Hyperprincipal Generators for Regular and Good Ultrafilters

Michael Wheeler

PALS

October 25, 2022

Michael Wheeler Hyperprincipal Generators for Regular and Good Ultrafilters

→ < Ξ → <</p>

Table of Contents

1 Nonstandard Frameworks and Ultrafilters

- Nonstandard Frameworks
- Interaction with Ultrafilters

2 Keisler's Order

- Background
- 3 Regular and Good Ultrafilters
 - Regular Ultrafilters
 - Regular and Good Ultrafilters

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition $(\mathcal{U}(A))$

Let A be any set. The universe over A is the collection

$$\bigcup_{n\in\mathbb{N}}\mathcal{U}_n(A)$$

where $\mathcal{U}_0(A) := A$ and $\mathcal{U}_{n+1}(A) := \mathcal{P}(\mathcal{U}_n(A)) \cup \mathcal{U}_n(A)$.

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition $(\mathcal{U}(A))$

Let A be any set. The universe over A is the collection

$$\bigcup_{n\in\mathbb{N}}\mathcal{U}_n(A)$$

where $\mathcal{U}_0(A) := A$ and $\mathcal{U}_{n+1}(A) := \mathcal{P}(\mathcal{U}_n(A)) \cup \mathcal{U}_n(A)$.

Every finitary function and relation on A appears in $\mathcal{U}(A)$, so every finitary structure on A can be thought of as a subset of $\mathcal{U}(A)$.

(日本) (日本) (日本)

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition (Nonstandard Framework)

Given a set A, a nonstandard framework on A is a set *A and a function $*: U(A) \rightarrow U(*A)$ satisfying

($(* \upharpoonright A)$ is an injective map $A \hookrightarrow ^*A$ and $*(A) = ^*A$.

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition (Nonstandard Framework)

Given a set A, a nonstandard framework on A is a set *A and a function $*: U(A) \rightarrow U(*A)$ satisfying

< 同 ト < 三 ト < 三 ト

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition (Nonstandard Framework)

Given a set A, a nonstandard framework on A is a set *A and a function $*: U(A) \rightarrow U(*A)$ satisfying

●
$$(* \upharpoonright A)$$
 is an injective map $A \hookrightarrow ^*A$ and $*(A) = ^*A$.

$$\bullet \ \ \bullet = \emptyset.$$

(Transfer) For every bounded quantifier sentence φ in the language of set theory expanded by constants from U(A) we have that (U(A) ⊨ φ) ⇔ (*U(A) ⊨ φ).

Note: $*\mathcal{U}(A)$ is the substructure of $\mathcal{U}(*A)$ generated by the \in -downward closure of $*[\mathcal{U}(A)]$.

イロト イポト イヨト イヨト 三日

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition (Enlargement)

If a nonstandard framework $* : \mathcal{U}(A) \to \mathcal{U}(*A)$ also satisfies "for every $F \in \mathcal{U}(A)$ that is a collection of elements of rank greater than 0 with the finite intersection property (FIP) there is some

$$b \in \bigcap_{f \in F} {}^*f$$

with $b \in {}^*\mathcal{U}(A)$ ", we say that * (or ${}^*\mathcal{U}(A)$) is an enlargement of $\mathcal{U}(A)$.

Nonstandard Frameworks Interaction with Ultrafilters

Preliminary Definitions

Definition (Enlargement)

If a nonstandard framework $* : \mathcal{U}(A) \to \mathcal{U}(*A)$ also satisfies "for every $F \in \mathcal{U}(A)$ that is a collection of elements of rank greater than 0 with the finite intersection property (FIP) there is some

$$b \in \bigcap_{f \in F} {}^*f$$

with $b \in {}^*\mathcal{U}(A)$ ", we say that * (or ${}^*\mathcal{U}(A)$) is an enlargement of $\mathcal{U}(A)$.

If A is the base set for a finitary structure A and $\Phi(x)$ is a type over A, the set $F = \{\varphi(A) : \varphi(x) \in \Phi(x)\}$ has the FIP, and the guaranteed element b is a realization of the type $\Phi(x)$ in *A.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Nonstandard Frameworks Interaction with Ultrafilters

Existence of Enlargements

Theorem

Enlargements exist.

Nonstandard Frameworks Interaction with Ultrafilters

Existence of Enlargements

Theorem

Enlargements exist. Proof: Use Mostowski collapse on a regular bounded ultrapower of U(A).

伺 ト イヨト イヨト

Nonstandard Frameworks Interaction with Ultrafilters

Existence of Enlargements

Theorem

Enlargements exist.

Proof: Use Mostowski collapse on a regular bounded ultrapower of $\mathcal{U}(A)$.

Theorem (Keisler)

Every enlargement is locally an ultrapower.

