Relative Maltsev definability (of some commutator properties)

Kearnes
PALS
September 27, 2022

What is this talk about?

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

(1) This class of varieties is not Maltsev definable.

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

(1) This class of varieties is not Maltsev definable.
(2) If one restricts to the class of varieties with a Taylor term, then this class of varieties 'becomes' Maltsev definable.

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

(1) This class of varieties is not Maltsev definable.
(2) If one restricts to the class of varieties with a Taylor term, then this class of varieties 'becomes' Maltsev definable.

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

(1) This class of varieties is not Maltsev definable.
(2) If one restricts to the class of varieties with a Taylor term, then this class of varieties 'becomes' Maltsev definable.

Theorem. $\forall x \forall y([x, y]=[y, x])+\exists$ Taylor term $=\underbrace{\exists \text { difference term }}_{\text {A Maltsev definable property }}$

What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

(1) This class of varieties is not Maltsev definable.
(2) If one restricts to the class of varieties with a Taylor term, then this class of varieties 'becomes' Maltsev definable.

Theorem. $\forall x \forall y([x, y]=[y, x])+\exists$ Taylor term $=\underbrace{\exists \text { difference term }}_{\text {A Maltsev definable property }}$
This theorem has the structure $\mathscr{P}+\Gamma=\Sigma$, i.e. the class of varieties having property \mathscr{P} and satisfying the weak ground Maltsev condition Γ is definable by the Maltsev condition Σ.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists. In 2013, K+Sz+W proved Park's Conjecture for varieties with a difference term.

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists. In 2013, K+Sz+W proved Park's Conjecture for varieties with a difference term. (A finitely generated variety with a finite residual bound is finitely based.)

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists. In 2013, K+Sz+W proved Park's Conjecture for varieties with a difference term. (A finitely generated variety with a finite residual bound is finitely based.) The proof uses properties of the TC-commutator to establish a version the Freese-McKenzie property (C1).

Why prove statements of the form $\mathscr{P}+\Gamma=\Sigma$?

Answer for nonspecialists. Suppose you want to prove a theorem where you need the properties of Γ and you use the property \mathscr{P} throughout the proof. The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists. In 2013, K+Sz+W proved Park's Conjecture for varieties with a difference term. (A finitely generated variety with a finite residual bound is finitely based.) The proof uses properties of the TC-commutator to establish a version the Freese-McKenzie property (C1). To extend the result, it would help to understand TC-commutator arithmetic for varieties that have a Taylor term but not a difference term.

Review, Part 1: Maltsev definability

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic)

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones.

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones. Example: let σ be the clone sentence

$$
\begin{array}{ll}
\exists t \quad & t(x, x, x, x, x, x) \approx x \quad \& \\
& t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y) .
\end{array}
$$

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones. Example: let σ be the clone sentence

$$
\exists t \quad \begin{array}{ll}
\exists(x, x, x, x, x, x) \approx x \quad \& \\
& t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y) .
\end{array}
$$

A variety \mathcal{V} satisfies σ if the clone of \mathcal{V} contains an element ${ }^{*} t$ realizing the indicated identities.

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones. Example: let σ be the clone sentence

$$
\exists t \quad \begin{array}{ll}
\exists(x, x, x, x, x, x) \approx x \quad \& \\
& t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y) .
\end{array}
$$

A variety \mathcal{V} satisfies σ if the clone of \mathcal{V} contains an element ${ }^{*} t$ realizing the indicated identities. The sentence σ defines the class of those varieties which satisfy σ.

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones. Example: let σ be the clone sentence

$$
\begin{array}{ll}
\exists t \quad & t(x, x, x, x, x, x) \approx x \quad \& \\
& t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y) .
\end{array}
$$

A variety \mathcal{V} satisfies σ if the clone of \mathcal{V} contains an element ${ }^{*} t$ realizing the indicated identities. The sentence σ defines the class of those varieties which satisfy σ. (The σ from above is Olšák's Maltsev condition which defines the class of Taylor varieties.)

Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence ($\exists \wedge$ atomic) in the language of clones. Example: let σ be the clone sentence

$$
\begin{array}{ll}
\exists t \quad & t(x, x, x, x, x, x) \approx x \quad \& \\
& t(x, y, y, y, x, x) \approx t(y, x, y, x, y, x) \approx t(y, y, x, x, x, y) .
\end{array}
$$

A variety \mathcal{V} satisfies σ if the clone of \mathcal{V} contains an element ${ }^{*} t$ realizing the indicated identities. The sentence σ defines the class of those varieties which satisfy σ. (The σ from above is Olšák's Maltsev condition which defines the class of Taylor varieties.)

An (ordinary) Maltsev condition is a sequence $\Sigma=\left(\sigma_{n}\right)_{n \in \omega}$ of successively weaker strong Maltsev conditions $\left(\forall n\left(\sigma_{n} \vdash \sigma_{n+1}\right)\right.$). A variety \mathcal{V} satisfies Σ if it satisfies σ_{n} for some n. Σ defines the class of those varieties which satisfy Σ.

Maltsev Definability, Part 2

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R} \mathcal{P} \leq \mathcal{R N G}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R P} \leq \mathcal{R N G}$. $)$
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R P} \leq \mathcal{R N G}$. $)$
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R P} \leq \mathcal{R N G}$. $)$
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R \mathcal { P }} \leq \mathcal{R N G}$.)
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}. Write $[\mathcal{U}]=[\mathcal{V}]$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R \mathcal { P }} \leq \mathcal{R N G}$.)
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}. Write $[\mathcal{U}]=[\mathcal{V}]$.
- Order the bi-interpretability classes by $[\mathcal{U}] \leq[\mathcal{V}]$ if $\mathcal{U} \leq \mathcal{V}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R \mathcal { P }} \leq \mathcal{R N G}$.)
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}. Write $[\mathcal{U}]=[\mathcal{V}]$.
- Order the bi-interpretability classes by $[\mathcal{U}] \leq[\mathcal{V}]$ if $\mathcal{U} \leq \mathcal{V}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R \mathcal { P }} \leq \mathcal{R N G}$.)
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}. Write $[\mathcal{U}]=[\mathcal{V}]$.
- Order the bi-interpretability classes by $[\mathcal{U}] \leq[\mathcal{V}]$ if $\mathcal{U} \leq \mathcal{V}$.

Maltsev Definability, Part 2

Let \mathcal{O} be the variety with the finite presentation associated to Olšák's Maltsev condition:

$$
\langle t \mid t(x x x x x x) \approx x, t(x y y y x x) \approx t(y x y x y x) \approx t(y y x x x y)\rangle
$$

The clone of a variety \mathcal{V} satisfies the clone sentence σ from the previous slide iff there is a clone homomorphism $\operatorname{Clo}(\mathcal{O}) \rightarrow \operatorname{Clo}(\mathcal{V})$. Write $\mathcal{O} \leq \mathcal{V}$.

- If $\mathcal{U} \leq \mathcal{V}$, then \mathcal{U} is interpretable in \mathcal{V}. $(\mathcal{G R \mathcal { P }} \leq \mathcal{R N G}$.)
- Write $\mathcal{U} \equiv \mathcal{V}$ for $\mathcal{U} \leq \mathcal{V} \& \mathcal{V} \leq \mathcal{U}$. \mathcal{U} is bi-interpretable with \mathcal{V}. Write $[\mathcal{U}]=[\mathcal{V}]$.
- Order the bi-interpretability classes by $[\mathcal{U}] \leq[\mathcal{V}]$ if $\mathcal{U} \leq \mathcal{V}$.

The interpretability relation \leq is a lattice order on bi-interpretability classes of varieties.

Maltsev definability visually

Maltsev definability visually

Let's draw some filters for the category of clones modulo \equiv considered as a lattice. (The "Lattice of Interpretability Types of Varieties".)

