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Basic examples

• A set S ⊆ K n of tuples over a field K is the solution set of a system
of homogeneous linear equations if and only if S is a subspace, i.e.,
S is closed under linear combinations.

• A set S ⊆ K n of tuples over a field K is the solution set of a system
of arbitrary linear equations if and only if S is an affine subspace,
i.e., S is closed under affine combinations.

Questions

1. Can you always characterize solution sets of systems of equations as
sets of tuples that are closed under something?

Answer: Sometimes.

2. What should be this something?

Answer: It must be the centralizer.



Setup

• A is a finite set.

• OA is the set of all operations on A.

• A = (A,F ) is an algebra (F ⊆ OA).

• C = CloA = CloF is the clone of term operations of A.

_ A clone is a set of operations that is closed under compositions and
contains the projections.

• An equation over A (or over C ) is a pair (f , g), where f , g ∈ O(n)
A ;

the solution set of this equation is

Sol(f , g) =
{
a ∈ An : f (a) = g(a)

}
.

• A subset S ⊆ An is an algebraic set if it is the solution set of a
system of equations, i.e., if S is the intersection of (finitely many)
sets of the form Sol(f , g).

• The collection of all algebraic sets over A is called the algebraic
geometry of A. (Plotkin, ∼1995 and Pinus, ∼2009)



Relations

• RA denotes the set of all relations on A.

• For R ⊆ RA, a primitive positive formula Φ(x1, . . . , xn) over R is an
existentially quantified conjunction:

Φ(x1, . . . , xn) = ∃y1 · · · ∃ym
t̄
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where ρi ∈ R and z
(i)
j ∈ {x1, . . . , xn, y1, . . . , ym}.

• The set of all relations definable by primitive positive formulas over
R is denoted by 〈R〉∃. If 〈R〉∃ = R, then we say that R is a
relational clone.

• The set of all relations definable by quantifier-free primitive positive
formulas over R is denoted by 〈R〉@. If 〈R〉@ = R, then we say that
R is a weak relational clone.

• An operation f ∈ O(n)
A preserves a relation ρ ⊆ Ah if ρ is a

subalgebra of (A, f )h. Notation: f B ρ.



Galois connection between operations and relations

PolR =
{
f ∈ OA : f B ρ for all ρ ∈ R

}
Inv F =

{
ρ ∈ OA : f B ρ for all f ∈ F

}
Theorem (Bodnarčuk, Kalužnin, Kotov, Romov, 1969 and
Geiger, 1968)

For all R ⊆ RA and F ⊆ OA, we have

Inv PolR = 〈R〉∃ and Pol Inv F = CloF .

The graph of an operation

The graph of f ∈ O(n)
A is the following (n + 1)-ary relation:

f • =
{

(a1, . . . , an+1) : f (a1, . . . , an) = an+1

}
⊆ An+1.

For F ⊆ OA, let F • = {f • : f ∈ F}.



Commutation

The operations f ∈ O(n)
A and g ∈ O(m)

A commute (notation: f ⊥ g)
if the following equivalent conditions hold:

• f B g•;

• g B f •;

• f : (A, g)n → (A, g) is a homomorphism;

• g : (A, f )m → (A, f ) is a homomorphism.

Centralizer

The centralizer of F ⊆ OA is the clone (called a primitive positive clone)

F ∗ =
{
g ∈ OA : f ⊥ g for all f ∈ F

}
= PolF •.

Theorem (Burris, Willard, 1987)

If A is finite, then there are finitely many primitive positive clones on A.



An analogue of F •

For F ⊆ OA, let F ◦ =
{

Sol(f , g) : n ∈ N and f , g ∈ F (n)
}
.

Simple observations

For any finite algebra A = (A,F ) with CloF = C , we have

1. C• ⊆ C◦

2. 〈C•〉∃ = 〈C◦〉∃

3. S ⊆ An is an algebraic set if and only if S ∈ 〈C◦〉@

4. InvC∗ = 〈C•〉∃

Corollary

• Algebraic sets are closed under the centralizer C∗.

• The converse holds iff 〈C◦〉∃ = 〈C◦〉@, i.e., if 〈C◦〉@ is a relational
clone.



