Jónsson Jónsson-Tarski Algebras

Jordan DuBeau

University of Colorado Boulder

February 22, 2022

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

Introduction 0000000000 The Existence of JJT Algebra

The Sizes of JJT Algebras

The Number Of JJT Algebras

Outline

- 2 The Existence of JJT Algebras
- The Sizes of JJT Algebras
- The Number Of JJT Algebras

Jordan DuBeau Jónsson Jónsson-Tarski Algebras

Part 1: Introduction.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

The Existence of JJT Algebra

The Sizes of JJT Algebras

The Number Of JJT Algebras

Plan for Introduction

We have two main concepts to introduce:

- Jónsson Algebra
- Jónsson-Tarski Algebra

Jordan DuBeau Jónsson Jónsson-Tarski Algebras The Existence of JJT Algebra

The Sizes of JJT Algebras

The Number Of JJT Algebras

Jónsson Algebras: Part 1

Definition

A Jónsson algebra is an infinite algebra J, in a countable algebraic language, which has no proper subalgebras of the same cardinality as J.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

The Sizes of JJT Algebras

The Number Of JJT Algebras

Jónsson Algebras: Part 2

Some fairly trivial examples of countable Jónsson algebras exist, but uncountable Jónsson algebras are more difficult to construct.

Examples (Countable Jónsson Algebras)

- $\langle \omega; f \rangle$ is Jónsson, where f(n) = n 1 for $n \neq 0$, and f(0) = 0.
- The unital ring $\langle \mathbb{Z};+,-,\cdot,0,1\rangle$ is Jónsson.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras

Jónsson Algebras: Part 3

Originally the motivation for studying Jónsson algebras was set-theoretic, e.g., Which cardinalities can a Jónsson algebra have?

Some results:

(ZFC): \aleph_0 , \aleph_1 , \aleph_2 , \aleph_3 ,... (P. Erdős, A. Hajnal)

(ZFC): $\aleph_{\omega+1}$ (S. Shelah)

(ZFC): Any successor of a regular cardinal. (J. Tryba, W. H. Woodin) (ZFC + GCH): Any successor cardinal. (P. Erdős, A. Hajnal, R. Rado) (ZFC + V = L): Any cardinal. (J. Keisler, F. Rowbottom)

Jónsson Algebras: Part 4

```
Some varieties are known to contain uncountable Jónsson algebras,
(groups, semigroups, loops, ...)
while others do not.
(semilattices, boolean algebras, ...)
```

In some varieties the existence of uncountable Jónsson algebras is an open question. (rings, lattices, ...)

Some varieties have uncountable Jónsson algebras, but only in certain cardinalities.

```
(any unary variety: only \aleph_1.)
```

Jónsson-Tarski Algebras: Part 1

Definition

A Jónsson-Tarski algebra is an algebra $\langle A; \cdot, \ell, r \rangle$ with one binary operation \cdot and two unary operations ℓ and r, satisfying the identities

$$(x \cdot y) = x,$$

$$r(x \cdot y) = y, \text{ and }$$

$$\ell(z) \cdot r(z) = z.$$

These algebras capture the situation of a bijection $A \times A \rightarrow A$:

- In every Jónsson-Tarski algebra, \cdot is a bijection $A \times A \rightarrow A$,
- For every bijection $A \times A \rightarrow A$ one can define a corresponding Jónsson-Tarski algebra.

Jónsson-Tarski Algebras: Part 2

Jónsson-Tarski algebras were introduced by B. Jónsson and A. Tarski in 1961.

They were an example of a variety \mathcal{V} in which $F_{\mathcal{V}}(m) \cong F_{\mathcal{V}}(n)$ for any finite m, n.

The authors proved that, if \mathcal{V} contains a finite algebra with more than one element, then $F_{\mathcal{V}}(m) \ncong F_{\mathcal{V}}(n)$ when $m \neq n$.

But the variety of Jónsson-Tarski algebras does not contain a finite algebra with more than one element.

The Number Of JJT Algebras

Why Jónsson Jónsson-Tarski algebras?

