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Panglobal Algebra and Logic Seminar
October 3, 2023

University of Colorado Boulder
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Classical solvability and congruence solvability

Commutator of congruences

In 1987, Freese and McKenzie developed commutator theory for congruence
modular varieties.

Definition

Let A be an algebra and α, β, δ congruences of A. Then α centralizes β over δ
if

t(−→x ,−→u ) δ t(−→x ,−→v ) ⇒ t(−→y ,−→u ) δ t(−→y ,−→v )

whenever t is a term, xiαyi and uiβvi .

Definition

The commutator [α, β] of congruences is the smallest congruence δ such that
α centralizes β over δ.
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Classical solvability and congruence solvability

Solvability in general

Let 0A = {(a, a) : a ∈ A} and 1A = A× A.

An algebra A is solvable if the “derived series”

γ0 = 1A, γ i+1 = [γ i , γ i ]

reaches 0A in finitely many steps.
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Classical solvability and congruence solvability

Loops

A loop is an algebra (Q, ·, \, /, 1) such that

1 · x = x · 1 = x ,

x · (x\y) = y = x\(x · y),
(x · y)/y = x = (x/y) · y .

Note:

• the left translations Lx and the right translations Rx are bijections of Q and
they generate the multiplication group Mlt(Q) = ⟨Lx ,Rx : x ∈ Q⟩,

• in the finite case the multiplication table of Q is a normalized latin square,

• unlike in groups, there need not be two-sided inverses and associativity does
not necessarily hold.
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Classical solvability and congruence solvability

Congruence commutators in groups and loops

Normal subloops = congruence classes containing 1.

Deviations from commutativity and associativity:

Ta(x) = (ax)/a, La,b(x) = (ab)\(a(bx)), Ra,b(x) = ((xa)b)/(ab).

These are inner mappings and they generate the inner mapping group Inn(Q).

Theorem (Stanovský + V 2014, improved by Barnes 2021)

Let α, β be congruences of a loop Q. Then [α, β] is the congruence generated by

(Tu1(a),Tv1(a)), (Lu1,u2(a), Lv1,v2(a)), (Ru1,u2(a),Rv1,v2(a)),

where 1αa and uiβvi .
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Classical solvability and congruence solvability

Classical solvability vs. congruence solvability for loops

An algebra A is abelian if [1A, 1A] = 0A.

Abelian loops = abelian groups.

Classical solvability: (Bruck, Glauberman)
1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = Q, where each factor Qi+1/Qi is an abelian group.

A normal subloop X of Q induces an abelian congruence if [X ,X ]Q = 1, that
is, the commutator of the congruence induced by X in Q is trivial.

Congruence solvability:
1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = Q, where each factor Qi+1/Qi induces an abelian
congruence of Q/Qi .
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Classical solvability and congruence solvability

Open problems

• For which varieties of loops the two solvability theories coincide?

• In which varieties of loops does every abelian normal subloop X ⊴ Q induce
an abelian congruence of Q?

• The second property implies the first but not vice versa.

• There are easy examples of loops of order 8 that are classically solvable but
not congruence solvable.

• A Bol loop is a loop satisfying x(y(xz)) = (x(yx))z . (Fairly close to
groups.) There is a Bol loop of order 16 that is classically solvable but not
congruence solvable.
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Abelian extensions

Abelian extensions

Definition

Let (X ,+) be an abelian group and (F , ·) a loop. Then Q = (F × X , ∗) is an
abelian extension of X by F if

(r , x) ∗ (s, y) = (rs, φr ,s(x) + ψr ,s(y) + θr ,s),

where φr ,s , ψr ,s ∈ Aut(X ), θr ,s ∈ X and φr ,1 = ψ1,r = idX , θr ,1 = θ1,r = 0.

Theorem (Stanovský + V)

Let X be an abelian group, X ⊴ Q. Then [X ,X ]Q = 1 iff Q is an abelian
extension of X by Q/X . A loop is congruence solvable iff it is an iterated abelian
extension.
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Abelian extensions

An abelian extension visualized

(X , 1) (X , y)

(X , 1)

(X , x)

φ1,y

φx,y

ψx,1 ψx,y

+θx,y

· · ·

· · ·

...
...

