Sufficient conditions for a Maltsev product of two varieties to be a variety

Tomasz Penza

10 October 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Maltsev product

For varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{U}$, the *Maltsev product* of varieties \mathcal{V} and \mathcal{W} *relative to* \mathcal{U} is the class

$$\mathcal{V} \circ_{\mathcal{U}} \mathcal{W} = \{ A \in \mathcal{U} : \exists \theta \in \mathsf{Con}(A) \\ A/\theta \in \mathcal{W}, \quad \forall a \in A \ (a/\theta \leqslant A \Rightarrow a/\theta \in \mathcal{V}) \}.$$

The Maltsev product of varieties \mathcal{V} and \mathcal{W} of a type Ω relative to the variety of all algebras of the type Ω will be called the (*absolute*) Maltsev product of \mathcal{V} and \mathcal{W} and will be denoted by $\mathcal{V} \circ \mathcal{W}$.

The class $\mathcal{V} \circ \mathcal{W}$ is closed under subalgebras, arbitrary products, and isomorphic images, but it is not in general closed under homomorphic images, and thus not a variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open question: When is $\mathcal{V} \circ \mathcal{W}$ a variety?

Term idempotents

Recall that an element *a* of an algebra *A* is an *idempotent element* (or an *idempotent*) of *A* if for every basic operation *f*, one has f(a, ..., a) = a, or equivalently if $\{a\}$ is a subalgebra of *A*.

A term $t(x_1, ..., x_n)$ is a *term idempotent* of a variety \mathcal{V} if for every $A \in \mathcal{V}$, the values of the corresponding term operation of A are idempotents of A.

Equivalently, $t(x_1, \ldots, x_n)$ is a term idempotent of \mathcal{V} if it is an idempotent of the free algebra of \mathcal{V} on generators x_1, \ldots, x_n .

Examples:

- The term xx^{-1} in varieties of groups or inverse semigroups.
- ▶ In an idempotent variety, every term is a term idempotent.

A variety ${\mathcal V}$ has a term idempotent iff every algebra in ${\mathcal V}$ has an idempotent.

The role of term idempotents

Let \mathcal{V} be a variety. For every algebra A of the same type as \mathcal{V} , the set of congruences θ of A such that $A/\theta \in \mathcal{V}$ has the least element $\varrho^{\mathcal{V}}$. We call $A/\varrho^{\mathcal{V}}$ the \mathcal{V} -replica of A and we call $\varrho^{\mathcal{V}}$ the \mathcal{V} -replica congruence of A.

In order to find out whether an algebra A belongs to a Maltsev product $\mathcal{V} \circ \mathcal{W}$, we only need to check its \mathcal{W} -replica congruence: $\mathcal{V} \circ \mathcal{W} = \{A: \forall a \in A \ (a/\varrho^{\mathcal{W}} \leq A \Rightarrow a/\varrho^{\mathcal{W}} \in \mathcal{V})\}.$

If t(x) is a term idempotent of \mathcal{W} , then for any algebra A, the congruence class $a/\varrho^{\mathcal{W}}$ is a subalgebra iff it contains t(a) for some $a \in A$.

Equational base

If $\mathcal{W} \models p = q$, then we will say that the terms p and q are \mathcal{W} -equivalent or equivalent in \mathcal{W} .

For varieties $\mathcal V$ and $\mathcal W,$ if $\Sigma_{\mathcal V}$ is an equational base for $\mathcal V,$ then the variety generated by the Maltsev product $\mathcal V\circ\mathcal W$ is defined by the following set of identities

$$\{ u(p_1, \dots, p_n) = v(p_1, \dots, p_n) \mid \\ (u(x_1, \dots, x_n) = v(x_1, \dots, x_n)) \in \Sigma_{\mathcal{V}}, \\ p_1, \dots, p_n \text{ are pairwise } \mathcal{W}\text{-equivalent} \\ \text{term idempotents of } \mathcal{W} \},$$

Example The variety $\mathcal{L}z$ of left-zero semigroups is defined by the identity xy = x. The variety \mathcal{S} of semilattices satisfies precisely all the identities p = q such that var(p) = var(q). Hence the variety $\mathcal{L}z \circ \mathcal{S}$ is defined by the identities $\{pq = p \mid var(p) = var(q)\}$.

