal{W} \models x=p(x, y, y), p(x, x, y)=q(x, y, y), q(x, x, y)=y
$$

It follows that \mathcal{V} and \mathcal{W} also satisfy these identities, so conditions (a) and (b) are satisfied with $t(x)=x$.

Consequences

A variety \mathcal{V} is polarized if it has a term idempotent $t(x)$ such that $\mathcal{V} \models t(x)=t(y)$. The term $t(x)$ is called a polar term of \mathcal{V}.
E.g. varieties of groups are polarized with a polar term $x x^{-1}$.

Theorem
If \mathcal{V} is a variety and \mathcal{W} is a polarized term idempotent variety, then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.
Proof: Let $t(x)$ be a polar term of \mathcal{W}. Define terms

$$
p(x, y, z)=x, \quad q(x, y, z)=z
$$

Substituting these terms to conditions (a) and (b) we obtain identities that are true:
(a) $\mathcal{V} \models x=x, y=y$,
(b) $\mathcal{W} \models t(x)=t(y)$.

Ex. The variety \mathcal{C} of constant algebras is polarized and term idempotent, so for any variety \mathcal{V}, the Maltsev product $\mathcal{V} \circ \mathcal{C}$ is a variety.

Consequences

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If there exist terms $p(x, y)$ i $q(x, y)$ such that
(a) $\mathcal{V} \models p(x, y)=x, q(x, y)=y$,
(b) $\mathcal{W} \models p(x, y)=q(x, y)$,
then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.
Example A group G is Boolean if every element of G is its own inverse, or equivalently if $G \models x^{2}=e$. Let $\mathcal{B g}$ be the subvariety of the variety $\mathcal{S g}$ of semigroups defined relative to $\mathcal{S g}$ by the identities $x y^{2}=x=y^{2} x$. Then $\mathcal{B g}$ is equivalent to the variety of Boolean groups. Let $\mathcal{R} s$ be the variety of semigroups that satisfy the identity $x y z=x z$. It is a term idempotent variety. The Maltsev product $\mathcal{B g} \circ \mathcal{R} s$ is a variety, because the conditions (a) and (b) are satisfied for terms

$$
p(x, y)=x y^{2}, \quad q(x, y)=x^{2} y
$$

Consequences

Varieties \mathcal{V} and \mathcal{W} are independent if there exists a term $p(x, y)$ such that $\mathcal{V} \models p=x$ and $\mathcal{W} \models p=y$. The term p is called the decomposition term for \mathcal{V} and \mathcal{W}.

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If \mathcal{V} and \mathcal{W} are independent, then $\mathcal{V} \circ \mathcal{W}$ is a variety.
Proof: Let $p(x, y)$ be a decomposition term for \mathcal{V} and \mathcal{W}, and let $q(x, y)$ be the variable y. Substituting these terms to conditions (a) and (b) we obtain identities that are true:
(a) $\mathcal{V} \models p(x, y)=x, y=y$,
(b) $\mathcal{W} \models p(x, y)=y$.

Example The varieties $\mathcal{L} z$ of left-zero semigroups $(x y=x)$ and $\mathcal{R} z$ of right-zero semigroups $(x y=y)$ are independent, so $\mathcal{L} z \circ \mathcal{R} z$ is a variety.

Types of identities

An identity is

1. regular if it has the same variables on both sides, e.g. $x y=y x$,
2. irregular if the variables on its two sides differ, e.g. $x y=x x$,
3. strongly irregular if it is of the form $t(x, y)=x$, where the term t contains both the variables x and y, e.g. $x y=x$.

A variety is

1. regular if it only satisfies regular identities, e.g. the variety of semilattices,
2. irregular if it satisfies some irregular identity, e.g. the variety of constant semigroups,
3. strongly irregular if it satisfies some strongly irregular identity, e.g. the variety of groups $\left(x y y^{-1}=x\right)$ or the variety of lattices $(x \vee(x \wedge y)=x)$.

Ω-semilattices

For a given type Ω, let \mathcal{S} denote the variety defined by all the regular identities of the type Ω. If Ω has no symbols of constants and it has at least one symbol of at least binary basic operation, then \mathcal{S} is the unique variety of the type Ω which is equivalent to the variety of semilattices. The algebras in \mathcal{S} are called Ω-semilattices.

For a given variety \mathcal{V}, algebras in the Maltsev product $\mathcal{V} \circ \mathcal{S}$ are called semilattice sums of algebras in \mathcal{V}.

Consequences

Theorem
If \mathcal{V} is a strongly irregular variety, then the class $\mathcal{V} \circ \mathcal{S}$ of semilattice sums of algebras in \mathcal{V} is a variety.
Proof: Let $t(x, y)=x$ be a strongly irregular identity satisfied in \mathcal{V}. Define terms

$$
p(x, y)=t(x, y), \quad q(x, y)=t(y, x)
$$

Substituting these terms to conditions (a) and (b) we obtain identities that are true:
(a) $\mathcal{V} \models t(x, y)=x, t(y, x)=y$,
(b) $\mathcal{S} \models t(x, y)=t(y, x)$.

Example Let \mathcal{L} be a variety of lattices. Then $\mathcal{L} \circ \mathcal{S}$ is a variety.
C. Bergman, T. Penza, A.B. Romanowska, Semilattice sums of algebras and Mal'tsev products of varieties, Algebra Universalis 81, Article no. 33, 2020.

囯 T. Penza, A.B. Romanowska, Mal'tsev products of varieties, I, Algebra Universalis 82, Article no. 33, 2021.

䍰 T. Penza, A.B. Romanowska, Mal'tsev products of varieties, II, Algebra Universalis 83, Article no. 21, 2022.