. . .
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Abelian extensions

Abelian extensions in groups

Lemma

Let G be a group and X an abelian normal subgroup of Q. Then [X ,X ]Q = 1.

Proof.

Internal version of abelian extension: X ⊴ Q, U a left transversal to X in Q and

rx · sy = ur ,s · φr ,s(x)ψr ,s(y)θr ,s ,

where ur ,s ∈ U ∩ (rs)X .

Here we have

rx · sy = rss−1xsy = ur ,s(u
−1
r ,s rs)(s

−1xs)y = ur ,s(s
−1xs)y(u−1

r ,s rs),

so it suffices to take φr ,s = T−1
s |X , ψr ,s = idX and θr ,s = u−1

r ,s rs.
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Abelian extensions

Nuclear case

For a loop Q we have

Nucℓ(Q) = {x ∈ Q : x(yz) = (xy)z for all y , z ∈ Q},
Nucm(Q) = {x ∈ Q : y(xz) = (yx)z for all y , z ∈ Q},
Nucr (Q) = {x ∈ Q : y(zx) = (yz)x for all y , z ∈ Q},
Nuc(Q) = Nucℓ(Q) ∩Nucm(Q) ∩Nucr (Q).

The next result follows nearly as easily as the group case:

Lemma

Let X be an abelian normal subloop of Q such that X ≤ Nucm(Q) ∩Nucr (Q).
Then [X ,X ]Q = 1.
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Abelian extensions

Moufang loops

We will greatly generalize this result for Moufang loops, that is, loops satisfying
the identity

x(y(xz)) = ((xy)x)z .

• Think octonions but there are many other examples.

• Very close to groups. Are diassociative, that is, ⟨x , y⟩ is a group.

• All four nuclei coincide.

• Smallest Moufang non-group is of order 12 obtained by “doubling” S3.

Vojtěchovský (DU) Solvability and supernilpotence PALS 14 / 49



Abelian extensions

A construction for [X ,X ]Q ̸= 1 in Moufang loops

An abelian normal subloop of a Moufang loop need not induce an abelian
congruence:

• W = (W ,+) be a commutative group with subgroups F ≤ B ≤ W
(specialize to F = B at first reading)

• F = {0, 1} and W = W /B an elementary abelian 2-group,

• q : W → F a quadratic form with associated bilinear form h : W ×W → F ,

• q : W → F and h : W ×W → F defined by q(u) = q(u) and
h(u, v) = h(u, v),

• define multiplication on Q = F ×W by

(i , u) · (j , v) = (i + j , u + v + jq(u) + ih(u, v)).
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Abelian extensions

A construction for [X ,X ]Q ̸= 1 in Moufang loops

Then:

• Q is congruence solvable (in fact nilpotent, see later) and hence classically
solvable,

• Q is a Moufang loop,

• Q is a group if and only if the quadratic form q is linear,

• X = 0×W is an abelian normal subloop of Q,

• if Q is not a group, then the congruence of Q induced by X is not abelian.
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Preliminary results for Moufang loops

Results of Bruck (more or less)

For a while let Q be a Moufang loop.

• every inner mapping is a pseudoautomorphism, that is,
cf (x) · f (y) = cf (xy) for a suitable c ,

• every pseudoautomorphism is a semiautomorphism, that is,
f (xyx) = f (x)f (y)f (x) and f (1) = 1,

• semiautomorphisms satisfy f (xn) = f (x)n

Lemma

Let X be a 2-divisible abelian group. Then every semiautomorphism of X is an
automorphism of X .

Proof.

f (xy)=f (u2y)=f (uyu)=f (u)f (y)f (u)=f (u)2f (y)=f (u2)f (y)=f (x)f (y).
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Preliminary results for Moufang loops

Results of Bruck (more or less)

Corollary

Let Q be a Moufang loop and X an abelian normal subloop of Q that is
2-divisible. Then every inner mapping of Q restricts to an automorphism of X .
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Preliminary results for Moufang loops

Results of Gagola

Theorem

Suppose that Q = ⟨S⟩ is a Moufang loop such that every element of S is a cube.
Then Inn(Q) = ⟨Tu : u ∈ Q⟩.