Term idempotent varieties

A variety V is *term idempotent* if for every nontrivial identity p = q true in V, both terms p and q are term idempotents of V. Examples:

- idempotent varieties,
- the variety of semigroups satisfying the identity xyz = xz,
- the variety of semigroups satisfying the identity xyzxyz = xyz (this is the largest term idempotent variety contained in the variety of semigroups),
- the variety of constant semigroups (defined by the identity xy = zt),
- the variety of constant algebras of a given type, i.e. the algebras in which all basic operations have a common constant value.

Term idempotent varieties of a type Ω form a complete sublattice of the lattice of all varieties of the type Ω .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Characterization of term idempotent varieties

A variety \mathcal{W} is term idempotent iff for every algebra A of the same type as \mathcal{W} , all congruence classes $a/\varrho^{\mathcal{W}}$ that are not subalgebras are singletons.

Sufficient condition

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If there exist terms p(x, y, z), q(x, y, z), and t(x) such that (a) $\mathcal{V} \models p(x, y, y) = x$, q(x, x, y) = y, (b) $\mathcal{W} \models p(t(x), t(x), t(y)) = q(t(x), t(y), t(y))$, then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.

Remark If \mathcal{W} is a term idempotent variety, then for every $A \in \mathcal{W}$, the set I(A) of all idempotent elements of A is a subalgebra of A. The condition (b) is equivalent to the following condition:

(b') For every $A \in \mathcal{W}$, $I(A) \models p(x, x, y) = q(x, y, y)$.

Let \mathcal{V} be a congruence permutable variety and \mathcal{W} be a term idempotent variety. Let m(x, y, z) be a Maltsev term for \mathcal{V} . Define terms

$$p(x, y, z) = m(x, y, z),$$

 $q(x, y, z) = m(x, x, z),$
 $t(x) = x.$

Substituting these terms to conditions (a) and (b) we obtain identities that are true:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(a)
$$\mathcal{V} \models m(x, y, y) = x$$
, $m(x, x, y) = y$,
(b) $\mathcal{W} \models m(x, x, y) = m(x, x, y)$.

Theorem

If \mathcal{V} is a congruence permutable variety and \mathcal{W} is a term idempotent variety, then $\mathcal{V} \circ \mathcal{W}$ is a variety.

Example The variety Q of quasigroups (of the type $\{\cdot, \setminus, /\}$) is congruence permutable. Let W be a term idempotent variety of magmas (of the type $\{\cdot\}$). We can take an equivalent variety W_3 of the type $\{\cdot, \setminus, /\}$ with 3 binary operations that are equal (i.e. $W_3 \models x \cdot y = x \setminus y = x/y$). Then $Q \circ W_3$ is a variety.

A variety \mathcal{V} is congruence 3-permutable if for every $A \in \mathcal{V}$ and every $\theta, \psi \in \text{Con}(A)$, one has $\theta \circ \psi \circ \theta = \psi \circ \theta \circ \psi$.

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If $\mathcal{V} \lor \mathcal{W}$ is congruence 3-permutable, then $\mathcal{V} \circ \mathcal{W}$ is a variety. **Proof:** There exist terms p(x, y, z) and q(x, y, z) such that

$$\mathcal{V} \lor \mathcal{W} \models x = p(x, y, y), \ p(x, x, y) = q(x, y, y), \ q(x, x, y) = y.$$

It follows that \mathcal{V} and \mathcal{W} also satisfy these identities, so conditions (a) and (b) are satisfied with t(x) = x.

A variety \mathcal{V} is *polarized* if it has a term idempotent t(x) such that $\mathcal{V} \models t(x) = t(y)$. The term t(x) is called a *polar term* of \mathcal{V} . E.g. varieties of groups are polarized with a polar term xx^{-1} .

Theorem

If \mathcal{V} is a variety and \mathcal{W} is a polarized term idempotent variety, then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.

Proof: Let t(x) be a polar term of \mathcal{W} . Define terms

$$p(x, y, z) = x$$
, $q(x, y, z) = z$.

Substituting these terms to conditions (a) and (b) we obtain identities that are true:

(a)
$$\mathcal{V} \models x = x, y = y$$
,
(b) $\mathcal{W} \models t(x) = t(y)$.

Ex. The variety C of constant algebras is polarized and term idempotent, so for any variety V, the Maltsev product $V \circ C$ is a variety.

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If there exist terms p(x, y) i q(x, y) such that

(a)
$$\mathcal{V} \models p(x, y) = x$$
, $q(x, y) = y$,

(b)
$$\mathcal{W} \models p(x, y) = q(x, y)$$
,

then the Maltsev product $\mathcal{V} \circ \mathcal{W}$ is a variety.