We now discuss the connection between Jónsson algebras and Jónsson-Tarski algebras.

Together with K. Kearnes, we briefly conjectured that there cannot be an uncountable Jónsson algebra in a minimal variety.

However, the variety of Jónsson-Tarski algebras is a minimal variety.

We managed to construct a Jónsson algebra in this variety, of cardinality \aleph_1 . (We will show this construction soon!)

So by constructing a Jónsson Jónsson-Tarski algebra, we proved that minimal varieties can contain uncountable Jónsson algebras.

The Sizes of JJT Algebras

Further Questions

After constructing a Jónsson Jónsson-Tarski algebra of cardinality \aleph_1 , we still had some unanswered questions:

Can Jónsson Jónsson-Tarski algebras exist in other cardinalities?

If not, what is the obstacle that prevents them from being larger?

How many Jónsson Jónsson-Tarski algebras are there, up to isomorphism?

We will answer all of these questions today!

Part 2: The Existence of Jónsson Jónsson-Tarski Algebras.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

The Sizes of JJT Algebras

The Number Of JJT Algebras

Constructing Jónsson-Tarski Algebras

To construct a Jónsson-Tarski algebra, it is enough to specify its multiplication table. The other operations (ℓ and r) can be deduced.

Example

•	0	1	2	3	4				
0	1	2	5	5 9 14					
1	0	4	8	13	13 19				
2	3	7	12	18	•••				
3	6	11	17	24	24 32				
4	10	16	23	31	40				
:	:	:	:	:	:	·			

Sample calculations:

$$\ell(17) = \ell(3 \cdot 2) = 3$$

r(10) = r(4 \cdot 0) = 0

Takeaway:

 $\ell(x)$ = the row in which x appears. r(x) = the col in which x appears.

Jordan DuBeau

Jónsson Jónsson-Tarski Algebras

The Number Of JJT Algebras

A Countable Jónsson Jónsson-Tarski Algebra

Theorem (K. Kearnes, DuBeau (2020))

The Jónsson-Tarski algebra with the following multiplication table is Jónsson:

·	0	1	2	3	4	•••
0	1	2	5	9	14	
1	0	4	8	13	19	
2	3	7	12	18	25	
3	6	11	17	24	32	• • • •
4	10	16	23	31	40	• • •
:			:	:	:	•

In fact it has no proper subalgebras.

Construction of Uncountable JJT: Part 1

- Start with the countable JT algebra from the previous slide. Call this J_{ω} . It has universe ω .
- Given a JT algebra J_λ with universe λ, extend to a JT algebra J_{λ+ω} with universe λ + ω.

When we extend from J_{λ} to $J_{\lambda+\omega}$, we call it adding a new "layer."

Each time, the ordinals that must be placed are the ordinals $\{\lambda + n : n \in \omega\}$.

Adding a layer for each countable limit ordinal λ gives us a Jónsson-Tarski algebra of size \aleph_1 , where the limit ordinals are subalgebras.

Jónsson Jónsson-Tarski Algebras

Jordan DuBeau

The Existence of JJT Algebras

The Sizes of JJT Algebras

The Number Of JJT Algebras

Construction of Uncountable JJT: Part 2

Jordan DuBeau

Jónsson Jónsson-Tarski Algebras

The Existence of JJT Algebras 0000000000

The Sizes of JJT Algebras

Construction of Uncountable JJT: Part 3

	$0 1 2 \cdots$	λ	$_{\lambda+1}$	$^{\lambda+2}$	$^{\lambda+3}$	λ +4	$^{\lambda+5}$	$^{\lambda+6}$	$^{\lambda+7}$	$^{\lambda+8}$	$^{\lambda+9}$	λ +10	$\lambda + 11 \lambda$	+12	
0				λ											
1												$^{\lambda+8}$			This figure shows
2															where the
:	J														ordinals $\lambda + n, n$
								$\lambda + 4$							odd, are placed in
															one L-shaped
															region at a time.
	<u> </u>						1				I				0
λ						$\lambda + 2$									All the ordinals in
$_{\lambda+1}$										$\lambda + 6$					the region
$^{\lambda+2}$													λ	+10	corresponding to
$^{\lambda+3}$															$\lambda + m$ are greater
$^{\lambda+4}$															than $\lambda + m$.
$^{\lambda+5}$															
		L	1					-			-	-			

