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History

Definition
Let C ⊆

⋃
n∈NB

An
. We call C a clonoid with source A and target algebra B if

(1) for all k ∈ N: C [k] = C ∩BAk
is a subuniverse of BAk

, and

(2) for all k, n ∈ N, for all (i1, . . . , ik) ∈ {1, . . . , n}k, and for all c ∈ C [k], the function
c′ : An → B with c′(a1, . . . , an) := c(ai1 , . . . , aik) lies in C [n].

E. Aichinger and P. Mayr. Finitely generated equational classes. J. Pure Appl.
Algebra, 2016.

J. Bulín, A. Krokhin, and J. Opršal. Algebraic approach to promise constraint
satisfaction. Proceedings of the Annual ACM Symposium on Theory of
Computing, 2019.

Clonoid theory has been used to give an algebraic approach to PCSPs
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History

Definition
Let A be a nonempty set. A closed set of operations (clone) on A is a set of op-
erations on A such that contains all projections and is closed under composition
of functions.

Let A be a nonempty set. Clearly the set of all operations on A is a clone.

Definition
Let A be an algebra. We call the smallest clone that contains the fundamen-
tal operations of A term clone or clone of A. We call the smallest clone that
contains the fundamental operations of A and the constant unary functions poly-
nomial clone of A.
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History

E. L. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematics Studies, 1941. (Description of the lattice of all clones on a
two-element set).

E. Aichinger, P. Mayr, and R. McKenzie. On the number of finite algebraic
structures Journal of the European Mathematical Society., 2014. (At most
countably many Mal’cev clones on a finite set A).

A. Krokhin, A. A. Bulatov, and P. Jeavons. The complexity of constraint
satisfaction: an algebraic approach. Structural theory of automata, semigroups,
and universal algebra, 2005. (Link between clones and CSPs).
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(F,K)-linearly closed clonoids
Main achievements:
We show that these clonoids are finitely many;
We provide a characterization of the lattice of these clonoids;
We provide an upper bound for the number of these clonoids.
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(F,K)-linearly closed clonoids

Definition

Let m, s ∈ N, let q1, . . . , qm, p1, . . . ps be powers of different primes, and let K =∏m
i=1 Fqi , F =

∏s
i=1 Fpi be products of fields of orders q1, . . . , qm, p1, . . . ps. An

(F,K)-linearly closed clonoid is a non-empty subset C of
⋃

k∈N
∏s

i=1 F
∏m

j=1 Fk
qj

pi

with the following properties:

(1) for all n ∈ N, a , b ∈
∏s

i=1 Fpi , and f, g ∈ C [n]:

af + bg ∈ C [n];

(2) for all l, n ∈ N, f ∈ C [n], (x1, . . . , xm) ∈
∏m

j=1 Fl
qj , and Ai ∈ Fn×l

qi :

g : (x1, . . . , xm) 7→ f(A1 · x t
1, · · · , Am · x t

m) is in C [l],

where with the juxtaposition af we denote the Hadamard product of the
two vectors (i.e. the component-wise product (a1, . . . , an) · (b1, . . . , bn) =

(a1b1, . . . , anbn)). 4/33



Theorem SF

Let q1, . . . , qm, p1, . . . ps be powers of different primes, and let K =
∏m

i=1 Fqi , F =∏s
i=1 Fpi be products of fields of orders q1, . . . , qm, p1, . . . ps. Then every (F,K)-

linearly closed clonoid is generated by a set of unary functions.

Theorem SF

Let F =
∏s

i=1 Fpi and K =
∏m

i=1 Fqi be products of finite fields of pair-wise co-
prime order. Then there are finitely many distinct (F,K)-linearly closed clonoids.
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A characterization

Definition
Let 〈M,+〉 be a monoid and let 〈R,+,�〉 be a commutative ring with identity. Let

S := {f ∈ RM | f(a) 6= 0 for only finitely many a ∈M}.

We define the monoid ring ofM overR as the ring (S,+, ·), where + is the point-
wise addition of functions and (σ · ρ)(a) :=

∑
b∈M σ(b)� ρ(a− b). We denote by

R[M ] the monoid ring of M over R.

