Varieties generated by finite simple algebras

Peter Mayr

Algebra and Logic Seminar, September 29, 2020

Varieties generated by finite simple algebras

PALS 29/09/20 1/21

• • = • • = •

Vague question

What can we say about the structure of (sub)direct products?

 $C \leq A_1 \times \cdots \times A_n$ is a subdirect product (denoted $C \leq_{sd} A_1 \times \cdots \times A_n$) if all projections $\pi_i : C \to A_i$ are onto.

A is subdirectly irreducible (SI) if it has a unique minimal congruence (the monolith).

Subdirect Representation Theorem (Birkhoff)

Every algebra is a subdirect product of its subdirectly irreducible quotients.

通 ト イ ヨ ト イ ヨ ト

A finite subdirect product of simple groups is isomorphic to a direct product. More generally:

Theorem (Foster-Pixley)

Let $\mathbf{C} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ for simple $\mathbf{A}_1, \ldots, \mathbf{A}_n$ in a congruence permutable (CP) variety. Then

$$\mathbf{C} \cong \mathbf{A}_{i_1} \times \cdots \times \mathbf{A}_{i_m}$$
 for some $1 \leq i_1 < \cdots < i_m \leq n$.

通 ト イ ヨ ト イ ヨ ト

Direct products of simple algebras can have unexpected quotients:

Example (abelian factors, CP)
Let
$$\mathbf{A} = (\mathbb{Z}_2, +, 0, 1)$$
. Then \mathbf{A}^2 has a skew congruence γ 1
with blocks $\{00, 11\}, \{01, 10\}$ and
 $\mathbf{A}^2/\gamma \cong (\mathbb{Z}_2, +, 0, 0) \not\cong \mathbf{A}$.

э

- A - E - N

▶ < ∃ ▶</p>

Weird things happening, 2

Subdirect products of simple algebras may not be direct:

Example (congruence modular (CM), not CP) Let $\mathbf{L} = (\{0, 1\}, \wedge, \vee)$ be the 2-element lattice. $C = \{00, 01, 11\} \leq_{sd} \mathbf{L}^2$ $\alpha_1 \qquad \alpha_2$ is not a direct power of \mathbf{L} . Every quotient of \mathbf{C} is a projection.

Weird things happening, 3

► < ∃ ►</p>

Question

Can we describe congruences of (sub)direct products in a restricted setting, e.g., in congruence modular (CM) varieties.

Advantages:

- modular law (no pentagons in congruence lattices)
- powerful commutator theory for congruences generalized from group theory

• • = • • = •

Congruences of subdirect products in CM varieties

3

< □ > < 同 > < 回 > < 回 > < 回 >

Splitting the congruence lattice

Lemma 1

Let $\mathbf{C} \leq_{\mathrm{sd}} \mathbf{A} \times \mathbf{B}$ with projection kernels α,β in a CM variety.

Assume **A** is SI with nonabelian monolith, and α^+ is the unique minimal congruence above α . Then $\gamma \leq \alpha$ or $\gamma \geq \alpha^+ \land \beta$ for every $\gamma \in \text{Con}(\mathbf{C})$.

Proof.

• If
$$\alpha^+ \wedge \beta \leq \alpha$$
, then $\alpha^+ \wedge \beta = \alpha \wedge \beta = 0 \leq \gamma$.

- So assume $\alpha^+ \wedge \beta, \gamma \not\leq \alpha$. Then $(\alpha^+ \wedge \beta) \lor \alpha = \alpha^+ \leq \gamma \lor \alpha$.
- Using monotonicity and join distributivity of the commutator

$$[\alpha^{+}, \alpha^{+}] \leq [\gamma \lor \alpha, (\alpha^{+} \land \beta) \lor \alpha] = \underbrace{[\gamma, \alpha^{+} \land \beta]}_{\leq \gamma \land (\alpha^{+} \land \beta)} \lor \underbrace{[., \alpha] \lor [., \alpha] \lor [\alpha, \alpha]}_{\leq \alpha}$$