Maltsev definability visually

Let's draw some filters for the category of clones modulo \equiv considered as a lattice. (The "Lattice of Interpretability Types of Varieties".)

A strong Maltsev filter

Maltsev definability visually

Let's draw some filters for the category of clones modulo \equiv considered as a lattice. (The "Lattice of Interpretability Types of Varieties".)

A strong Maltsev filter

A Maltsev filter

Relative Maltsev definability

Relative Maltsev definability

The classes of varieties that I want to talk about today (e.g. the class of varieties with commutative commutator) are not Maltsev definable classes, but when restricted to the Taylor filter (= Oľ̌ák filter) they 'become' Maltsev definable.

Relative Maltsev definability

The classes of varieties that I want to talk about today (e.g. the class of varieties with commutative commutator) are not Maltsev definable classes, but when restricted to the Taylor filter (= Olšák filter) they 'become' Maltsev definable.

Relative Maltsev definability

The classes of varieties that I want to talk about today (e.g. the class of varieties with commutative commutator) are not Maltsev definable classes, but when restricted to the Taylor filter (= Olšák filter) they 'become' Maltsev definable.

Relative Maltsev definability

The classes of varieties that I want to talk about today (e.g. the class of varieties with commutative commutator) are not Maltsev definable classes, but when restricted to the Taylor filter (= Olšák filter) they 'become' Maltsev definable.

Review \#2: The (TC-)commutator

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition.

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices)

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices) If \mathbf{A} is an algebra and $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$, then an α, β-matrix is a 2×2 matrix of elements of \mathbf{A} of the form

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
t(\mathbf{a}, \mathbf{u}) & t(\mathbf{a}, \mathbf{v}) \\
t(\mathbf{b}, \mathbf{u}) & t(\mathbf{b}, \mathbf{v})
\end{array}\right]
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term operation of $\mathbf{A}, \mathbf{a} \alpha \mathbf{b}$, and $\mathbf{u} \beta \mathbf{v}$.

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices) If \mathbf{A} is an algebra and $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$, then an α, β-matrix is a 2×2 matrix of elements of \mathbf{A} of the form

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
t(\mathbf{a}, \mathbf{u}) & t(\mathbf{a}, \mathbf{v}) \\
t(\mathbf{b}, \mathbf{u}) & t(\mathbf{b}, \mathbf{v})
\end{array}\right]
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term operation of $\mathbf{A}, \mathbf{a} \alpha \mathbf{b}$, and $\mathbf{u} \beta \mathbf{v}$.

Definition.

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices) If \mathbf{A} is an algebra and $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$, then an α, β-matrix is a 2×2 matrix of elements of \mathbf{A} of the form

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
t(\mathbf{a}, \mathbf{u}) & t(\mathbf{a}, \mathbf{v}) \\
t(\mathbf{b}, \mathbf{u}) & t(\mathbf{b}, \mathbf{v})
\end{array}\right]
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term operation of $\mathbf{A}, \mathbf{a} \alpha \mathbf{b}$, and $\mathbf{u} \beta \mathbf{v}$.
Definition. (The centralizer)

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices) If \mathbf{A} is an algebra and $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$, then an α, β-matrix is a 2×2 matrix of elements of \mathbf{A} of the form

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
t(\mathbf{a}, \mathbf{u}) & t(\mathbf{a}, \mathbf{v}) \\
t(\mathbf{b}, \mathbf{u}) & t(\mathbf{b}, \mathbf{v})
\end{array}\right]
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term operation of $\mathbf{A}, \mathbf{a} \alpha \mathbf{b}$, and $\mathbf{u} \beta \mathbf{v}$.
Definition. (The centralizer) α centralizes β modulo δ if $p \equiv q(\bmod \delta)$ implies $r \equiv s(\bmod \delta)$ whenever $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ is an α, β-matrix. Write $\mathbf{C}(\alpha, \beta ; \delta)$ to denote this.

Review \#2: The (TC-)commutator

The properties I am interested in are related to the commutator operation defined by the term condition.