Nonstandard Frameworks Interaction with Ultrafilters

Hyperprincipal Generators

Suppose that I ⊆ A, U is an ultrafilter on I, and
*: U(A) → U(*A) is a nonstandard framework. Then

$$\bigcap_{B\in\mathcal{U}}{}^*B\neq\emptyset.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Nonstandard Frameworks Interaction with Ultrafilters

Hyperprincipal Generators

Suppose that I ⊆ A, U is an ultrafilter on I, and
*: U(A) → U(*A) is a nonstandard framework. Then

$$\bigcap_{B\in\mathcal{U}}{}^*B\neq\emptyset.$$

Suppose that b ∈ *U(A) is such an element. Then u(b) := {B ⊆ I : b ∈ *B} has the FIP: for any finite Γ ⊆ u(b) the statements

$$\exists i \in I, \ \bigwedge_{B \in \Gamma} i \in B \text{ and } \exists i \in {}^*I, \ \bigwedge_{B \in \Gamma} i \in {}^*B$$

are equivalent by transfer, and the latter is witnessed by \boldsymbol{b} for any $\Gamma.$

Nonstandard Frameworks Interaction with Ultrafilters

Hyperprincipal Generators

u(b) extends U and has the FIP so u(b) = U. We call b a hyperprincipal generator for U.

伺 ト イヨト イヨト

Nonstandard Frameworks Interaction with Ultrafilters

Hyperprincipal Generators

- u(b) extends \mathcal{U} and has the FIP so $u(b) = \mathcal{U}$. We call b a hyperprincipal generator for \mathcal{U} .
- Essentially the same construction works for filters in general (single element generators are replaced with generating sets), giving a Galois correspondence between P(P(I)) and P(*I) where the closed sets in P(P(I)) are filters on I.

Nonstandard Frameworks Interaction with Ultrafilters

Ultrapowers Using Generators

() Suppose that \mathcal{B} is a structure on some $B \subseteq A$.

伺 ト イヨト イヨト

Nonstandard Frameworks Interaction with Ultrafilters

Ultrapowers Using Generators

- **(**) Suppose that \mathcal{B} is a structure on some $B \subseteq A$.
- **2** Then $B^{u(i)}$ embeds in *A via $[f] \mapsto *f(i)$.

< 同 ト < 三 ト < 三 ト

Nonstandard Frameworks Interaction with Ultrafilters

Ultrapowers Using Generators

- **(**) Suppose that \mathcal{B} is a structure on some $B \subseteq A$.
- **2** Then $B^{u(i)}$ embeds in *A via $[f] \mapsto *f(i)$.
- For every function g and relation E in the structure, *g and *E restricted to the image of the above embedding are the corresponding functions and relations on the ultrapower.

Nonstandard Frameworks Interaction with Ultrafilters

Properties of $u(b) = \mathcal{U}$ from Properties of b

Question: How are the properties of an ultrafilter u(b) = U reflected in the properties of *b*?

< 同 ト < 三 ト < 三 ト

Properties of $u(b) = \mathcal{U}$ from Properties of b

Question: How are the properties of an ultrafilter u(b) = U reflected in the properties of b?

Theorem

The ultrafilter u(b) is nonprincipal (free) if and only if $b \in {}^*I \setminus {}^*[I]$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Properties of $u(b) = \mathcal{U}$ from Properties of b

Question: How are the properties of an ultrafilter u(b) = U reflected in the properties of b?

Theorem

The ultrafilter u(b) is nonprincipal (free) if and only if $b \in {}^*I \setminus {}^{I}I$.

Proof: (\Rightarrow) If $b \in *[I]$ then b = *i for some $i \in I$. Transfer of $*i \in *B$ for each $B \in U$ guarantees $i \in \bigcap U$, so i is a generator for U.

(日本) (日本) (日本)

Properties of $u(b) = \mathcal{U}$ from Properties of b

Question: How are the properties of an ultrafilter u(b) = U reflected in the properties of b?

Theorem

The ultrafilter u(b) is nonprincipal (free) if and only if $b \in {}^*I \setminus {}^{I}I$.

Proof: (\Rightarrow) If $b \in *[I]$ then b = *i for some $i \in I$. Transfer of $*i \in *B$ for each $B \in U$ guarantees $i \in \bigcap U$, so i is a generator for U.

(\Leftarrow) If \mathcal{U} is principal, $\{i\} \in \mathcal{U}$ for some $i \in I$. However, $*\{i\} = \{*i\}$ so the only possible hyperprincipal generator for \mathcal{U} is *i.

くロ と く 同 と く ヨ と 一

Nonstandard Frameworks Interaction with Ultrafilters

Existence of Nonstandard Elements

Given that *I* is infinite, the collection {*I* \ {*i*} : *i* ∈ *I*} has the FIP.