Example A group G is *Boolean* if every element of G is its own inverse, or equivalently if $G \models x^2 = e$. Let $\mathcal{B}g$ be the subvariety of the variety $\mathcal{S}g$ of semigroups defined relative to $\mathcal{S}g$ by the identities $xy^2 = x = y^2x$. Then $\mathcal{B}g$ is equivalent to the variety of Boolean groups. Let $\mathcal{R}s$ be the variety of semigroups that satisfy the identity xyz = xz. It is a term idempotent variety. The Maltsev product $\mathcal{B}g \circ \mathcal{R}s$ is a variety, because the conditions (a) and (b) are satisfied for terms

$$p(x, y) = xy^2, \quad q(x, y) = x^2y.$$

・ロト・4回・4回・4回・ 回 うへで

Varieties \mathcal{V} and \mathcal{W} are *independent* if there exists a term p(x, y) such that $\mathcal{V} \models p = x$ and $\mathcal{W} \models p = y$. The term p is called the *decomposition term* for \mathcal{V} and \mathcal{W} .

Theorem

Let \mathcal{V} and \mathcal{W} be varieties and let \mathcal{W} be term idempotent. If \mathcal{V} and \mathcal{W} are independent, then $\mathcal{V} \circ \mathcal{W}$ is a variety.

Proof: Let p(x, y) be a decomposition term for \mathcal{V} and \mathcal{W} , and let q(x, y) be the variable y. Substituting these terms to conditions (a) and (b) we obtain identities that are true:

(a)
$$\mathcal{V} \models p(x, y) = x, y = y,$$

(b) $\mathcal{W} \models p(x, y) = y.$

Example The varieties $\mathcal{L}z$ of left-zero semigroups (xy = x) and $\mathcal{R}z$ of right-zero semigroups (xy = y) are independent, so $\mathcal{L}z \circ \mathcal{R}z$ is a variety.

Types of identities

An identity is

- 1. *regular* if it has the same variables on both sides, e.g. xy = yx,
- 2. *irregular* if the variables on its two sides differ, e.g. xy = xx,
- 3. strongly irregular if it is of the form t(x, y) = x, where the term t contains both the variables x and y, e.g. xy = x.
- A variety is
 - 1. *regular* if it only satisfies regular identities, e.g. the variety of semilattices,
 - 2. *irregular* if it satisfies some irregular identity, e.g. the variety of constant semigroups,
 - strongly irregular if it satisfies some strongly irregular identity,
 e.g. the variety of groups (xyy⁻¹ = x) or the variety of lattices (x ∨ (x ∧ y) = x).

Ω -semilattices

For a given type Ω , let S denote the variety defined by all the regular identities of the type Ω . If Ω has no symbols of constants and it has at least one symbol of at least binary basic operation, then S is the unique variety of the type Ω which is equivalent to the variety of semilattices. The algebras in S are called Ω -semilattices.

For a given variety \mathcal{V} , algebras in the Maltsev product $\mathcal{V} \circ \mathcal{S}$ are called *semilattice sums* of algebras in \mathcal{V} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If \mathcal{V} is a strongly irregular variety, then the class $\mathcal{V} \circ \mathcal{S}$ of semilattice sums of algebras in \mathcal{V} is a variety.

Proof: Let t(x, y) = x be a strongly irregular identity satisfied in \mathcal{V} . Define terms

$$p(x,y) = t(x,y), \quad q(x,y) = t(y,x).$$

Substituting these terms to conditions (a) and (b) we obtain identities that are true:

(a)
$$\mathcal{V} \models t(x, y) = x$$
, $t(y, x) = y$,
(b) $\mathcal{S} \models t(x, y) = t(y, x)$.

Example Let \mathcal{L} be a variety of lattices. Then $\mathcal{L} \circ \mathcal{S}$ is a variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- C. Bergman, T. Penza, A.B. Romanowska, Semilattice sums of algebras and Mal'tsev products of varieties, Algebra Universalis 81, Article no. 33, 2020.
- T. Penza, A.B. Romanowska, *Mal'tsev products of varieties, I*, Algebra Universalis **82**, Article no. 33, 2021.
- T. Penza, A.B. Romanowska, *Mal'tsev products of varieties, II,* Algebra Universalis **83**, Article no. 21, 2022.