Simple observations

1. C• ⊆ C◦

2. 〈C•〉∃ = 〈C◦〉∃
3. S ⊆ An is an algebraic set if and only if S ∈ 〈C◦〉@
4. InvC∗ = 〈C•〉∃

Only the centralizer

If there is a clone D such that the algebraic sets are exactly the D-closed
sets, then D = C∗.

Name that kid

If the above holds, i.e., if solution sets of systems of equations over A are
exactly the centralizer-closed sets, then we say that the algebra A (or the
clone C ) has property (SDC).



Theorem (Post, 1920)

There are countably infinitely many clones of Boolean functions:



Theorem

Every two-element algebra has property (SDC).

Corollary

There are 25 algebraic geometries on the two-element set.



Partial operations

• An n-ary partial operation on A is a map h : dom h→ A
with dom h ⊆ An.

• The set of all partial operations on A is denoted by PA.

• Preservation of relations can be defined for partial operations,
and this induces the pPol− Inv Galois connection:

pPolR =
{
h ∈ PA : h B ρ for all ρ ∈ R

}
Inv F =

{
ρ ∈ OA : h B ρ for all h ∈ F

}
• A set C ⊆ PA of partial operations is a strong partial clone if

_ C is closed under composition;
_ C contains the projections;
_ C is closed under restrictions.

Theorem (Romov, 1981)

For all R ⊆ RA and F ⊆ PA, we have

Inv pPolR = 〈R〉@ and pPol Inv F = Str F .



Homogeneity

• A first-order structure A is said to be homomorphism-homogeneous,
if every homomorphism h : B → A defined on a finitely generated
substructure B ≤ A extends to a homomorphism ĥ : A → A
(Cameron, Nešeťril, 2006).

• A first-order structure A is said to be polymorphism-homogeneous,
if every homomorphism h : B → A defined on a finitely generated
substructure B ≤ Ak extends to a homomorphism ĥ : Ak → A
(Pech, Pech, 2015).

Theorem (Pech, Pech, 2015)

A finite relational structure has quantifier elimination for primitive
positive formulas if and only if it is polymorphism-homogeneous.

Corollary

If A is a finite algebra and C = CloA, then A has property (SDC) if and
only if the relational structure (A,C◦) is polymorphism-homogeneous.



Injectivity

We say that an algebra A is injective in a class of algebras K, if every
homomorphism h : B→ A extends to a homomorphism ĥ : C→ A
whenever B,C ∈ K and B ≤ C.

Theorem

A finite algebra A is polymorphism-homogeneous if and only if A is
injective in SPfin(A).



Finite abelian groups

• The following are equivalent:

_ A has property (SDC);

_ A is pol-hom;

_ (A,C◦) is pol-hom;

_ (A,C•) is pol-hom;

_ A is injective in SPfin A;

_ A is injective in HSPA;

_ the Sylow subgroups of A are homocyclic.



Finite semilattices

• The following are equivalent:
_ A has property (SDC);

_ A is pol-hom;

_ (A,C◦) is pol-hom;

_ A is injective in SPfin A;

_ A is injective in HSPA (Bruns, Lakser 1970 and Horn, Kimura 1971);

_ A is distributive.

• The following are also equivalent:
_ (A,C•) is pol-hom;

_ |A| = 1.



Finite lattices

• The following are equivalent:
_ A has property (SDC);

_ A is pol-hom (Dolinka, Mašulović, 2011);

_ (A,C◦) is pol-hom;

_ A is injective in SPfin A;

_ A is injective in HSPA (Balbes 1967);

_ A is a finite Boolean lattice.

• The following are also equivalent:
_ (A,C•) is pol-hom;

_ |A| = 1.



Finite monounary algebras A = (A, f )

• The following are equivalent:
_ A has property (SDC);
_ A is pol-hom (Farkasová, Jakub́ıková-Studenovská, 2015);
_ (A,C◦) is pol-hom;
_ A is injective in SPfin A;
_ all sources of A have the same height (or there are no sources).

• The following are also equivalent:
_ (A,C•) is pol-hom;
_ f is either bijective or constant.

• And the following are also equivalent:
_ A is injective in HSPA;
_ all sources of A have the same height and f has a fixed point

(Czédli, Jakub́ıková-Studenovská, < 2000).
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To do

• Characterize property (SDC) in your favorite class of algebras.

• Prove that all primitive positive clones have property (SDC).

• Determine the number of algebraic geometries on a finite set.

• Prove something about property (SDC) for clones on the
three-element set.


