Varieties generated by finite simple algebras

Peter Mayr

Algebra and Logic Seminar, September 29, 2020
Vague question

What can we say about the structure of (sub)direct products?

\[C \leq A_1 \times \cdots \times A_n \text{ is a subdirect product} \quad \text{(denoted } C \leq_{sd} A_1 \times \cdots \times A_n \text{)} \]

if all projections \(\pi_i : C \to A_i \) are onto.

\textbf{A is subdirectly irreducible (SI) if it has a unique minimal congruence (the monolith).}

\textbf{Subdirect Representation Theorem (Birkhoff)}

Every algebra is a subdirect product of its subdirectly irreducible quotients.
A finite subdirect product of simple groups is isomorphic to a direct product. More generally:

Theorem (Foster-Pixley)

Let $C \leq_{sd} A_1 \times \cdots \times A_n$ for simple A_1, \ldots, A_n in a congruence permutable (CP) variety. Then

$$C \cong A_{i_1} \times \cdots \times A_{i_m} \text{ for some } 1 \leq i_1 < \cdots < i_m \leq n.$$
Direct products of simple algebras can have unexpected quotients:

Example (abelian factors, CP)

Let $A = (\mathbb{Z}_2, +, 0, 1)$. Then A^2 has a skew congruence γ with blocks $\{00, 11\}$, $\{01, 10\}$ and

$$A^2/\gamma \cong (\mathbb{Z}_2, +, 0, 0) \not\cong A.$$
Weird things happening, 2

Subdirect products of simple algebras may not be direct:

Example (congruence modular (CM), not CP)

Let $L = (\{0, 1\}, \wedge, \vee)$ be the 2-element lattice.

$$C = \{00, 01, 11\} \leq_{sd} L^2$$

is not a direct power of L. Every quotient of C is a projection.
Example (not CM)

Let $S = (\mathbb{Z}_2, \cdot)$ the 2-element semilattice. $\text{Con}(S^2) =$

ρ_1 is induced by the ideal $\{00, 01\}$ in S^2

ρ_2 is induced by the ideal $\{00, 10\}$
Question

Can we describe congruences of (sub)direct products in a restricted setting, e.g., in congruence modular (CM) varieties.

Advantages:

- modular law (no pentagons in congruence lattices)
- powerful commutator theory for congruences generalized from group theory
Congruences of subdirect products in CM varieties
Lemma 1

Let $C \leq_{sd} A \times B$ with projection kernels α, β in a CM variety.
Assume A is SI with nonabelian monolith, and α^+ is the unique minimal congruence above α.
Then $\gamma \leq \alpha$ or $\gamma \geq \alpha^+ \land \beta$ for every $\gamma \in \text{Con}(C)$.

Proof.

- If $\alpha^+ \land \beta \leq \alpha$, then $\alpha^+ \land \beta = \alpha \land \beta = 0 \leq \gamma$.
- So assume $\alpha^+ \land \beta, \gamma \not\leq \alpha$. Then $(\alpha^+ \land \beta) \lor \alpha = \alpha^+ \leq \gamma \lor \alpha$.
- Using monotonicity and join distributivity of the commutator

$$[\alpha^+, \alpha^+] \leq [\gamma \lor \alpha, (\alpha^+ \land \beta) \lor \alpha] = [\gamma, \alpha^+ \land \beta] \lor [., \alpha] \lor [., \alpha] \lor [\alpha, \alpha] \leq \gamma \land (\alpha^+ \land \beta) \leq \alpha$$

- Since $[\alpha^+, \alpha^+] \not\leq \alpha$, this yields $0 \neq \gamma \land (\alpha^+ \land \beta) = \alpha^+ \land \beta$.
More factors, more problems

Lemma 2
Let \(C \subseteq_{sd} A_1 \times \cdots \times A_n \times B \) with projection kernels \(\alpha_1, \ldots, \alpha_n, \beta \) in a CM variety. Assume \(A_1, \ldots, A_n \) are SI with nonabelian monoliths. If \(\gamma \not\subseteq \alpha_i \) for any \(i \in [n] \), then \(\gamma \geq \bigwedge_{i \in [n]} \alpha_i^+ \land \beta \).

Proof sketch (induction on \(n \)).
Base \(n = 1 \): Lemma 1.
Step \(n = 1 \rightarrow 2 \): By induction assumption, \(\gamma \not\subseteq \alpha_i \) for \(i = 1, 2 \) yields
\[
\gamma \geq (\alpha_1^+ \land \alpha_2 \land \beta) \lor (\alpha_1 \land \alpha_2^+ \land \beta).
\]
By modularity
\[
(\alpha_1^+ \land \alpha_2 \land \beta) \lor [\alpha_1 \land \alpha_2^+ \land \beta] = [(\alpha_1^+ \land \alpha_2 \land \beta) \lor \alpha_1] \land \alpha_2^+ \land \beta
\]
\[
= \alpha_1^+ \land [(\alpha_2 \land \beta) \lor \alpha_1] \land \alpha_2^+ \land \beta
\]
\[
\geq \alpha_1^+ \text{, else } \alpha_2 \land \beta = 0
\]
Note
Let $C \leq_{sd} A_1 \times \cdots \times A_n \times B$ in a CM variety with A_i SI with nonabelian monoliths as in Lemma 2. Then the interval $I(0, \bigwedge_{i \in [n]} \alpha_i^+ \land \beta)$ is a Boolean sublattice of $\text{Con}(C)$.