Theorem

Let Q be a Moufang loop and x , y , u ∈ Q. Then

u3ix · u3jy = u3(i+j)T−i−2j
u (T i−j

u (x)T i−j
u (y))

for all i , j ∈ Z.
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The 6-divisible and 3-divisible cases

Abelian extensions again

Suppose that Q is a 3-divisible Moufang loop with a 2-divisible abelian normal
subgroup X . Let’s calculate:

rx · sy = rx · sys−1s = rx · Ts(y)s
and Ts restricts to an automorphism of X since X is 2-divisible

rx · Ts(y)s = (s · (s−1r)f (x)) · Ts(y)s = s · ((s−1r)f (x) · Ts(y)) · s
with the inner mapping f = L−1

s−1rL
−1
s Lr

rewrite as s(uv · w)s = s(u(vu−1 · uw)s) = su · (vu−1 · uw)s
using Moufang identities

vu−1 · uw = va−3 · a3w = T−1
a (Ta(v)Ta(w)) = vw

by 3-divisibility and Gagola

get su · (vw)s, etc, bring it to the desired form.
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The 6-divisible and 3-divisible cases

The 6-divisible case

Theorem (D+V)

Let Q be a 3-divisible Moufang loop and X a 2-divisible abelian normal subgroup
of Q. Then [X ,X ]Q = 1.

Corollary (D+V)

Let Q be a 6-divisible Moufang loop. Then Q is congruence solvable iff it is
classically solvable.
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The 6-divisible and 3-divisible cases

Characterizing [X ,X ]Q = 1

Theorem (D+V)

Let Q be a Moufang loop and X a normal subloop of Q. Then [X ,X ]Q = 1 iff
u · xy = uy · x for all u ∈ Q and x , y ∈ X .
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The 6-divisible and 3-divisible cases

The 3-divisible case

After much additional work and using this result of Drápal:

Theorem (Drápal)

Let Q be a finite Moufang loop, p a prime and S a p-subloop of Q. Then
MltQ(S) = ⟨Ls ,Rs : s ∈ S⟩ is a p-group.

... we proved

Theorem (D+V)

Let Q be a finite 3-divisible Moufang loop. Then Q is congruence solvable iff it is
classically solvable.
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The Odd Order Theorem for Moufang loops

Results of Glauberman and Csörgő
We wish to strengthen the following result:

Theorem (Glauberman)

Every Moufang loop of odd order is classically solvable.

We will use:

Theorem (Csörgő)

Every nontrivial Moufang loop of odd order has a nontrivial nucleus.

Her basic setup:

• LQ = {Lx : x ∈ Q} and RQ are transversals to Inn(Q) in Mlt(Q), in fact,
transversals to every conjugate of Inn(Q) in Mlt(Q),

• [LQ ,RQ ] ⊆ Inn(Q) (standard group commutator of subsets),

• coreMlt(Q)(Inn(Q)) = 1.
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The Odd Order Theorem for Moufang loops

The odd order theorem

Theorem (D+V)

Every Moufang loop of odd order is congruence solvable.

• let Q be a smallest counterexample

• clearly 1 < Q, so 1 < N = Nuc(Q) by Csörgő

• we can assume N < Q else we are done by Feit-Thompson

• let X be a minimal characteristic subgroup of N and f ∈ Inn(Q)

• since X ≤ N and X ⊴ Q, we have f |X ∈ Aut(X )

• standard group theory argument implies that X is an abelian group

• thus [X ,X ]Q = 1

• since Q/X is congruence solvable by minimality, Q is an iterated abelian
extension
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The Odd Order Theorem for Moufang loops

The newest result

Theorem (D+V 2023)

A finite Moufang loop is classically solvable iff it is congruence solvable.

One ingredient that comes into play are groups with triality, that is, groups that
admit automorphisms ρ, σ such that ⟨ρ, σ⟩ ∼= S3 and

[x , xσ][x , xσ]ρ[x , xσ]ρ
2

= 1.

