Stability in abstract elementary classes of modules

Marcos Mazari Armida mmazaria@andrew.cmu.edu

Carnegie Mellon University

April 2021 Panglobal Algebra and Logic Seminar

- Abstract elementary classes were introduced by Shelah in the 70's.
- Shelah's eventual categoricity conjecture.
- The abstract theory has developed rapidly.
- Abelian groups and modules
- Stability.

Basic notions

- Stability
- Oniversal models

Image: A matrix

æ

Basic notions: Model theory of modules

pp-formulas and pp-types

Let *R* be a ring and $L_R = \{0, +, -\} \cup \{r \cdot : r \in R\}$ be the language of *R*-modules.

- ϕ is a positive primitive formula if it is an existentially quantified finite system of linear equations.
- $pp(\bar{b}/A, N)$ are the *pp*-formulas satisfied by \bar{b} in *N* with parameters in *A*.

Pure submodules

 $M \leq_p N$ if and only if $M \subseteq N$ and $pp(\bar{a}/\emptyset, M) = pp(\bar{a}/\emptyset, N)$ for every $\bar{a} \in M^{<\omega}$.

For abelian groups:

 $G \leq_p H$ if and only if $nH \cap G = nG$ for every $n \in \mathbb{N}$.

Marcos Mazari-Armida

An abstract elementary class is a pair $\mathbf{K} = (K, \leq_{\mathbf{K}})$, where K is a class of $\tau(\mathbf{K})$ -structures and $\leq_{\mathbf{K}}$ is a partial order on K.

Key axioms

- **1** If $M \leq_{\mathbf{K}} N$, then M is a substructure of N.
- Q Tarski-Vaught axioms: Suppose δ is a limit ordinal and {M_i ∈ K : i < δ} is an increasing chain. Then:
 - $M_{\delta} := \bigcup_{i < \delta} M_i \in K$ and $M_i \leq_{\mathbf{K}} M_{\delta}$ for every $i < \delta$.
 - Smoothness: If there is some N ∈ K so that for all i < δ we have M_i ≤_K N, then we also have M_δ ≤_K N.
- Solution Solution Constraints and the exists a cardinal λ ≥ |τ(K)| + ℵ₀ such that for any M ∈ K and A ⊆ |M|, there is some M₀ ≤_K M such that A ⊆ |M₀| and ||M₀|| ≤ |A| + λ. We write LS(K) for the minimal such cardinal.

• (T, \preceq) for T a complete first-order theory.

- 2 (Ab, \leq) and (Ab, \leq_p) .
- $(\mathsf{TF},\leq_p).$
- (Tor, \leq_p).
- (\aleph_1 -free, \leq_p).
- (*R*-Mod, \subseteq_R) and (*R*-Mod, \leq_p).
- (*R*-Flat, \leq_p).
- (*R*-Absp, \leq_p).
- **(** V, \subseteq **)** where V is a variety.
- **10** ...

3

< 67 ▶

Amalgamation property (AP)

Every $M \leq_{\mathbf{K}} N_1, N_2$ can be completed to a commutative square in \mathbf{K} .

Examples

- AP: $(R-Mod, \leq_p)$, $(R-Absp, \leq_p)$.
- No AP: $(\aleph_1$ -free, \leq_p).
- AP?: (B_0, \leq_p) .

イロト イヨト イヨト

3

Some properties

- K has the *joint embedding property* (JEP): if every M, N ∈ K can be K-embedded to a model in K.
- ② K has no maximal models (NMM): if every M ∈ K can be properly extended in K.

Examples

All the examples we introduced have JEP and NMM with the exception of Example 9.

- Basic notions
- Stability
- Oniversal models

2

Stability: Galois-types

We assume amalgamation for simplicity.

Pre-types

0
$$\mathbf{K}^3 = \{(a, M, N) : M, N \in \mathbf{K}, M \leq_{\mathbf{K}} N \text{ and } a \in N\}.$$

② For
$$(a_1, M_1, N_1), (a_2, M_2, N_2) \in K^3$$
, we say $(a_1, M_1, N_1)E(a_2, M_2, N_2)$ if:

3

イロト 不得下 イヨト イヨト

Galois-types

- For $(a, M, N) \in \mathbf{K}^3$, let $\mathbf{gtp}_{\mathbf{K}}(a/M; N) := [(a, M, N)]_E$.
- **2** gS(M) is the set of Galois-types over M.