Definition

For a set I and R ⊆ AI , S ⊆ BI let Pol(R,S) := {f : Ak → B : k ∈
N, f(R, . . . , R) ⊆ S} denote the set of finitary functions preserving (R,S). We
call Pol(R,S) the set of polymorphisms of the relational pair (R,S).
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A characterization

Lemma

Let p, q1, . . . , qm be powers of distinct primes. Let U be the (
∏m

i=1 Fqi , ·)-
submodule of

∏m
i=1 F

∏m
i=1 Fqi

qi that is generated by the identity map on
∏m

i=1 Fqi ,

and let V be an (Fp[
∏m

i=1 F×qi ], ∗)-submodule of F
∏m

i=1 Fqi
p . Then Pol(U, V ) is an

(Fp,
∏m

i=1 Fqi)-linearly closed clonoid with unary part V .

Lemma
Let p, q1, . . . , qm be powers of distinct primes. Then every (Fp,

∏m
i=1 Fqi)-linearly

closed clonoid is finitely related.
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A characterization

Definition

Let Fp and Fq1 , . . .Fqm be finite fields and let F×qi = (Fqi , ·) be the multiplicative
monoid reduct of Fqi , for all i ∈ [m]. We define the action ∗ : Fp[

∏m
i=1 F×qi ] ×

F
∏m

i=1 Fqi
p → F

∏m
i=1 Fqi

p for all a ∈
∏m

i=1 F×qi and f ∈ F
∏m

i=1 Fqi
p by

(τa ∗ f)(x ) = f(a1x1, . . . , anxn).

So for σ ∈ Fp[
∏m

i=1 F×qi ] with ρ =
∑

a∈
∏m

i=1 F
×
qi
zaτa , then

(σ ∗ f)(x ) =
∑

a∈
∏m

i=1 F
×
qi
zaf(a1x1, . . . , anxn).
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Corollary

Let p, q1, . . . , qm be powers of distinct primes. Then the function π[1] that sends
an (Fp,

∏m
i=1 Fqi)-linearly closed clonoid to its unary part is an isomorphism be-

tween the lattice of all (Fp,
∏m

i=1 Fqi)-linearly closed clonoids and the lattice of all

(Fp[
∏m

i=1 F×qi ], ∗)-submodules of F
∏m

i=1 Fqi
p .

Theorem

Let F =
∏s

i=1 Fpi and K =
∏m

i=1 Fqi be two products of finite fields of pair-wise
coprime order. Then the lattice of all (F,K)-linearly closed clonoids is isomorphic
to the direct product of the lattices of all (Fpi ,K)-linearly closed clonoids with
1 ≤ i ≤ s.
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Upper bound for the cardinality of the lattice of all
(F,K)-linearly closed clonoids

Theorem ’19 SF

Let p1, . . . , ps, q1, . . . , qm be powers of distinct primes and let F =
∏s

i=1 Fpi and
K =

∏m
j=1 Fqj . Then the cardinality k of the lattice of all (F,K)-linearly closed

clonoids L(F,K) is bounded by:

k ≤
s∏

i=1

∑
1≤r≤n

(
n

r

)
pi

, (1)

where n =
∏m

j=1 qi and (
n

k

)
q

=

k∏
i=1

qn−k+i − 1

qi − 1
. (2)

10/33



Lattice of the (Fp,Fq)-linearly closed clonoids

Theorem ’18 SF

Let p and q be powers of different primes. Then every (Fp,Fq)-linearly closed
clonoid is generated by one unary function.

Theorem ’18 SF

Let p and q be powers of different primes. Let
∏n

i=1 p
ki
i be the factorization of the

polynomial g = xq−1 − 1 in Fp[x] into its irreducible divisors. Then the number
of distinct (Fp,Fq)-linearly closed clonoids is 2

∏n
i=1(ki + 1) and the lattice of all

(Fp,Fq)-linearly closed clonoids, L(p, q), is isomorphic to

2×
∏n

i=1Cki+1.
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Clones containing Clo(Zpq,+)

Main achievements:
We show that these clones are finitely many;
We provide an upper bound and a lower bound for the number of these clones;
We give sets of generators with a fixed bounded arity of the functions.
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Known results

[1] E. Aichinger, P. Mayr, Polynomial clones on groups of order pq, in Acta
Mathematica Hungarica, 2007.
(All 17 clones containing 〈Zp × Zq,+, (1, 1)〉);

[2] S. Kreinecker, Closed function sets on groups of prime order, in Journal of
Multiple-Valued Logic and Soft Computing, 2019.
(All finitely many clones containing 〈Zp,+〉).