In Moufang loops with trivial nucleus one can consider
G = Mlt(Q) = ⟨Lx ,Rx : x ∈ Q⟩ and

σ : Lx 7→ R−1
x , Rx 7→ L−1

x ,

ρ : Lx 7→ Rx , Rx → L−1
x R−1

x .

(See Jonathan Hall’s volume of Memoirs of AMS.)

Vojtěchovský (DU) Solvability and supernilpotence PALS 29 / 49



Nilpotence

Nilpotence in general

With the commutators as before, define the “lower central series”

γ0 = [1A, 1A], γi+1 = [1A, γi ].

Then A is nilpotent if the series reaches 0A in finitely many steps.

The center is the largest congruence ζ such that ζ centralizes 1A over 0A.
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Nilpotence

Nilpotence in loops

The concept of nilpotence in loops behaves as in groups. We have

Z (Q) = Nuc(Q) ∩ {x ∈ Q : xy = yx for all y}

and the corresponding notion of upper central series.

But even simple questions about nilpotence can be very difficult.
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Nilpotence

An open problem concerning nilpotence

Recall the following theorem from a first course on group theory:

Theorem

Let G be a group. Then G/Z (G ) ∼= Inn(G ). In particular, cl(G ) ≤ 2 iff Inn(G )
is abelian.

Bruck showed:

Theorem (Bruck)

Let Q be a loop. If cl(Q) ≤ 2 then Inn(Q) is abelian.

What about the converse?
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Nilpotence

An open problem concerning nilpotence

• Csörgő constructed a loop Q such that Inn(Q) is abelian and cl(Q) = 3.

• Nagy and V constructed a Moufang loop with the same property.

• After approximately ten years of effort and using automated deduction on
massive scale, Kinyon and Veroff proved that if Inn(Q) is abelian then
cl(Q) ≤ 3. Some of their proofs are among the longest ever obtained by
automated deduction (100k deductive steps).

• But we don’t know, for instance, if there is a commutative loop Q with
Inn(Q) abelian and cl(Q) = 3.
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Supernilpotence

Decomposition theorem

The most important theorem about finite nilpotent groups is of course:

Theorem (Decomposition Theorem)

A finite group is nilpotent iff it is a direct product of p-groups.

It turns out that (universal algebraic) nilpotence is too weak to furnish the analog
of the Decomposition Theorem. There exist finite nilpotent algebraic structures
very close to groups that are not direct products of algebras of prime power orders.

In 2010, Aichinger and Mudrinski identified a concept stronger than nilpotence,
so-called supernilpotence, that precisely guarantees the Decomposition Theorem
in reasonable varieties.
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Supernilpotence

Mal’cev term and permutable congruences

A variety V is congruence permutable if αβ = βα for any A ∈ V and any
congruences α, β of A.

Theorem (Mal’cev 1954)

A variety is congruence permutable iff it contains a Mal’cev term, a term
satisfying m(x , y , y) = x = m(y , y , x).

In groups, we can take m(x , y , z) = xy−1z .

In loops, we can take m(x , y , z) = x(y\z).
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Supernilpotence

Supernilpotence
A polynomial is a term with constants.

Definition

Let A be an algebra, p(x1, . . . , xn) a polynomial, (e1, . . . , en) ∈ An and e ∈ A.
Then p is absorbing at (e1, . . . , en) into e if whenever ai = ei for some i then
p(a1, . . . , an) = e.

Definition

An algebra A is k-supernilpotent if every polynomial of arity n > k that is
absorbing at some (e1, . . . , en) ∈ An into some e ∈ A is constant. An algebra is
supernilpotent if it is k-supernilpotent for some k .

Theorem (Aichinger+Mudrinski 2010)

Let V be a congruence permutable variety. Then a finite algebra in V is
supernilpotent iff it is a direct product of nilpotent algebras of prime power order.
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Supernilpotence in groups

Absorption in groups

In groups:

• it suffices to consider absorption at (1, . . . , 1) into 1:
replace p(x1, . . . , xn) with p(x−1

1 e1, . . . , x
−1
n en)e

−1,

• the commutator [x , y ] = x−1y−1xy and all complex commutators are
prototypical absorbing terms.
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Supernilpotence in groups

Nilpotence vs. supernilpotence in groups

Theorem (Aichinger+Mudrinski, Moorhead)

In general, k-supernilpotence implies k-nilpotence. But nilpotence (even
2-nilpotence) does not imply supernilpotence.