T is a complete first-order theory: $(Mod(T), \preceq)$

 $\mathbf{gtp}_{\mathbf{K}}(a/M; N) = \mathbf{gtp}_{\mathbf{K}}(b/M; N)$ if and only if tp(a/M, N) = tp(b/M, N)

Stable

- **K** is λ -stable if $|\mathbf{gS}(M)| \leq \lambda$ for all $M \in \mathbf{K}$ of cardinality λ .
- **K** is stable if there is a λ such that **K** is λ -stable.

Theorem (Fisher-Bauer 70s)

If T is a complete first-order theory extending the theory of modules, then $(Mod(T), \leq_p)$ is stable.

Question 1

Let *R* be an associative ring with unity. If (K, \leq_p) is an AEC of modules, is **K** stable? Is this true if $R = \mathbb{Z}$? Under what conditions on *R* is this true?

Stability under Hypothesis 1

Hypothesis 1

Let $\mathbf{K} = (K, \leq_p)$ be an AEC of modules such that:

- *K* is closed under direct sums.
- **2** K is closed under direct summands.

Solution K is closed under pure-injective envelopes, i.e., if M ∈ K, then PE(M) ∈ K.

Examples

- *R*-modules.
- Absolutely pure modules.
- Locally injective modules.
- Locally pure-injective modules.

Lemma (M.)

Let $M, N_1, N_2 \in K$, $M \leq_p N_1, N_2$, $b_1 \in N_1$ and $b_2 \in N_2$. Then:

 $gtp(b_1/M; N_1) = gtp(b_2/M; N_2)$ iff $pp(b_1/M, N_1) = pp(b_2/M, N_2)$.

Theorem (M.)

Let $\lambda \geq \mathsf{LS}(\mathbf{K})$. If $\lambda^{|\mathcal{R}|+\aleph_0} = \lambda$, then \mathbf{K} is λ -stable.

Proof Sketch.

- Let {gtp(a_i/M ; N) : $i < \alpha$ } be an enumeration of gS(M).
- Let Φ : $\mathbf{gS}(M) \to S_{pp}^{Th(N)}(M)$ be such that $\phi(\mathbf{gtp}(a_i/M; N)) = pp(a_i/M, N).$
- Φ is an injective function and use first-order stability.

イロト イポト イヨト イヨト 二日

Stability under Hypothesis 2

Hypothesis 2

Let $\mathbf{K} = (K, \leq_p)$ be an AEC of modules such that:

- K is closed under direct sums.
- *K* is closed under pure submodules.
- **③** *K* is closed under pure epimorphic images: $ker(f) \leq_p dom(f)$.

Examples

- R-modules.
- O Torsion-free groups.
- Flat modules.
- Abelian p -groups.
- §-torsion modules.

Galois-types=*pp*-types?

- I do not know.
- We can identify Galois-types and *pp*-types in the class of *p*-groups.

Theorem (M.)

If $\lambda^{|R|+\aleph_0} = \lambda$, then **K** is λ -stable.

Lemma

There is a non-forking relation on Galois-types that satisfies:

- (Lieberman-Rosický-Vasey) (Uniqueness) If $M \leq_p N$, $p, q \in \mathbf{gS}(N)$, p, q do not fork over M and $p \upharpoonright_M = q \upharpoonright_M$, then p = q.
- (M.) (Local character) If p ∈ gS(M), then there is N ≤_p M such that p does not fork over N and ||N|| ≤ |R| + ℵ₀.

Proof sketch.

- Let P be the pushout of $(i: M_0 \to M_1, j: M_0 \to M_2)$ in R-Mod.
- $M_1 \stackrel{\sim}{\underset{M_0}{\cup}} M_2$ if the unique map $t : P \to N'$ is a pure embedding.
- One extends this to Galois-types.

Hypothesis 3

Let $\mathbf{K} = (K, \leq_p)$ be an AEC with $K \subseteq TF$ such that:

• *K* has arbitrarily large models.

K is closed under pure submodules.