[3] P. Mayr, Polynomial clones on squarefree groups, in Internat. J. Algebra
Comput, 2008.
(Proof that there are finitely many pol. expansions of a squarefree group).
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Notation

We denote by L(Zs,+) the lattice of all clones containing the clone of (Zs,+)

We use boldface letters for vectors, e. g., u = (u1, . . . , un) for some n ∈ N

We write [n] = {1, . . . , n} and [n]0 = [n] ∪ {0}

We consider
∏m

i=1 Zpi instead of Zp1···pm , since they are isomorphic

We write xm for
∏

i∈I x
mi
i

We write 0k for the 0-vector of length k.

14/33



A general expression

Lemma

Let p and q be prime numbers. Then for every function f from Zn
p × Zn

q to
Zp × Zq there exist two sequences of functions {fm}m∈[p−1]n0 from Zn

q to Zp and
{gh}h∈[q−1]n0 from Zn

p to Zq such that f satisfies for all x ∈ Zn
p , y ∈ Zn

q :

f(x ,y) = (
∑

m∈[p−1]n0

fm (y)xm ,
∑

h∈[q−1]n0

gh (x )yh ). (3)
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Induced functions

Let A be a set with a fixed element 0 and let R be a ring. For every polynomial
f ∈ RAn

[x1, . . . , xk] of the form f =
∑

m∈[u−1]k0
rmxm we define its s-ary induced

function f [s] : Rs ×As → R×A by:

(x ,y) 7→ (
∑

m∈[u−1]k0

rm (z )
k∏

i=1

xmi
i , 0),

with s ≥ k, n and z = (y1, . . . , yn). We can observe that we induce also the
functions {rm}m∈[u−1]k0 coefficients of monomials in f and for this reason we
require s ≥ n. From now on, when not specified, s = max(k, n)
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Properties of induced functions

Lemma

Let d ∈ N\{1}. Then for all k, l ∈ N, for all g ∈ Z
∏m

i=1 Zl
qi

p , and for all m ∈
[p− 1]k0\{0k} with

∑
i∈I mi = u congruent to d modulo p− 1 it follows that:

rxm ∈ Clg({rx1 · · ·xd}).

17/33



Properties of induced functions

Lemma

Let p1, . . . , pm distinct primes and let n ∈ N, let f :
∏m

i=1 Zn
pi →

∏m
i=1 Zpi be an

n-ary function. Let h ∈ RA[X] be such that RA = Z
∏m

i=1 Zn
qi

p1 and h = g. Let
h′ = rxm be a monomial of h with

∑
i∈I mi = d. Then it follows that:

rx1 · · ·xd ∈ Clg({f}).

18/33



Properties of induced functions

We can observe that composing rx1 · · ·xd with itself we obtain that

rl+1x1 . . . xd+l(d−1) ∈ Clg(rx1 · · ·xd)

for all l ∈ N. Since rp = r yields rs(p−1)+1 = r for all s ∈ N, it follows for l = s(p− 1)

that

rx1 · · ·xd+s(p−1)(d−1) ∈ Clg(rx1 · · ·xd)

This yields

rxm ∈ Clg(rx1 · · ·xd).
19/33



An injective function

Theorem ’19 SF

Let p and q be distinct prime numbers and let CloL(Zpq,+) be the lattice
of all clones containing Clo(Zpq,+). Then there is an injective function from
CloL(Zpq,+) to the direct product of the lattice of all (Zp,Zq)-linearly closed
clonoids, L(Zp,Zq), to the p+1 power and the lattice of all (Zq,Zp)-linearly closed
clonoids, L(Zq,Zp), to the q + 1 power, i. e:

