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What is this talk about?

Sample Problem. Which varieties have commutative commutator?

What I know:

1 This class of varieties is not Maltsev definable.
2 If one restricts to the class of varieties with a Taylor term, then this class

of varieties ‘becomes’ Maltsev definable.

Theorem. ∀x∀y([x, y] = [y, x]) + ∃ Taylor term = ∃ difference term︸ ︷︷ ︸
A Maltsev definable property

This theorem has the structure P + Γ = Σ, i.e. the class of varieties having
property P and satisfying the weak ground Maltsev condition Γ is definable
by the Maltsev condition Σ.
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Why prove statements of the form P + Γ = Σ?

Answer for nonspecialists. Suppose you want to prove a theorem where you
need the properties of Γ and you use the property P throughout the proof.
The hypothesis Σ will be the most general assumption which gives you both.

Answer for specialists. In 2013, K+Sz+W proved Park’s Conjecture for
varieties with a difference term. (A finitely generated variety with a finite
residual bound is finitely based.) The proof uses properties of the
TC-commutator to establish a version the Freese-McKenzie property (C1). To
extend the result, it would help to understand TC-commutator arithmetic for
varieties that have a Taylor term but not a difference term.
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Review, Part 1: Maltsev definability

A strong Maltsev condition is a positive primitive sentence (∃
∧

atomic) in the
language of clones. Example: let σ be the clone sentence

∃t t(x, x, x, x, x, x) ≈ x &
t(x, y, y, y, x, x) ≈ t(y, x, y, x, y, x) ≈ t(y, y, x, x, x, y).

A variety V satisfies σ if the clone of V contains an element∗ t realizing the
indicated identities. The sentence σ defines the class of those varieties which
satisfy σ. (The σ from above is Olšák’s Maltsev condition which defines the
class of Taylor varieties.)

An (ordinary) Maltsev condition is a sequence Σ = (σn)n∈ω of successively
weaker strong Maltsev conditions (∀n(σn ⊢ σn+1)). A variety V satisfies Σ if
it satisfies σn for some n. Σ defines the class of those varieties which satisfy
Σ.
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Maltsev Definability, Part 2

Let O be the variety with the finite presentation associated to Olšák’s Maltsev
condition:

⟨t | t(xxxxxx) ≈ x, t(xyyyxx) ≈ t(yxyxyx) ≈ t(yyxxxy)⟩.

The clone of a variety V satisfies the clone sentence σ from the previous slide
iff there is a clone homomorphism Clo(O) → Clo(V). Write O ≤ V .

If U ≤ V , then U is interpretable in V . (GRP ≤ RN G.)

Write U ≡ V for U ≤ V & V ≤ U .
U is bi-interpretable with V . Write [U ] = [V].
Order the bi-interpretability classes by [U ] ≤ [V] if U ≤ V .

The interpretability relation ≤ is a lattice order on bi-interpretability classes
of varieties.
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Maltsev definability visually

Let’s draw some filters for the category of clones modulo ≡ considered as a
lattice. (The “Lattice of Interpretability Types of Varieties”.)

s [O]

ss
s[G]

[R]

[L]

A strong Maltsev filter

ssssss

[Q0]

[Q1]
[Q2]
[Q3]

A Maltsev filter
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Relative Maltsev definability

The classes of varieties that I want to talk about today (e.g. the class of
varieties with commutative commutator) are not Maltsev definable classes,
but when restricted to the Taylor filter (= Olšák filter) they ‘become’ Maltsev
definable.

u
[O]

u u
uu u u

u u

uu
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Review #2: The (TC-)commutator

The properties I am interested in are related to the commutator operation
defined by the term condition.

Definition. (α, β-matrices) If A is an algebra and α, β ∈ Con(A), then an
α, β-matrix is a 2 × 2 matrix of elements of A of the form[

p q
r s

]
=

[
t(a, u) t(a, v)
t(b, u) t(b, v)

]

where t(x, y) is an (m + n)-ary term operation of A, a α b, and u β v.

Definition. (The centralizer) α centralizes β modulo δ if p ≡ q (mod δ)

implies r ≡ s (mod δ) whenever

[
p q
r s

]
is an α, β-matrix. Write

C(α, β; δ) to denote this.
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The (TC-)commutator, Part 2

Definition. (The commutator) Let [α, β] be the least δ for which C(α, β; δ)
holds.

