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Vague question

What can we say about the structure of (sub)direct products?

C ≤ A1× · · · ×An is a subdirect product (denoted C ≤sd A1× · · · ×An)
if all projections πi : C→ Ai are onto.

A is subdirectly irreducible (SI) if it has a unique minimal congruence
(the monolith).

Subdirect Representation Theorem (Birkhoff)

Every algebra is a subdirect product of its subdirectly irreducible quotients.
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No surprises here

A finite subdirect product of simple groups is isomorphic to a direct
product. More generally:

Theorem (Foster-Pixley)

Let C ≤sd A1 × · · · × An for simple A1, . . . ,An in a congruence
permutable (CP) variety. Then

C ∼= Ai1 × · · · × Aim for some 1 ≤ i1 < · · · < im ≤ n.
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Weird things happening, 1

Direct products of simple algebras can have unexpected quotients:

Example (abelian factors, CP)

Let A = (Z2,+, 0, 1). Then A2 has a skew congruence γ
with blocks {00, 11}, {01, 10} and

A2/γ ∼= (Z2,+, 0, 0) 6∼= A.
0

α1 γ α2

1
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Weird things happening, 2

Subdirect products of simple algebras may not be direct:

Example (congruence modular (CM), not CP)

Let L = ({0, 1},∧,∨) be the 2-element lattice.

C = {00, 01, 11} ≤sd L2

is not a direct power of L. Every quotient of C is a projection. 0

α1 α2

1
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Weird things happening, 3

Example (not CM)

Let S = (Z2, ·) the 2-element semilattice. Con(S2) =

ρ1 is induced by the ideal {00, 01} in S2

ρ2 is induced by the ideal {00, 10} 0

ρ1

α1

ρ2

α2

1
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Question

Can we describe congruences of (sub)direct products in a restricted
setting, e.g., in congruence modular (CM) varieties.

Advantages:

modular law (no pentagons in congruence lattices)

powerful commutator theory for congruences generalized from group
theory
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Congruences of subdirect products in CM varieties
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Splitting the congruence lattice

Lemma 1

Let C ≤sd A× B with projection kernels α, β
in a CM variety.
Assume A is SI with nonabelian monolith, and
α+ is the unique minimal congruence above α.
Then γ ≤ α or γ ≥ α+ ∧ β for every γ ∈ Con(C). 0

α

α+

α+ ∧ β

β

Proof.

If α+ ∧ β ≤ α, then α+ ∧ β = α ∧ β = 0 ≤ γ.

So assume α+ ∧ β, γ 6≤ α. Then (α+ ∧ β) ∨ α = α+ ≤ γ ∨ α.

Using monotonicity and join distributivity of the commutator

[α+, α+] ≤ [γ ∨ α, (α+ ∧ β) ∨ α] = [γ, α+ ∧ β]︸ ︷︷ ︸
≤γ∧(α+∧β)

∨ [., α] ∨ [., α] ∨ [α, α]︸ ︷︷ ︸
≤α

Since [α+, α+] 6≤ α, this yields 0 6= γ ∧ (α+ ∧ β) = α+ ∧ β
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More factors, more problems

Lemma 2

Let C ≤sd A1 × · · · × An × B with projection kernels α1, . . . , αn, β in a
CM variety. Assume A1, . . . ,An are SI with nonabelian monoliths.
If γ 6≤ αi for any i ∈ [n], then γ ≥

∧
i∈[n] α

+
i ∧ β.

Proof sketch (induction on n).

Base n = 1: Lemma 1.
Step n = 1→ 2: By induction assumption, γ 6≤ αi for i = 1, 2 yields

γ ≥ (α+
1 ∧ α2 ∧ β) ∨ (α1 ∧ α+

2 ∧ β).

By modularity

(α+
1 ∧ α2 ∧ β) ∨ [α1 ∧ α+

2 ∧ β] =[(α+
1 ∧ α2 ∧ β) ∨ α1] ∧ α+

2 ∧ β
=α+

1 ∧ [(α2 ∧ β) ∨ α1]︸ ︷︷ ︸
≥α+

1 , else α2∧β=0

∧α+
2 ∧ β
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Note

Let C ≤sd A1 × · · · × An × B in a CM variety with Ai SI with nonabelian
monoliths as in Lemma 2.
Then the interval I (0,

∧
i∈[n] α

+
i ∧ β) is a Boolean sublattice of Con(C).