Definition. (α, β-matrices) If \mathbf{A} is an algebra and $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$, then an α, β-matrix is a 2×2 matrix of elements of \mathbf{A} of the form

$$
\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
t(\mathbf{a}, \mathbf{u}) & t(\mathbf{a}, \mathbf{v}) \\
t(\mathbf{b}, \mathbf{u}) & t(\mathbf{b}, \mathbf{v})
\end{array}\right]
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term operation of $\mathbf{A}, \mathbf{a} \alpha \mathbf{b}$, and $\mathbf{u} \beta \mathbf{v}$.
Definition. (The centralizer) α centralizes β modulo δ if $p \equiv q(\bmod \delta)$ implies $r \equiv s(\bmod \delta)$ whenever $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ is an α, β-matrix. Write $\mathbf{C}(\alpha, \beta ; \delta)$ to denote this.

The (TC-)commutator, Part 2

The (TC-)commutator, Part 2

Definition.

The (TC-)commutator, Part 2

Definition. (The commutator)

The (TC-)commutator, Part 2

Definition. (The commutator) Let $[\alpha, \beta]$ be the least δ for which $\mathbf{C}(\alpha, \beta ; \delta)$ holds.

The (TC-)commutator, Part 2

Definition. (The commutator) Let $[\alpha, \beta]$ be the least δ for which $\mathbf{C}(\alpha, \beta ; \delta)$ holds.

Remark.

The (TC-)commutator, Part 2

Definition. (The commutator) Let $[\alpha, \beta]$ be the least δ for which $\mathbf{C}(\alpha, \beta ; \delta)$ holds.

Remark. The implication

$$
\mathbf{C}(\alpha, \beta ; \delta) \Longrightarrow[\alpha, \beta] \leq \delta
$$

follows from the definition of the commutator.

The (TC-)commutator, Part 2

Definition. (The commutator) Let $[\alpha, \beta]$ be the least δ for which $\mathbf{C}(\alpha, \beta ; \delta)$ holds.

Remark. The implication

$$
\mathbf{C}(\alpha, \beta ; \delta) \Longrightarrow[\alpha, \beta] \leq \delta
$$

follows from the definition of the commutator. For groups, the converse implication also holds. (The centralizer and the commutator carry the same information.)

Some properties involving the centralizer \& commutator

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

- The centralizer is weakly stable under lifting in its third variable:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

- The centralizer is weakly stable under lifting in its third variable:

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

- The centralizer is weakly stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime} \leq x \cap y\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

Some properties involving the centralizer \& commutator

All properties on this page hold for the variety of groups and fail for the variety of semigroups.

- The commutator is commutative: $\forall x \forall y([x, y]=[y, x])$
- The commutator is left distributive: $\forall x \forall y \forall z([x+y, z]=[x, z]+[y, z])$
- The commutator is right distributive: $\forall x \forall y \forall z([x, y+z]=[x, y]+[x, z])$
- The commutator is right semidistributive:

$$
\forall x \forall y \forall z(([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z]))
$$

- Right annihilators exist: $\delta \leq \theta \Longrightarrow \exists$ largest x such that $\mathbf{C}(\theta, x ; \delta)$
- The centralizer is symmetric in its first two variables:

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

- The centralizer is defined by the commutator: $\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z$
- The centralizer is stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

- The centralizer is weakly stable under lifting in its third variable:

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime} \leq x \cap y\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

None of these commutator properties are Maltsev definable

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds.

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E \mathcal { T }}$ satisfies all of the commutator properties we are considering.

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E T}$ would satisfy the defining Maltsev condition, so

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E T}$ would satisfy the defining Maltsev condition, so
- any variety that interprets $\mathcal{S E}$ 的 would satisfy the property.