• Since $[\alpha^{+}, \alpha^{+}] \not\leq \alpha$, this yields $0 \neq \gamma \land (\alpha^{+} \land \beta) = \alpha^{+} \land \beta$
Poter Mark

More factors, more problems

Lemma 2

Let $\mathbf{C} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \times \mathbf{B}$ with projection kernels $\alpha_1, \ldots, \alpha_n, \beta$ in a CM variety. Assume $\mathbf{A}_1, \ldots, \mathbf{A}_n$ are SI with nonabelian monoliths. If $\gamma \not\leq \alpha_i$ for any $i \in [n]$, then $\gamma \geq \bigwedge_{i \in [n]} \alpha_i^+ \wedge \beta$.

Proof sketch (induction on n).

Base n = 1: Lemma 1. Step $n = 1 \rightarrow 2$: By induction assumption, $\gamma \not\leq \alpha_i$ for i = 1, 2 yields $\gamma \geq (\alpha_1^+ \land \alpha_2 \land \beta) \lor (\alpha_1 \land \alpha_2^+ \land \beta).$

By modularity

$$(\alpha_{1}^{+} \land \alpha_{2} \land \beta) \lor [\alpha_{1} \land \alpha_{2}^{+} \land \beta] = [(\alpha_{1}^{+} \land \alpha_{2} \land \beta) \lor \alpha_{1}] \land \alpha_{2}^{+} \land \beta$$
$$= \alpha_{1}^{+} \land \underbrace{[(\alpha_{2} \land \beta) \lor \alpha_{1}]}_{\ge \alpha_{1}^{+}, \text{ else } \alpha_{2} \land \beta = 0} \land \alpha_{2}^{+} \land \beta$$

Note

Let $\mathbf{C} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \times \mathbf{B}$ in a CM variety with \mathbf{A}_i SI with nonabelian monoliths as in Lemma 2. Then the interval $I(0, \bigwedge_{i \in [n]} \alpha_i^+ \land \beta)$ is a Boolean sublattice of $\mathrm{Con}(\mathbf{C})$.

Corollary

Let $\mathbf{C} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with simple nonabelian \mathbf{A}_i in a CM variety. Then $\mathrm{Con}(\mathbf{C})$ is a Boolean lattice and every quotient of \mathbf{C} is a projection on some factors.

Proof.

By Lemma 2 every $\gamma \in \operatorname{Con}(\mathbf{C})$ is an intersection of projection kernels.

Question

Is there a finite (sub)direct product of simple nonabelian algebras with a nontrivial abelian quotient?

э

通 ト イ ヨ ト イ ヨ ト

Finitely generated varieties

3

<ロト < 四ト < 三ト < 三ト

A **variety** is a class of algebras of fixed type defined by equations (equivalently closed under homomorphic images \mathbb{H} , subalgebras \mathbb{S} and direct products \mathbb{P}).

For a class of algebras K of the same type, $V(K) := \mathbb{HSP}(K)$ is the **variety generated by** K.

For a variety V and $k \in \mathbb{N}$, let $\mathbf{F}_k(V)$ denote the **free algebra** over x_1, \ldots, x_k in V.

ヘロト 人間ト 人団ト 人団ト

Subdirect representation of free algebras

Lemma

Let **A** be finite, $V := V(\mathbf{A})$ and $W := V(\mathbf{B} : \mathbf{B} < \mathbf{A})$. Then for every $k \in \mathbb{N}$ there exists $d \in \mathbb{N}$ such that

$$\mathbf{F}_k(V) \leq_{\mathrm{sd}} \mathbf{A}^d \times \mathbf{F}_k(W).$$

Proof.

$$V := V(\mathbf{A}) \text{ and } W := V(\mathbf{B} : \mathbf{B} < \mathbf{A}).$$
• Let $\mathbf{F} := \mathbf{F}_k(V)$ free over x_1, \dots, x_k . For $\mathbf{a} = (a_1, \dots, a_k)$ in A^k , define
 $\psi_a : \mathbf{F} \rightarrow \mathbf{A}$ by $x_i \mapsto a_i$ for $i \le k$,
 $\rho := \bigwedge \{\ker \psi_a : \langle a \rangle = A\}, \quad \sigma := \bigwedge \{\ker \psi_a : \langle a \rangle < A\}.$
• If $(s(x_1, \dots, x_k), t(x_1, \dots, x_k)) \in \rho \land \sigma$, then
 $s(a_1, \dots, a_k) = t(a_1, \dots, a_k)$ for all $(a_1, \dots, a_k) \in A^k$.
Hence $s = t$ in \mathbf{F} and $\rho \land \sigma = 0$.