Corollary

Let C ≤sd A1 × · · · × An with simple nonabelian Ai in a CM variety.
Then Con(C) is a Boolean lattice and every quotient of C is a projection
on some factors.

Proof.

By Lemma 2 every γ ∈ Con(C) is an intersection of projection kernels.
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Beyond CM varieties

Question

Is there a finite (sub)direct product of simple nonabelian algebras with a
nontrivial abelian quotient?
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Finitely generated varieties
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Some notation

A variety is a class of algebras of fixed type defined by equations
(equivalently closed under homomorphic images H, subalgebras S and
direct products P).

For a class of algebras K of the same type, V (K ) := HSP(K ) is the
variety generated by K .

For a variety V and k ∈ N, let Fk(V ) denote the free algebra over
x1, . . . , xk in V .
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Subdirect representation of free algebras

Lemma

Let A be finite, V := V (A) and W := V (B : B < A). Then for every
k ∈ N there exists d ∈ N such that

Fk(V ) ≤sd Ad × Fk(W ).
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Proof.

V := V (A) and W := V (B : B < A).

Let F := Fk(V ) free over x1, . . . , xk . For a = (a1, . . . , ak) in Ak ,
define

ψa : F→ A by xi 7→ ai for i ≤ k,

ρ :=
∧
{kerψa : 〈a〉 = A}, σ :=

∧
{kerψa : 〈a〉 < A}.

If (s(x1, . . . , xk), t(x1, . . . , xk)) ∈ ρ ∧ σ, then

s(a1, . . . , ak) = t(a1, . . . , ak) for all (a1, . . . , ak) ∈ Ak .

Hence s = t in F and ρ ∧ σ = 0.

Thus
F ≤sd F/ρ︸︷︷︸

≤sdAd

× F/σ︸︷︷︸
∼=Fk (W )
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Can A be in the variety generated by its proper
subalgebras?

Sure, e.g., A = (Z6,+).

Can this happen for simple A?

Lemma (Kearnes, Szendrei)

If a finite simple A is in V (B : B < A), then A has TCT-type 5.

Proof.

If A has type 1 or 2 (i.e. A is abelian), all its subalgebras are trivial
(Valeriote, 1990).

If A has type 3 or 4, then A ∈ HSP(B : B < A) yields A ∈ HS(B)
for some B < A (Hobby, McKenzie, 1988).
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A bad example

Example

Murskii’s groupoid M = ({0, 1, 2}, ·) is defined by

· 0 1 2

0 0 0 0
1 0 0 1
2 0 2 2

M2 has a congruence γ with a single nontrivial class {00, 01, 02, 10, 20}.
A := M2 /γ is simple and M→ A, x 7→ (x , x)/γ is an embedding.
Hence A is in the variety generated by its subalgebra M.

Question

Is there a finite simple A in the variety W generated by its proper
subalgebras where W omits type 1?
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Main result

Theorem

Let A be a finite SI with nonabelian monolith µ in a CM variety.
Then V := V (A) has a unique maximal subvariety U (generated by A/µ
and all proper subalgebras of A).

Proof.

1. U < V because A is not in any CM variety generated by finitely many
strictly smaller algebras by

the generalized Jónsson Lemma for CM varieties or

elementary commutator calculations (omitted).
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Theorem

Let A be a finite SI with nonabelian monolith µ in a CM variety.
Then V := V (A) has a unique maximal subvariety U (generated by A/µ and all
proper subalgebras of A).

Proof.

2. Every proper subvariety of V is below U:

Let C ∈ V be finite such that V (C) 6= V . Then C is a quotient of

Fk(V ) ≤sd Ad × Fk(W )

for some k ∈ N and W = V (B : B < A).

Since A is not a quotient of C, Lemma 2 yields that C is a quotient of

Fk(V )/µd × 0Fk (W ) ≤sd (A/µ)d × Fk(W ).

Hence every finite C from a proper subvariety of V is in U.
Since V is locally finite, every proper subvariety of V is in U.
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Questions on the lattice of subvarieties of V (A)

Problem 10.1 in Sixty-four Problems in Universal Algebra (2001)

Is every subvariety of a finitely generated CM variety finitely generated?

Yes, for varieties with cube term (Aichinger, M 2016).

Problem

Is there a finitely generated variety with cube term (or CM variety) with an
infinite antichain of subvarieties?
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