伺 ト イヨト イヨト

Nonstandard Frameworks Interaction with Ultrafilters

Existence of Nonstandard Elements

- Given that *I* is infinite, the collection {*I* \ {*i*} : *i* ∈ *I*} has the FIP.
- The intersection ∩_{i∈I} *(I \ {i}) = ∩_{i∈I} *I \ {*i} does not contain any element of *[I], but is inhabited, such elements generate nonprincipal ultrafilters.

周 ト イ ヨ ト イ ヨ ト

What is Keisler's Order?

Theorem (Keisler, 1967)

If \mathcal{L} is a countable language, \mathcal{U} is a regular ultrafilter on I, and $\mathcal{A} \equiv \mathcal{B}$ are elementary equivalent \mathcal{L} -structures, then the ultrapower $\mathcal{A}^{\mathcal{U}}$ is $|I|^+$ -saturated if and only if the ultrapower $\mathcal{B}^{\mathcal{U}}$ is $|I|^+$ -saturated.

• • = • • = •

What is Keisler's Order?

Theorem (Keisler, 1967)

If \mathcal{L} is a countable language, \mathcal{U} is a regular ultrafilter on I, and $\mathcal{A} \equiv \mathcal{B}$ are elementary equivalent \mathcal{L} -structures, then the ultrapower $\mathcal{A}^{\mathcal{U}}$ is $|I|^+$ -saturated if and only if the ultrapower $\mathcal{B}^{\mathcal{U}}$ is $|I|^+$ -saturated.

Keisler's order is a pre-order on first-order countable theories defined by $T_1 \leq T_2$ iff for every index set I, every ultrafilter \mathcal{U} on I, and every (or any!) $\mathcal{M}_1 \models T_1$ and $\mathcal{M}_2 \models T_2$ we have $\mathcal{M}_1^{\mathcal{U}}$ is $|I|^+$ -saturated implies $\mathcal{M}_2^{\mathcal{U}}$ is $|I|^+$ -saturated.

Background

What is Known about Keisler's Order?

Michael Wheeler Hyperprincipal Generators for Regular and Good Ultrafilters

There is a minimum class characterized by theories with NFCP (saturated by all regular ultrafilters).

伺 ト イヨト イヨト

- There is a minimum class characterized by theories with NFCP (saturated by all regular ultrafilters).
- There is a next largest class characterized by stable theories with FCP.

- There is a minimum class characterized by theories with NFCP (saturated by all regular ultrafilters).
- There is a next largest class characterized by stable theories with FCP.
- The next largest class is the class of the theory of the random graph (Shelah, 1990).

- There is a minimum class characterized by theories with NFCP (saturated by all regular ultrafilters).
- There is a next largest class characterized by stable theories with FCP.
- The next largest class is the class of the theory of the random graph (Shelah, 1990).
- Keisler's order is not well-founded (Malliaris and Shelah, 2018) and has a continuum sized antichain (Malliaris and Shelah, 2021).

- There is a minimum class characterized by theories with NFCP (saturated by all regular ultrafilters).
- There is a next largest class characterized by stable theories with FCP.
- The next largest class is the class of the theory of the random graph (Shelah, 1990).
- Keisler's order is not well-founded (Malliaris and Shelah, 2018) and has a continuum sized antichain (Malliaris and Shelah, 2021).
- Keisler's order has a maximum class (Keisler, 1967) characterized by theories that are only saturated by good ultrafilters.

Regular Ultrafilters Regular and Good Ultrafilters

Regular Ultrafilters

Definition (Regular Ultrafilter)

An ultrafilter \mathcal{U} on a set I is regular if there exists a subset $X \subseteq \mathcal{U}$ with |X| = |I| such that every infinite subset of X has empty intersection.

э

Regular Ultrafilters Regular and Good Ultrafilters

Regular Ultrafilters

Definition (Regular Ultrafilter)

An ultrafilter \mathcal{U} on a set I is regular if there exists a subset $X \subseteq \mathcal{U}$ with |X| = |I| such that every infinite subset of X has empty intersection.

Theorem

If A is an infinite set and U an ultrafilter on I, then U is regular if and only if every $C \subseteq A^{\mathcal{U}}$ with $|C| \leq |I|$ is contained^{*} in an ultraproduct of the form $\prod_{i \in \mathcal{U}} B_i$ where each B_i is a finite subset of A.

Regular Ultrafilters Regular and Good Ultrafilters

What is a Regular Hyperprincipal Generator?

Theorem (Regular Generator)

The ultrafilter u(i) is regular on I if and only if for every (equivalently, any) $X \subseteq I$ with |X| = |I| there is a function $f: I \to \mathcal{P}_{\omega}(I)$ such that $*[X] \subseteq *f(i)$.

What is a Regular Hyperprincipal Generator?