Examples

- Torsion-free abelian groups.
- \aleph_1 -free abelian groups.
- Finitely Butler groups.

Lemma (M.)

If $\lambda^{|R|+\aleph_0} = \lambda$, then **K** is λ -stable.

Proof sketch. One identifies Galois-types in the class with Galois-types in the class of torsion-free abelian groups.

Why does it works for classes of torsion-free groups?

If $N_1, N_2 \leq_{p} N$, then $N_1 \cap N_2 \leq_{p} N$.

Theorem (M.)

Assume *R* is Von Neumann regular. If **K** is closed under submodules and has arbitrarily large models, then **K** is λ -stable for every λ such that $\lambda^{|R|+\aleph_0} = \lambda$.

イロト 不得下 イヨト イヨト

- Basic notions
- Stability
- **3** Universal models

- ∢ ⊢⊒ →

2

Notation: $\mathbf{K}_{\lambda} = \{ M \in K : M \text{ has cardinality } \lambda \}$

Universal model

- M ∈ K is a universal model in K_λ if M ∈ K_λ and if given any N ∈ K_λ, there is a K-embedding f : N → M, i.e., f : N ≅ f[N] ≤_K M.
- We say that K has a universal model of cardinality λ if there is a universal model in K_λ.

Example

 $(\mathbb{Q}\text{-VS}, \subseteq_{\mathbb{Q}})$: For every λ , $\mathbb{Q}^{(\lambda)}$ is a universal model of size λ .

Abelian *p*-groups

G is a *p*-group if every element $g \neq 0$ has order p^n for some $n \in \mathbb{N}$.

Example

(*p*-groups, \subseteq): For every λ , $\mathbb{Z}(p^{\infty})^{(\lambda)}$ is a universal model of size λ .

Question 2 (Abelian groups by L. Fuchs)

For which cardinals λ , does (*p*-groups, \leq_p) has a universal model of cardinality λ ? The same question for torsion-free abelian groups with pure embeddings.

Answer under GCH

There is a universal model for every uncountable cardinal.

Marcos Mazari-Armida

э

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem (M.)

If $\lambda^{\aleph_0} = \lambda$ or $\forall \mu < \lambda(\mu^{\aleph_0} < \lambda)$, then (*p*-groups, \leq_p) has a universal model of cardinality λ .

Proof sketch.

- If $\lambda^{\aleph_0} = \lambda$, then (p-groups, $\leq_p)$ is λ -stable.
- (p-groups, \leq_p) has AP, JEP and NMM.
- (Kucera-M.) (*p*-groups, \leq_p) has a universal model of cardinality λ .

Lemma (Kucera-M.)

Let **K** be an AEC with AP, JEP and NMM. Assume there is a κ such if $\theta^{\kappa} = \theta$, then **K** is θ -stable. If $\lambda^{\kappa} = \lambda$ or $\forall \mu < \lambda(\mu^{\kappa} < \lambda)$, then **K** has a universal model of size λ .

イロト 不得下 イヨト イヨト

Lemma (M.)

Let λ be a regular cardinal and μ be a regular cardinal. If $\mu^+ < \lambda < \mu^{\aleph_0}$, then (*p*-groups, \leq_p) does not have a universal model of cardinality λ .

An answer below \aleph_{ω} without \aleph_0 and \aleph_1

For $n \ge 2$, (p-groups, $\le_p)$ has a universal model of cardinality \aleph_n if and only if $2^{\aleph_0} \le \aleph_n$.

Proof sketch.

•
$$\Leftarrow$$
: $\aleph_n^{\aleph_0} = \aleph_n$.

•
$$\Rightarrow: \aleph_0^+ < \aleph_n < \aleph_n^{\aleph_0}.$$

Remark

- There are partial solutions for \aleph_1 .
- **2** The problem is wide open for \aleph_0 , \aleph_ω , and singular cardinals.

Marcos Mazari-Armida

Stability and supertstability

- Marcos Mazari-Armida, Some stable non-elementary classes of modules, submitted, 20 pages. URL: https://arxiv.org/abs/2010.02918
- Marcos Mazari-Armida, *A model theoretic solution to a problem of László Fuchs*, Journal of Algebra **567** (2021), 196–209.

Thank you!

< 一型

2