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Preliminary Definitions

Definition (U(A))
Let A be any set. The universe over A is the collection⋃

n∈N
Un(A)

where U0(A) := A and Un+1(A) := P(Un(A)) ∪ Un(A).

Every finitary function and relation on A appears in U(A), so every
finitary structure on A can be thought of as a subset of U(A).
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Preliminary Definitions

Definition (Nonstandard Framework)

Given a set A, a nonstandard framework on A is a set ∗A and a
function ∗ : U(A) → U(∗A) satisfying

1 (∗ ↾ A) is an injective map A ↪→ ∗A and ∗(A) = ∗A.

2 ∗∅ = ∅.
3 (Transfer) For every bounded quantifier sentence φ in the

language of set theory expanded by constants from U(A) we
have that (U(A) ⊨ φ) ⇐⇒ (∗U(A) ⊨ φ).

Note: ∗U(A) is the substructure of U(∗A) generated by the
∈-downward closure of ∗[U(A)].
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Preliminary Definitions

Definition (Enlargement)

If a nonstandard framework ∗ : U(A) → U(∗A) also satisfies “for
every F ∈ U(A) that is a collection of elements of rank greater
than 0 with the finite intersection property (FIP) there is some

b ∈
⋂
f ∈F

∗f

with b ∈ ∗U(A)”, we say that ∗ (or ∗U(A)) is an enlargement of
U(A).

If A is the base set for a finitary structure A and Φ(x) is a type
over A, the set F = {φ(A) : φ(x) ∈ Φ(x)} has the FIP, and the
guaranteed element b is a realization of the type Φ(x) in ∗A.
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Existence of Enlargements

Theorem

Enlargements exist.

Proof: Use Mostowski collapse on a regular bounded ultrapower of
U(A).

Theorem (Keisler)

Every enlargement is locally an ultrapower.
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Hyperprincipal Generators

1 Suppose that I ⊆ A, U is an ultrafilter on I , and
∗ : U(A) → U(∗A) is a nonstandard framework. Then⋂

B∈U

∗B ̸= ∅.

2 Suppose that b ∈ ∗U(A) is such an element. Then
u(b) := {B ⊆ I : b ∈ ∗B} has the FIP: for any finite Γ ⊆ u(b)
the statements

∃i ∈ I ,
∧
B∈Γ

i ∈ B and ∃i ∈ ∗I ,
∧
B∈Γ

i ∈ ∗B

are equivalent by transfer, and the latter is witnessed by b for
any Γ.
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Hyperprincipal Generators

3 u(b) extends U and has the FIP so u(b) = U . We call b a
hyperprincipal generator for U .

4 Essentially the same construction works for filters in general
(single element generators are replaced with generating sets),
giving a Galois correspondence between P(P(I )) and P(∗I )
where the closed sets in P(P(I )) are filters on I .
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Ultrapowers Using Generators

1 Suppose that B is a structure on some B ⊆ A.

2 Then Bu(i) embeds in ∗A via [f ] 7→ ∗f (i).

3 For every function g and relation E in the structure, ∗g and
∗E restricted to the image of the above embedding are the
corresponding functions and relations on the ultrapower.
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Properties of u(b) = U from Properties of b

Question: How are the properties of an ultrafilter u(b) = U
reflected in the properties of b?

Theorem

The ultrafilter u(b) is nonprincipal (free) if and only if b ∈ ∗I \ ∗[I ].

Proof: (⇒) If b ∈ ∗[I ] then b = ∗i for some i ∈ I . Transfer of
∗i ∈ ∗B for each B ∈ U guarantees i ∈

⋂
U , so i is a generator for

U .
(⇐) If U is principal, {i} ∈ U for some i ∈ I . However, ∗{i} = {∗i}
so the only possible hyperprincipal generator for U is ∗i .
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Existence of Nonstandard Elements

1 Given that I is infinite, the collection {I \ {i} : i ∈ I} has the
FIP.

2 The intersection
⋂

i∈I
∗(I \ {i}) =

⋂
i∈I

∗I \ {∗i} does not
contain any element of ∗[I ], but is inhabited, such elements
generate nonprincipal ultrafilters.
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Background

What is Keisler’s Order?