Corollary
Let $C \leq_{sd} A_1 \times \cdots \times A_n$ with simple nonabelian A_i in a CM variety. Then $\text{Con}(C)$ is a Boolean lattice and every quotient of C is a projection on some factors.

Proof.
By Lemma 2 every $\gamma \in \text{Con}(C)$ is an intersection of projection kernels. □
Beyond CM varieties

Question

Is there a finite (sub)direct product of simple nonabelian algebras with a nontrivial abelian quotient?
Finitely generated varieties
A **variety** is a class of algebras of fixed type defined by equations (equivalently closed under homomorphic images \mathbb{H}, subalgebras \mathbb{S} and direct products \mathbb{P}).

For a class of algebras K of the same type, $V(K) := \text{HSP}(K)$ is the **variety generated by** K.

For a variety V and $k \in \mathbb{N}$, let $F_k(V)$ denote the **free algebra** over x_1, \ldots, x_k in V.

Lemma

Let A be finite, $V := V(A)$ and $W := V(B : B < A)$. Then for every $k \in \mathbb{N}$ there exists $d \in \mathbb{N}$ such that

$$F_k(V) \leq_{sd} A^d \times F_k(W).$$
Proof.

\(V := V(A) \) and \(W := V(B : B < A) \).

- Let \(F := F_k(V) \) free over \(x_1, \ldots, x_k \). For \(a = (a_1, \ldots, a_k) \) in \(A^k \), define \(\psi_a : F \rightarrow A \) by \(x_i \mapsto a_i \) for \(i \leq k \),

\[\rho := \bigwedge \{ \ker \psi_a : \langle a \rangle = A \}, \quad \sigma := \bigwedge \{ \ker \psi_a : \langle a \rangle < A \}. \]

- If \((s(x_1, \ldots, x_k), t(x_1, \ldots, x_k)) \in \rho \wedge \sigma \), then \(s(a_1, \ldots, a_k) = t(a_1, \ldots, a_k) \) for all \((a_1, \ldots, a_k) \in A^k \).

Hence \(s = t \) in \(F \) and \(\rho \wedge \sigma = 0 \).

- Thus

\[
F \leq_{sd} \frac{F}{\rho} \times \frac{F}{\sigma} \leq_{sd} A^d \cong F_k(W)
\]
Can A be in the variety generated by its proper subalgebras?

Sure, e.g., $A = (\mathbb{Z}_6, +)$.

Can this happen for simple A?

Lemma (Kearnes, Szendrei)

If a finite simple A is in $V(B : B < A)$, then A has TCT-type 5.

Proof.

- If A has type 1 or 2 (i.e. A is abelian), all its subalgebras are trivial (Valeriote, 1990).
- If A has type 3 or 4, then $A \in HSP(B : B < A)$ yields $A \in HS(B)$ for some $B < A$ (Hobby, McKenzie, 1988).
A bad example

Example

Murskii’s groupoid \(\mathbf{M} = (\{0, 1, 2\}, \cdot) \) is defined by

\[
\begin{array}{c|ccc}
\cdot & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]

\(\mathbf{M}^2 \) has a congruence \(\gamma \) with a single nontrivial class \(\{00, 01, 02, 10, 20\} \). \(\mathbf{A} := \mathbf{M}^2 / \gamma \) is simple and \(\mathbf{M} \to \mathbf{A}, \ x \mapsto (x, x) / \gamma \) is an embedding. Hence \(\mathbf{A} \) is in the variety generated by its subalgebra \(\mathbf{M} \).

Question

Is there a finite simple \(\mathbf{A} \) in the variety \(\mathcal{W} \) generated by its proper subalgebras where \(\mathcal{W} \) omits type 1?
Main result

Theorem

Let A be a finite SI with nonabelian monolith μ in a CM variety. Then $V := V(A)$ has a unique maximal subvariety U (generated by A/μ and all proper subalgebras of A).

Proof.

1. $U < V$ because A is not in any CM variety generated by finitely many strictly smaller algebras by
 - the generalized Jónsson Lemma for CM varieties or
 - elementary commutator calculations (omitted).
Theorem

Let A be a finite SI with nonabelian monolith μ in a CM variety. Then $V := V(A)$ has a unique maximal subvariety U (generated by A/μ and all proper subalgebras of A).

Proof.

2. Every proper subvariety of V is below U:

- Let $C \in V$ be finite such that $V(C) \neq V$. Then C is a quotient of

$$F_k(V) \leq_{sd} A^d \times F_k(W)$$

for some $k \in \mathbb{N}$ and $W = V(B : B < A)$.

- Since A is not a quotient of C, Lemma 2 yields that C is a quotient of

$$F_k(V)/\mu^d \times 0_{F_k(W)} \leq_{sd} (A/\mu)^d \times F_k(W).$$

- Hence every finite C from a proper subvariety of V is in U.

Since V is locally finite, every proper subvariety of V is in U.
Questions on the lattice of subvarieties of $V(A)$

Problem 10.1 in Sixty-four Problems in Universal Algebra (2001)

Is every subvariety of a finitely generated CM variety finitely generated?

Yes, for varieties with cube term (Aichinger, M 2016).

Problem

Is there a finitely generated variety with cube term (or CM variety) with an infinite antichain of subvarieties?