CloL(Zpq,+) ↪→ L(Zp,Zq)
p+1 × L(Zq,Zp)

q+1.
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An upper bound

Corollary ’19 SF

Let p and q be distinct prime numbers. Let
∏n

i=1 p
ki
i and

∏s
i=1 r

di
i be the factor-

izations of gp = xq−1 − 1 in Zp[x] and of gq = xp−1 − 1 in Zq[x] for irreducible pi,
qi, respectively. Then:

2(

n∏
i=1

(ki + 1) +

s∏
i=1

(di + 1))− 1 ≤ |L(Zpq,+)| ≤

≤ 2p+q+2
n∏

i=1

(ki + 1)p+1
s∏

i=1

(di + 1)q+1 ≤ 2qp+q+p.
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Other parts of the lattice

Theorem ’18 SF
Let p and q be distinct prime numbers. Then there is an injective function from
the lattice of all clones above Clo(Zpq,+) that preserve π1 and [π1, π1] = 0 to the
direct product of the lattice of all clones above Clo(Zp,+) and the square of the
lattice of all (Zq,Zp)-linearly closed clonoids.

Theorem ’18 SF

Let p and q be two distinct prime numbers. Then the lattice of all (Zp,Zq)-linearly
closed clonoids is embedded in the lattice of all clones above Clo(Zpq,+).
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Clones of products of independent algebras

Theorem ’18 SF
Let p and q be distinct prime numbers. Then there is an isomorphism between
the lattice of all clones above Clo(Zpq,+) which preserve {π1, π2} and the direct
product of the lattices of all clones above Clo(Zp,+) and of all clones above
Clo(Zq,+).
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A set of generators

Corollary ’19 SF

Let p and q be distinct prime numbers. Then the clones containing Clo(Zpq,+)

can be generated by a set of functions of arity at most max(p, q).

Theorem

Let p and q be distinct prime numbers. Then a clone C containing Clo(Zpq,+) is
generated by the sets of functions:

L :=
⋃p

i=0{rx1 · · ·xi | r : Zq → Zp, rx1 · · ·xi ∈ C}
R :=

⋃q
i=0{ry1 · · · yi | r : Zp → Zq, ry1 · · · yi ∈ C}.
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Clones containing Clo(Zs,+)

Main achievements if s is squarefree:
We show that these clones are finitely many;
We provide an upper bound and a lower bound for the number of these clones;
We give sets of generators with a fixed bounded arity of the functions;
We find a nice dichotomy for the clones of finite expansions of an abelian group.
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Clones of expansions of a finite squarefree abelian group

Lemma

Let p1, . . . , pm be distinct prime numbers. Then for every function f from∏m
i=1 Zn

pi to
∏m

i=1 Zpi there exist m sequences of functions {fhi}hi∈[pi−1]n0 from∏
j∈[m]\{i} Zn

pj to Zpi , for all i ∈ [m], such that f satisfies for all (x1, . . . , xm) ∈∏m
i=1 Zn

pi :

f(x1, . . . , xm) =

(
∑

h1∈[p1−1]n0
fh1(x2, . . . , xm)xh1

1 , . . . ,
∑

hm∈[pm−1]n0
fhm(x1, . . . , xm−1)xhm

m ).

24/33



Embedding of the (Zpi,Fi)-linearly closed clonoids

Theorem ’19 SF
Let p1, . . . , pm be prime numbers and let F1 =

∏m
i=2 Zpi . Then the lattice of all

(Zp1 ,F1)-linearly closed clonoids is embedded in the lattice of all clones above
Clo(Zp1···pm ,+).

25/33



Embedding of the (Zpi,Fi)-linearly closed clonoids

Let Fi =
∏

j∈[m]\{i} Zpj . For all i ∈ [m] and all f ∈ ZFn
i

pi we define
ei(f) :

∏m
j=1 Zn

pj →
∏m

j=1 Zpj by:

ei(f) : (x1, . . . , xm) 7→
(0Zp1

, . . . , 0Zpi−1
, f(x1, . . . , xi−1, xi+1, . . . , xm), 0Zpi+1

, . . . , 0Zpm
)

for all (x1, . . . , xm) ∈
∏m

j=1 Zn
pj .
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Embedding of the (Zp1,F1)-linearly closed clonoids