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E} \mathcal{T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E T}$ would satisfy the defining Maltsev condition, so
- any variety that interprets $\mathcal{S E \mathcal { T }}$ would satisfy the property.
- But $\mathcal{S E} \mathcal{T}$ interprets into any variety, and

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E} \mathcal{T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E \mathcal { T }}$ would satisfy the defining Maltsev condition, so
- any variety that interprets $\mathcal{S E}$ T would satisfy the property.
- But $\mathcal{S E} \mathcal{T}$ interprets into any variety, and
- each of the commutator properties on the preceding slide fails in some variety.

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E} \mathcal{T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E \mathcal { T }}$ would satisfy the defining Maltsev condition, so
- any variety that interprets $\mathcal{S E}$ T would satisfy the property.
- But $\mathcal{S E} \mathcal{T}$ interprets into any variety, and
- each of the commutator properties on the preceding slide fails in some variety.

None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all $\mathbf{A} \in \mathcal{S E} \mathcal{T}$ and all $\alpha, \beta, \delta \in \operatorname{Con}(\mathbf{A})$ it is the case that $\mathbf{C}(\alpha, \beta ; \delta)$ holds and $[\alpha, \beta]=0$ holds. From this it follows that $\mathcal{S E} \mathcal{T}$ satisfies all of the commutator properties we are considering. If any one of the commutator properties that we are considering were Maltsev definable, then

- $\mathcal{S E \mathcal { T }}$ would satisfy the defining Maltsev condition, so
- any variety that interprets $\mathcal{S E}$ T would satisfy the property.
- But $\mathcal{S E} \mathcal{T}$ interprets into any variety, and
- each of the commutator properties on the preceding slide fails in some variety. (E.g. the variety of semigroups.)

Results \#1

Results \#1

Theorem.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

(0) The centralizer is defined by the commutator.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

(0) The centralizer is defined by the commutator.

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

(0) The centralizer is defined by the commutator.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z
$$

Results \#1

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} is congruence modular. (This is a Maltsev definable property.)
(2) The commutator is left distributive:

$$
[x+y, z]=[x, z]+[y, z]
$$

(3) The commutator is right distributive.

$$
[x, y+z]=[x, y]+[x, z]
$$

(9) The centralizer is symmetric in its first two variables.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow \mathbf{C}(y, x ; z)
$$

(0) The centralizer is stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime}\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

(0) The centralizer is defined by the commutator.

$$
\mathbf{C}(x, y ; z) \Longleftrightarrow[x, y] \leq z
$$

Results \#2

Results \#2

Theorem.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

$$
\delta \leq \theta \Longrightarrow \exists \text { largest } x \text { such that } \mathbf{C}(\theta, x ; \delta)
$$

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

$$
\delta \leq \theta \Longrightarrow \exists \text { largest } x \text { such that } \mathbf{C}(\theta, x ; \delta)
$$

(0) The centralizer is weakly stable under lifting in its third variable.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

$$
\delta \leq \theta \Longrightarrow \exists \text { largest } x \text { such that } \mathbf{C}(\theta, x ; \delta)
$$

(0) The centralizer is weakly stable under lifting in its third variable.

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

$$
\delta \leq \theta \Longrightarrow \exists \text { largest } x \text { such that } \mathbf{C}(\theta, x ; \delta)
$$

(3) The centralizer is weakly stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime} \leq x \cap y\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

Results \#2

Theorem. The following properties are equivalent for a variety \mathcal{V} with a Taylor term.
(1) \mathcal{V} has a difference term. (This is a Maltsev definable property.)
(2) \mathcal{V} has commutative commutator.

$$
[x, y]=[y, x]
$$

(3) The commutator is right semidistributive.

$$
([x, y]=[x, z]) \Longrightarrow([x, y]=[x, y+z])
$$

(9) Right annihilators exist.

$$
\delta \leq \theta \Longrightarrow \exists \text { largest } x \text { such that } \mathbf{C}(\theta, x ; \delta)
$$

(3) The centralizer is weakly stable under lifting in its third variable.

$$
\mathbf{C}(x, y ; z) \&\left(z \leq z^{\prime} \leq x \cap y\right) \Longrightarrow \mathbf{C}\left(x, y ; z^{\prime}\right)
$$