Jónsson Jónsson-Tarski Algebras

Jordan DuBeau

The Number Of JJT Algebras

Construction of Uncountable JJT: Part 4

Now we must argue J is Jónsson. These are the main ideas:

Fix a nonzero countable limit ordinal λ . We will show:

- Every $\lambda + n$, $n \in \omega$, generates the element λ .
- **2** The element λ generates the entire set $\lambda + \omega$.
- Therefore, every $\lambda + n$ generates the entire set $\lambda + \omega$.

The Existence of JJT Algebras 000000000000

The Sizes of JJT Algebras

The Number Of JJT Algebras

Why does every $\lambda + n$ generate λ ?

Jordan DuBeau

Jónsson Jónsson-Tarski Algebras

University of Colorado Boulder

The Existence of JJT Algebras 000000000

The Sizes of JJT Algebras 000000000 The Number Of JJT Algebras

Why does λ generate the entire set $\lambda + \omega$?

Jordan DuBeau

Jónsson Jónsson-Tarski Algebras

Construction of Uncountable JJT: Conclusion

We have proven, for each λ ,

- Every $\lambda + n$, $n \in \omega$, generates the element λ .
- **2** The element λ generates the entire set $\lambda + \omega$.
- Therefore, every $\lambda + n$ generates the entire set $\lambda + \omega$.

So, any subset
$$S \subseteq J$$
 generates the set $\bigcup_{\alpha \in S} \alpha + \omega$.

Conclusion: the subalgebras of J are the countable limit ordinals, and the set ω_1 (which is J itself).

Every proper subalgebra of J is countable, so J is Jónsson.

Part 3: The Sizes of Jónsson Jónsson-Tarski Algebras.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

What About Larger JJT Algebras? Part 1

We have produced Jónsson Jónsson-Tarski algebras of cardinality \aleph_0 and \aleph_1 . What about, say, \aleph_2 ?

In other varieties, authors have been able to use similar constructions for higher cardinalities. For example:

Theorem (P. Erdős, A. Hajnal (1965))

For each finite n there exists a Jónsson algebra of cardinality \aleph_n .

Proof: Inductively uses Jónsson algebras of cardinality \aleph_k to construct a Jónsson algebra of cardinality \aleph_{k+1} .

What About Larger JJT Algebras? Part 2

Another relevant result:

Theorem (S. Shelah (1980))

There exists a Jónsson group of cardinality \aleph_1 .

Later in the same paper:

Remark (S. Shelah (1980))

"The proof of [the above theorem] works also for \aleph_2 without any CH but for any \aleph_n , we need more complicated amalgamations, and the situation is not clear."

In our case, however:

Corollary (DuBeau)

If J is a Jónsson Jónsson-Tarski algebra, then $|J| \leq \aleph_1$.

It follows from a more general theorem:

Theorem (DuBeau)

If J is an algebra in a language of size λ , where $|J| > \lambda^+$, and the subalgebra lattice of J is distributive, then J has a proper subalgebra of size |J|.

We will use a lemma about algebras with distributive subalgebra lattices:

Lemma (DuBeau)

Let J be an algebra whose subalgebra lattice is distributive and $A \le B \le J$. If $S \subseteq J$, and for all $s \in S$, $\langle s \rangle \cap (B \setminus A) = \emptyset$, then it follows that $\langle S \rangle \cap (B \setminus A) = \emptyset$.

Proof.