• Thus

$$\mathsf{F} \leq_{\mathrm{sd}} \underbrace{\mathsf{F}/\rho}_{\leq_{\mathrm{sd}} \mathsf{A}^d} \times \underbrace{\mathsf{F}/\sigma}_{\cong \mathsf{F}_k(W)}$$

(日)

Can **A** be in the variety generated by its proper subalgebras?

Sure, e.g., $\mathbf{A} = (\mathbb{Z}_6, +)$.

Can this happen for simple A?

Lemma (Kearnes, Szendrei)

If a finite simple **A** is in $V(\mathbf{B} : \mathbf{B} < \mathbf{A})$, then **A** has TCT-type 5.

Proof.

- If A has type 1 or 2 (i.e. A is abelian), all its subalgebras are trivial (Valeriote, 1990).
- If A has type 3 or 4, then $A \in \mathbb{HSP}(B : B < A)$ yields $A \in \mathbb{HS}(B)$ for some B < A (Hobby, McKenzie, 1988).

A bad example

Example

Murskii's groupoid $M = (\{0, 1, 2\}, \cdot)$ is defined by

•	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

 \mathbf{M}^2 has a congruence γ with a single nontrivial class $\{00, 01, 02, 10, 20\}$. $\mathbf{A} := \mathbf{M}^2 / \gamma$ is simple and $\mathbf{M} \to \mathbf{A}$, $x \mapsto (x, x) / \gamma$ is an embedding. Hence \mathbf{A} is in the variety generated by its subalgebra \mathbf{M} .

Question

Is there a finite simple **A** in the variety W generated by its proper subalgebras where W omits type 1?

Peter Mayr

Main result

Theorem

Let **A** be a finite SI with nonabelian monolith μ in a CM variety. Then $V := V(\mathbf{A})$ has a unique maximal subvariety U (generated by \mathbf{A}/μ and all proper subalgebras of **A**).

Proof.

1. U < V because **A** is not in any CM variety generated by finitely many strictly smaller algebras by

- the generalized Jónsson Lemma for CM varieties or
- elementary commutator calculations (omitted).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let **A** be a finite SI with nonabelian monolith μ in a CM variety. Then $V := V(\mathbf{A})$ has a unique maximal subvariety U (generated by \mathbf{A}/μ and all proper subalgebras of **A**).

Proof.

- 2. Every proper subvariety of V is below U:
 - Let $\mathbf{C} \in V$ be finite such that $V(\mathbf{C}) \neq V$. Then \mathbf{C} is a quotient of

$$\mathbf{F}_k(V) \leq_{\mathrm{sd}} \mathbf{A}^d imes \mathbf{F}_k(W)$$

for some $k \in \mathbb{N}$ and $W = V(\mathbf{B} : \mathbf{B} < \mathbf{A})$.

• Since A is not a quotient of C, Lemma 2 yields that C is a quotient of

$$\mathsf{F}_k(V)/\mu^d imes \mathsf{O}_{\mathsf{F}_k(W)} \leq_{ ext{sd}} (\mathbf{A}/\mu)^d imes \mathsf{F}_k(W).$$

• Hence every finite **C** from a proper subvariety of *V* is in *U*. Since *V* is locally finite, every proper subvariety of *V* is in *U*.

Peter Mayr

Questions on the lattice of subvarieties of $V(\mathbf{A})$

Problem 10.1 in Sixty-four Problems in Universal Algebra (2001)

Is every subvariety of a finitely generated CM variety finitely generated?

Yes, for varieties with cube term (Aichinger, M 2016).

Problem

Is there a finitely generated variety with cube term (or CM variety) with an infinite antichain of subvarieties?