Theorem (Keisler, 1967)

If L is a countable language, U is a regular ultrafilter on I , and
A ≡ B are elementary equivalent L-structures, then the ultrapower
AU is |I |+-saturated if and only if the ultrapower BU is
|I |+-saturated.

Keisler’s order is a pre-order on first-order countable theories
defined by T1 ≤ T2 iff for every index set I , every ultrafilter U on
I , and every (or any!) M1 ⊨ T1 and M2 ⊨ T2 we have MU

1 is
|I |+-saturated implies MU

2 is |I |+-saturated.
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Regular and Good Ultrafilters
Background

What is Known about Keisler’s Order?

1 There is a minimum class characterized by theories with
NFCP (saturated by all regular ultrafilters).

2 There is a next largest class characterized by stable theories
with FCP.

3 The next largest class is the class of the theory of the random
graph (Shelah, 1990).

4 Keisler’s order is not well-founded (Malliaris and Shelah,
2018) and has a continuum sized antichain (Malliaris and
Shelah, 2021).

5 Keisler’s order has a maximum class (Keisler, 1967)
characterized by theories that are only saturated by good
ultrafilters.
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Regular Ultrafilters

Definition (Regular Ultrafilter)

An ultrafilter U on a set I is regular if there exists a subset X ⊆ U
with |X | = |I | such that every infinite subset of X has empty
intersection.

Theorem

If A is an infinite set and U an ultrafilter on I , then U is regular if
and only if every C ⊆ AU with |C | ≤ |I | is contained∗ in an
ultraproduct of the form

∏
i∈U Bi where each Bi is a finite subset

of A.
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What is a Regular Hyperprincipal Generator?

Theorem (Regular Generator)

The ultrafilter u(i) is regular on I if and only if for every
(equivalently, any) X ⊆ I with |X | = |I | there is a function
f : I → Pω(I ) such that ∗[X ] ⊆ ∗f (i).

For any set B in U(A) there is embedded Bu(i) → U(∗A) defined
by [f ] 7→ ∗f (i), so ∗[X ] ⊆ ∗f (i) ∈ ∗Pω(I ) expresses that ∗[X ]
“appears to be finite” in ∗U(A).
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Well-definedness of the Keisler Order

A sketch of a proof of the well-definedness of the Keisler order:

1 For a “small” type Φ(x) in a regular ultrapower (embedded in
∗U(A)), we can embed Φ(x) into a “hyperfinite” set of
formula.

2 A logically equivalent hyperfinite set of formula can be found
in the ultrapower of any elementary equivalent structure by
using transfer.

3 If the formulas corresponding to the original type are realized
in our new structure, they must also be realized in the original
structure.
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Regular and Good Ultrafilters

Definition

An ultrafilter U on I is good if for every monotone f : Pω(I ) → U
there is a multiplicative function g : Pω(I ) → U that is pointwise a
subset of f .

Theorem

An ultrafilter U on I is regular and good if and only if for every
structure B in a countable language the ultrapower BU is
|I |+-saturated.
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What is a Regular and Good Generator?

Theorem

The ultrafilter u(i) is both regular and good if and only if
whenever F is a collection of functions f : I → U(A) of bounded
rank with |F | ≤ |I | and B = {∗f (i) : f ∈ F} has the FIP there is a
function g : I → U(A) of bounded rank such that ∗g(i) ∈

⋂
B.

Sketch of proof that regular and good ultrafilters saturate all
theories: Take B to be the collection of sets φ(Cu(i)) for each φ(x)
in the type. B has the FIP by compactness, and g can be taken
such that g : I → C , so ∗g(i) ∈ Cu(i).
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Thank you!

Any Questions?
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