Theorem (Shaw 2008 PhD thesis, A+M, S+V gave a conceptually
simpler proof in 2023)

A group is k-nilpotent iff it is k-supernilpotent.
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Supernilpotence in groups

Main idea of the group proof

• If G is k-supernilpotent then the absorbing commutator

[x1, [x2, [. . . , [xk , xk+1] . . . ]]]

is constant (thus trivial), and G is k-nilpotent from upper central series
considerations.

• The other direction is more complicated (about 3 pages now).

• Use a 1934 result of Phillip Hall: In a k-nilpotent group all complex
commutators of weight k + 1 vanish.

• Rewrite any absorbing polynomial, attempting to order commutators first by
their support and then by complexity. This will succeed, using the fact that
(Nm,≤lex) has no infinite descending chains and commutators of weight > k
vanish.

• Apply a technical result (next page).
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Supernilpotence in groups

A technical result

Lemma

Let (A, , ·, 1, . . . ) be an algebra such that 1 is the identity element with respect to
the binary operation ·. Let p be an n-ary polynomial on A with support
{x1, . . . , xn} that is absorbing at (e1, . . . , en) into 1. Assume that p is equivalent
to ∏

S∈S

pS ,

where the product (in some order and in some parenthesizing) ranges over a
subset S of proper subsets of {1, . . . , n}, and where every pS is a polynomial with
support {xi : i ∈ S} that is absorbing at (ei : i ∈ S) into 1. Then p is constant.
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Supernilpotence in loops

Commutators and associators

In a loop, these are uniquely determined elements [x , y ], [x , y , z ] such that

yx = (xy)[x , y ], x(yz) = ((xy)z)[x , y , z ].

Note that as terms they are absorbing.
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Supernilpotence in loops

k-supernilpotent loops for k = 1, 2

Theorem

For k ∈ {1, 2}, a loop is k-supernilpotent iff it is a k-nilpotent group.

There exists a 2-nilpotent loop (of order 8) that is not supernilpotent.

So, in loops, k-nilpotence and k-supernilpotence diverge already at k = 2.
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Supernilpotence in loops

3-supernilpotent loops

Theorem (S+V 2023)

A loop is 3-supernilpotent iff the following identities hold:

1 = [x , [y , u, v ]],

1 = [x , y , [u, v ,w ]] = [x , [u, v ,w ], y ] = [[u, v ,w ], x , y ],

1 = [x , y , [u, v ]] = [x , [u, v ], y ] = [[u, v ], x , y ],

1 = [x , [y , [u, v ]]] = [x , [[u, v ], y ]],

1 = [[y , [u, v ]], x ] = [[[u, v ], y ], x ],

1 = [[x , y ], [u, v ]],

[xy , u, v ] = [x , u, v ] [y , u, v ],

[u, xy , v ] = [u, x , v ] [u, y , v ],

[u, v , xy ] = [u, v , x ] [u, v , y ].
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Supernilpotence in loops

k-supernilpotent loops with k > 3?

The general theory guarantees that there is an equational basis for
k-supernilpotent algebras Vk in a given variety V , constructed from an equational
basis for V .

If V is finitely based, it is not clear if Vk is finitely based.

Conjecture

k-supernilpotent loops are finitely based.

That should not be too hard to prove. Finding a small basis will be hard.
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Supernilpotence in loops

Thank you!
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P. Csörgő, Every Moufang loop of odd order has nontrivial nucleus, J. Algebra 603 (2022),
89–117.
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Vojtěchovský (DU) Solvability and supernilpotence PALS 49 / 49


	Classical solvability and congruence solvability
	Abelian extensions
	Preliminary results for Moufang loops
	The 6-divisible and 3-divisible cases
	The Odd Order Theorem for Moufang loops
	Nilpotence
	Supernilpotence
	Supernilpotence in groups
	Supernilpotence in loops