We define γi from the lattice of all (Zpi ,Fi)-linearly closed clonoids to the lattice of
all clones containing Clo(

∏
i∈[m] Zpi ,+) such that for all C ∈ L(Zpi ,Fi):

γi(C) :=
⋃
n∈N
{ei(g) + h(a1,...,am) | g ∈ C [n], (a1, . . . ,am) ∈

m∏
j=1

Zn
pj}

where

h(a1,...,am) : (x1, . . . , xm) 7→ (〈a1, x1〉, . . . , 〈am, xm〉)
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Another embedding

Theorem ’19 SF
Let s = p1 · · · pm be a product of distinct primes and let Fi =

∏
j∈[m]\{i} Zpj

for all 1 ≤ i ≤ n. Then there is an injective function from the lattice of all clones
containing Clo(Zs,+), L(Zs,+), to the direct product of the lattices of all (Zpi ,Fi)-
linearly closed clonoids, L(Zpi ,Fi), to the pi + 1 power, i. e:

L(Zs,+) ↪→
n∏

i=1

L(Zpi ,Fi)
pi+1.
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Another embedding

Let s = p1 · · · pm be a product of distinct prime numbers. Then for all i ∈ [m] and
j ∈ [pi]0 we define ρ(i,j) : L(Zs,+)→ L(Zpi ,Fi) by:

ρ(i,j)(C) :=
⋃
n∈N
{f : Fn

i → Zpi | fx1 · · ·xj ∈ C}

for all C ∈ L(Zs,+)

Let ρ : L(Zs,+)→
∏m

i=1 L(Zpi ,Fi)
pi+1 be defined by ρ(C) = (ρ(1,0)(C), . . . ,

ρ(1,p1)(C), . . . , ρ(m,0)(C), . . . , ρ(m,pm)(C)).
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Bounds for the cardinality

Corollary ’19 SF
Let s = p1 · · · pm be a product of distinct primes and let Fi =

∏
j∈[n]\{i} Zpj . Then

the number of clones containing Clo(Zs,+) is bounded by:

m∑
i=1

|L(Zpi ,Fi)| −m+ 1 ≤ |L(Zs,+)| ≤
m∏
i=1

|L(Zpi ,Fi)|pi+1.

where L(Zpi ,Fi) is the lattice of all (Zpi ,Fi)-linearly closed clonoids.
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Bounds for the cardinality

Corollary ’19 SF
Let s = p1 · · · pm ∈ N be a product of distinct primes and let Fi =

∏
j∈[m]\{i} Zpj

for all i ∈ [m]. Then the number of clones containing Clo(Zs,+) is bounded by:

|L(Zs,+)| ≤
m∏
i=1

(
∑

1≤r≤ni

(
ni
r

)
pi

)pi+1

where ni =
∏

j∈[m]\{i} pj and

(
n

k

)
q

=

k∏
i=1

qn−k+i − 1

qi − 1
.
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A set of generators

Theorem ’19 SF

Let s = p1 · · · pm be a product of distinct prime numbers. Then the clones
containing Clo(Zs,+) can be generated by a set of functions of arity at most
max(p1, . . . , pm).

Theorem ’19 SF
Let s = p1 · · · pm be a product of distinct prime numbers and let Fi =∏

j∈[m]\{i} Zpj . Then a clone C containing Clo(Zs,+) is generated by S =
⋃m

i=1 Si

where:

Si :=

pi⋃
j=0

{rx1 · · ·xj | r : Fi → Zpi , rx1 · · ·xj ∈ C}.
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A dichotomy

Theorem ’19 SF
Let G be a finite abelian group. Then G has finitely many expansions up to term
equivalence or, equivalently, the lattice of all clones containing Clo(G,+,−, 0) is
finite if and only if G is of squarefree order.

(1) SF, Closed sets of finitary functions between finite fields of coprime order, To
appear in Algebra Universalis.

(2) SF, Expansions of abelian squarefree groups, arXiv:2009.08256, 2020.
(3) SF, Closed sets of finitary functions between products of finite fields of

pair-wise coprime order, arXiv:2009.02237, 2020.

THANK YOU!!!!
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