The subalgebra lattice of J also satisfies this infinite version of the dist. law:

$$H \wedge \left(\bigvee_{i \in I} K_i\right) = \bigvee_{i \in I} (H \wedge K_i).$$

Now with A, B, and S as in the lemma, we get

$$B \land \langle S \rangle = B \land \left(\bigvee_{s \in S} \langle s \rangle \right) = \bigvee_{s \in S} (B \land \langle s \rangle) \le A.$$

University of Colorado Boulder

Jónsson Jónsson-Tarski Algebras

Jordan DuBeau

Now suppose J is an algebra of cardinality κ in a language of size λ , whose subalgebra lattice is distributive, and suppose $\kappa > \lambda^+$.

We will only prove the case where κ is regular.

Find a sequence of subalgebras $\{J_{\alpha}\}_{\alpha \leq \lambda^+}$ which is

• strictly increasing $(J_{\alpha} \lneq J_{\beta} \text{ when } \alpha < \beta)$ • continuous. $(J_{\gamma} = \bigcup_{\alpha < \gamma} J_{\alpha} \text{ when } \gamma \text{ is a limit ordinal}).$

One way to do this is: let

- $J_0 = \langle x_0 \rangle$ for some x_0
- $J_1 = \langle \{x_0, x_1\} \rangle$ for some $x_1 \notin J_0$,

• etc.

The Existence of JJT Algebr

The Sizes of JJT Algebras

The Number Of JJT Algebras

No JJT Algebra Of Size $> \aleph_1$: Part 4

Now define $f: J \rightarrow \lambda^+$ by

$$x\mapsto \sup\{eta<\lambda^+:\langle x
angle\cap \left(J_{eta+1}\setminus J_{eta}
ight)
eq \emptyset\}.$$

The Existence of JJT Algebra

The Sizes of JJT Algebras

The Number Of JJT Algebras

No JJT Algebra Of Size $> \aleph_1$: Part 5

Now f maps $J \rightarrow \lambda^+$.

Since $|J| = \kappa > \lambda^+$ and κ is regular, there must exist a subset $S \subseteq J$, $|S| = \kappa$, where $f(s_1) = f(s_2) =: \gamma$ for all $s_1, s_2 \in S$.

But then $\langle s \rangle \cap (J_{\lambda^+} \setminus J_{\gamma+1}) = \emptyset$ for all $s \in S$. So our earlier lemma implies $\langle S \rangle \cap (J_{\lambda^+} \setminus J_{\gamma+1}) = \emptyset$.

Therefore $\langle S \rangle$ is a proper subalgebra of J of size κ .

We only showed the case where κ was regular, but with a similar argument for the singular case, we can prove:

Theorem

If J is an algebra in a language of size λ , where $|J| > \lambda^+$, and the subalgebra lattice of J is distributive, then J has a proper subalgebra of size |J|.

To show that Jónsson Jónsson-Tarski algebras cannot have cardinality greater than \aleph_1 , we just need to prove:

Lemma (DuBeau)

The variety of Jónsson-Tarski algebras is subalgebra distributive: that is, every member of the variety has a distributive subalgebra lattice.

A paper of Shapiro (1988) gave a result attributed to R. McKenzie, of the form " \mathcal{V} is subalgebra distributive if and only if..."

It's a Klukovits-type condition on the terms of the variety: "For every term p there exist terms $s, u_1, \ldots, u_k, v_1, \ldots, v_\ell$ such that..."

We had already developed a normal form for terms in the variety of Jónsson-Tarski algebras. (K. Kearnes, DuBeau (2020))

So it was fairly straightforward to show that the condition from Shapiro (1988) was satisfied in the variety of Jónsson-Tarski algebras, meaning that all Jónsson-Tarski algebras have distributive subalgebra lattices.

Part 3: The Number of Jónsson Jónsson-Tarski Algebras.

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder

How Many Jónsson Jónsson-Tarski Algebras Are There?

Having constructed one Jónsson Jónsson-Tarski algebra of size $\aleph_1,$ we now show:

Theorem (DuBeau)

There exist 2^{\aleph_1} many pairwise nonisomorphic Jónsson Jónsson-Tarski algebras of cardinality \aleph_1 .

This requires only minor modifications to our construction!