Theorem (Regular Generator)

The ultrafilter u(i) is regular on I if and only if for every (equivalently, any) $X \subseteq I$ with |X| = |I| there is a function $f: I \to \mathcal{P}_{\omega}(I)$ such that $*[X] \subseteq *f(i)$.

For any set B in $\mathcal{U}(A)$ there is embedded $B^{u(i)} \to \mathcal{U}(^*A)$ defined by $[f] \mapsto ^*f(i)$, so $*[X] \subseteq ^*f(i) \in ^*\mathcal{P}_{\omega}(I)$ expresses that *[X]"appears to be finite" in $^*\mathcal{U}(A)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Well-definedness of the Keisler Order

A sketch of a proof of the well-definedness of the Keisler order:

For a "small" type Φ(x) in a regular ultrapower (embedded in *U(A)), we can embed Φ(x) into a "hyperfinite" set of formula.

周 ト イ ヨ ト イ ヨ ト

Well-definedness of the Keisler Order

A sketch of a proof of the well-definedness of the Keisler order:

- For a "small" type Φ(x) in a regular ultrapower (embedded in *U(A)), we can embed Φ(x) into a "hyperfinite" set of formula.
- A logically equivalent hyperfinite set of formula can be found in the ultrapower of any elementary equivalent structure by using transfer.

Well-definedness of the Keisler Order

A sketch of a proof of the well-definedness of the Keisler order:

- For a "small" type Φ(x) in a regular ultrapower (embedded in *U(A)), we can embed Φ(x) into a "hyperfinite" set of formula.
- A logically equivalent hyperfinite set of formula can be found in the ultrapower of any elementary equivalent structure by using transfer.
- If the formulas corresponding to the original type are realized in our new structure, they must also be realized in the original structure.

Regular Ultrafilters Regular and Good Ultrafilters

Regular and Good Ultrafilters

Definition

An ultrafilter \mathcal{U} on I is good if for every monotone $f : \mathcal{P}_{\omega}(I) \to \mathcal{U}$ there is a multiplicative function $g : \mathcal{P}_{\omega}(I) \to \mathcal{U}$ that is pointwise a subset of f.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Regular Ultrafilters Regular and Good Ultrafilters

Regular and Good Ultrafilters

Definition

An ultrafilter \mathcal{U} on I is good if for every monotone $f : \mathcal{P}_{\omega}(I) \to \mathcal{U}$ there is a multiplicative function $g : \mathcal{P}_{\omega}(I) \to \mathcal{U}$ that is pointwise a subset of f.

Theorem

An ultrafilter \mathcal{U} on I is regular and good if and only if for every structure \mathcal{B} in a countable language the ultrapower $\mathcal{B}^{\mathcal{U}}$ is $|I|^+$ -saturated.

Regular Ultrafilters Regular and Good Ultrafilters

What is a Regular and Good Generator?

Theorem

The ultrafilter u(i) is both regular and good if and only if whenever F is a collection of functions $f: I \to U(A)$ of bounded rank with $|F| \le |I|$ and $B = \{*f(i) : f \in F\}$ has the FIP there is a function $g: I \to U(A)$ of bounded rank such that $*g(i) \in \bigcap B$.

Regular Ultrafilters Regular and Good Ultrafilters

What is a Regular and Good Generator?

Theorem

The ultrafilter u(i) is both regular and good if and only if whenever F is a collection of functions $f: I \to U(A)$ of bounded rank with $|F| \le |I|$ and $B = \{*f(i) : f \in F\}$ has the FIP there is a function $g: I \to U(A)$ of bounded rank such that $*g(i) \in \bigcap B$.

Sketch of proof that regular and good ultrafilters saturate all theories: Take *B* to be the collection of sets $\varphi(\mathcal{C}^{u(i)})$ for each $\varphi(x)$ in the type.

Regular Ultrafilters Regular and Good Ultrafilters

What is a Regular and Good Generator?

Theorem

The ultrafilter u(i) is both regular and good if and only if whenever F is a collection of functions $f: I \to U(A)$ of bounded rank with $|F| \le |I|$ and $B = \{*f(i) : f \in F\}$ has the FIP there is a function $g: I \to U(A)$ of bounded rank such that $*g(i) \in \bigcap B$.

Sketch of proof that regular and good ultrafilters saturate all theories: Take *B* to be the collection of sets $\varphi(\mathcal{C}^{u(i)})$ for each $\varphi(x)$ in the type. *B* has the FIP by compactness, and *g* can be taken such that $g: I \to C$, so $*g(i) \in \mathcal{C}^{u(i)}$.

イロト イポト イラト イラト

Thank you!

Regular Ultrafilters Regular and Good Ultrafilters

Any Questions?

Michael Wheeler Hyperprincipal Generators for Regular and Good Ultrafilters

< ロ > < 回 > < 回 > < 回 > < 回 >

э