Remark. The implication

C(α, β; δ) =⇒ [α, β] ≤ δ

follows from the definition of the commutator. For groups, the converse
implication also holds. (The centralizer and the commutator carry the same
information.)
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Some properties involving the centralizer & commutator

All properties on this page hold for the variety of groups and fail for the
variety of semigroups.

The commutator is commutative: ∀x∀y([x, y] = [y, x])
The commutator is left distributive: ∀x∀y∀z([x + y, z] = [x, z] + [y, z])
The commutator is right distributive: ∀x∀y∀z([x, y + z] = [x, y] + [x, z])
The commutator is right semidistributive:

∀x∀y∀z(([x, y] = [x, z]) =⇒ ([x, y] = [x, y + z]))
Right annihilators exist: δ ≤ θ =⇒ ∃ largest x such that C(θ, x; δ)
The centralizer is symmetric in its first two variables:

C(x, y; z) ⇐⇒ C(y, x; z)
The centralizer is defined by the commutator: C(x, y; z) ⇐⇒ [x, y] ≤ z

The centralizer is stable under lifting in its third variable:
C(x, y; z) & (z ≤ z′) =⇒ C(x, y; z′)

The centralizer is weakly stable under lifting in its third variable:
C(x, y; z) & (z ≤ z′ ≤ x ∩ y) =⇒ C(x, y; z′)
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The commutator is left distributive: ∀x∀y∀z([x + y, z] = [x, z] + [y, z])
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The commutator is right semidistributive:

∀x∀y∀z(([x, y] = [x, z]) =⇒ ([x, y] = [x, y + z]))
Right annihilators exist: δ ≤ θ =⇒ ∃ largest x such that C(θ, x; δ)
The centralizer is symmetric in its first two variables:

C(x, y; z) ⇐⇒ C(y, x; z)
The centralizer is defined by the commutator: C(x, y; z) ⇐⇒ [x, y] ≤ z

The centralizer is stable under lifting in its third variable:
C(x, y; z) & (z ≤ z′) =⇒ C(x, y; z′)

The centralizer is weakly stable under lifting in its third variable:

C(x, y; z) & (z ≤ z′ ≤ x ∩ y) =⇒ C(x, y; z′)
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None of these commutator properties are Maltsev definable

The variety of sets in the empty language has the property that for all
A ∈ SET and all α, β, δ ∈ Con(A) it is the case that C(α, β; δ) holds and
[α, β] = 0 holds. From this it follows that SET satisfies all of the commutator
properties we are considering. If any one of the commutator properties that
we are considering were Maltsev definable, then

SET would satisfy the defining Maltsev condition, so

any variety that interprets SET would satisfy the property.

But SET interprets into any variety, and

each of the commutator properties on the preceding slide fails in some
variety. (E.g. the variety of semigroups.)
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Results #1

Theorem. The following properties are equivalent for a variety V with a
Taylor term.

1 V is congruence modular. (This is a Maltsev definable property.)
2 The commutator is left distributive:

[x + y, z] = [x, z] + [y, z]
3 The commutator is right distributive.

[x, y + z] = [x, y] + [x, z]
4 The centralizer is symmetric in its first two variables.

C(x, y; z) ⇐⇒ C(y, x; z)
5 The centralizer is stable under lifting in its third variable.

C(x, y; z) & (z ≤ z′) =⇒ C(x, y; z′)
6 The centralizer is defined by the commutator.

C(x, y; z) ⇐⇒ [x, y] ≤ z
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Results #2

Theorem. The following properties are equivalent for a variety V with a
Taylor term.

1 V has a difference term. (This is a Maltsev definable property.)
2 V has commutative commutator.

[x, y] = [y, x]
3 The commutator is right semidistributive.

([x, y] = [x, z]) =⇒ ([x, y] = [x, y + z])
4 Right annihilators exist.

δ ≤ θ =⇒ ∃ largest x such that C(θ, x; δ)
5 The centralizer is weakly stable under lifting in its third variable.

C(x, y; z) & (z ≤ z′ ≤ x ∩ y) =⇒ C(x, y; z′)
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