The Number Of JJT Algebras

2^{\aleph_1} Many JJT Algebras: Part 1

Original construction: we followed essentially the same pattern every time when extending from universe λ to universe $\lambda + \omega$.

New construction: we can choose from one of **two patterns** when extending from universe λ to universe $\lambda + \omega$. That is, we add either a "type A" layer or a "type B" layer each time.

The Sizes of JJT Algebras

The Number Of JJT Algebras

2^{\aleph_1} Many JJT Algebras: Part 2

Type A construction: exactly the same construction shown in the previous proof.

Type B construction: the transpose / mirror image of the type A construction (exactly the same, but with ℓ and r exchanged.)

A type B layer is shown here.

The Number Of JJT Algebras

2^{\aleph_1} Many JJT Algebras: Part 3

Let J_{ω} = the countable JJT shown earlier in the talk.

Lemma

Let J be a Jónsson-Tarski algebra of size \aleph_1 formed by extending J_{ω} with any ω_1 -sequence of type A and type B extensions. Then J is Jónsson.

Proof. Essentially the same as in the all-type-A construction:

- Every $\lambda + n$, $n \in \omega$, generates the element λ .
- **2** The element λ generates the entire set $\lambda + \omega$.
- Therefore, every $\lambda + n$ generates the entire set $\lambda + \omega$.

2^{\aleph_1} Many JJT Algebras: Part 4

Lemma

Let J_{λ_1} and J_{λ_2} be Jónsson-Tarski algebras whose universes λ_1 and λ_2 are nonzero countable limit ordinals. Let $J_{\lambda_1}^A$ denote J_{λ_1} extended with a type A layer, and $J_{\lambda_2}^B$ denote J_{λ_2} extended with a type B layer. Then $J_{\lambda_1}^A$ is not isomorphic to $J_{\lambda_2}^B$.

Proof.

- J^A_{λ1} has a "type A generator:" an element g such that every x ∈ J^A_{λ1} can be written as x = ℓ(r^k(g)) for some k ∈ ω. (For example, λ₁.)
- $J_{\lambda_2}^B$ does not have a type A generator. (Requires careful checking.)
- The property of having a type A generator would be preserved under isomorphism, so the two are not isomorphic.

2^{\aleph_1} Many JJT Algebras: Part 5

Theorem (DuBeau)

Let J and J' be Jónsson-Tarski algebras of cardinality \aleph_1 formed by extending J_{ω} with two different ω_1 -sequences of type A and type B extensions. Then J is not isomorphic to J'.

Proof. In both *J* and *J'*, the proper subalgebras are the countable limit ordinals. An isomorphism $J \rightarrow J'$ would induce an isomorphism of subalgebra lattices. This causes a contradiction at the first index where the two sequences differ, by the previous lemma. Sub(*I*) Sub(*I'*)

2^{\aleph_1} Many JJT Algebras: Conclusion

- There are 2^{\aleph_1} many sequences of A's and B's.
- All these sequences produce pairwise nonisomorphic JJT algebras.
- So, we have constructed 2^{ℵ1} many pairwise nonisomorphic JJT algebras of cardinality ℵ1.
- Conclusion: there are as many Jónsson algebras of cardinality ℵ₁ in this variety as there are algebras of cardinality ℵ₁ in this variety!

2^{\aleph_1} Many JJT Algebras: Addendum

We actually have a slightly stronger theorem:

Theorem (DuBeau)

Let J_{ω} be **any** Jónsson-Tarski algebra with universe ω . Then there are 2^{\aleph_1} many pairwise nonisomorphic extensions of J_{ω} into a Jónsson-Tarski algebra of size \aleph_1 .

The proof is similar, but we cannot guarantee that **any** two sequences of A's and B's will produce nonisomorphic algebras.

Instead we argue that **there exist** 2^{\aleph_1} many sequences of A's and B's that produce pairwise nonisomorphic algebras.

The End

Thanks for coming!

Jordan DuBeau Jónsson Jónsson-Tarski Algebras University of Colorado Boulder