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MCSPs: Lattices vs. Semilattices

Aims of this talk:

1 Introduce Mal’tsev Condition Satisfaction Problems (MCSPs)

2 Compare and contrast lattices vs. semilattices

3 Review FNV result on semilattice condition (2019)

4 Review my result on lattice condition (2020)

JP Rooney MCSPs: Lattices vs. Semilattices



Definitions

Definition

A strong Mal’tsev condition Σ is a finite set of equations. An
algebra A satisfies the strong Mal’tsev condition Σ if there are
term operations of A which model the equations of Σ.

A Maltsev condition M consists of an increasing sequence Σi ,
i ≥ 1, of strong Maltsev conditions. An algebra satisfies M if
it satisfies Σi for some i .

A Maltsev condition is linear if none of the equations used to
define it involve compositions.
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Example

Example (Existence of a binary commutative term)

C2 := {b(x , y) ≈ b(y , x)}

Example

The group ⟨Z,+,−, 0⟩ satisfies C2 since x + y is commutative.
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Example

Example (Existence of a k-ary nu term)

NU(k) :=

{m(x , y , y , . . . , y) ≈ y ,

m(y , x , y , . . . , y) ≈ y

...

m(y , y , . . . , x) ≈ y)}

Example

The lattice ⟨Z,∧,∨⟩ satisfies NU(3) since
(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) is a ternary nu term.

NU(i) =⇒ NU(i + 1) so NU := (NU(i))i∈N is a Mal’tsev
condition.
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Mal’tsev Condition Satisfaction Problem

Definition

The (idempotent) Σ-satisfaction problem, SatIdΣ , is the decision
problem with input a finite (idempotent) algebra A and question
“Does A satisfy Σ?”

Theorem (Horowitz)

SatIdNU(k) ∈ P .

Proof.

It is enough to check that we can satisfy the equations over small
subsets of Ak .
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Lattices and Semilattices

Example (Existence of a semilattice term)

Semilattice :=

{x ∨ y ≈ y ∨ x ,

x ∨ x ≈ x ,

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z}

Example (Existence of lattice terms)

Lattice :=

{x ∨ y ≈ y ∨ x , x ∧ y ≈ y ∧ x

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z , x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

x ∨ (x ∧ y) ≈ x , x ∧ (x ∨ y) ≈ x}
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Lattices and Semilattices compared

Example

Both define a partial order

Clearly Lattice =⇒ Semilattice

Both are nonlinear

Example

Lattice =⇒ NU(3)

(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)

Semilattice does not imply NU
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SatIdLattice and SatIdSemilattice

Theorem (Freese, Nation, Valeriote 2019)

SatIdSemilattice is EXPTIME-complete.

Theorem (Rooney 2020)

SatIdLattice ∈ NP .
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SatIdSemilattice is EXPTIME-complete (FNV)

First Ingredient (Friedman c.1985 + Bergman, Juedes, Slutzki
1999 + Freese, Valeriote 2009)

GEN-CLO’ is EXPTIME-complete.

GEN-CLO’

Given:

a finite algebra A, and

a unary function h : A → A.

Determine: Is h a term operation of A?
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SatIdSemilattice is EXPTIME-complete (FNV)

Second ingredient (FNV 2019)

BOUNDED-SEMILATTICE is EXPTIME-complete.

BOUNDED-SEMILATTICE

Given:

a finite idempotent algebra A, and

an element 1 ∈ A

Determine: Is there a term operation ∧ of A such that ⟨A,∧, 1⟩ is
a bounded semilattice?
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BOUNDED-SEMILATTICE is EXPTIME-complete

A = ⟨A,F⟩ is an instance of GEN-CLO’.

g ∈ F 7→ g ′ ∈ G
th(x , y , z) := x ∧ y if and only if z = h′(x , y).
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SatIdSemilattice is EXPTIME-complete

A = ⟨A,F⟩, 1 is an instance of BOUNDED-SEMILATTICE.

The only way for A∗ to have a semilattice operation is with
1 > 1′ > A\{1}. By construction that happens if and only if A
was already a bounded semilattice with maximum element 1.
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SatIdSemilattice is EXPTIME-complete

Proof Summary.

GEN-CLO’ → BOUNDED-SEMILATTICE → Sat IdSemilattice
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SatIdLattice ∈ NP

Theorem (Rooney 2020)

If Σ is a strong Mal’tsev condition which implies NU, then
SatIdΣ ∈ NP .

Example

Lattice =⇒ NU(3)

(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)
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SatIdLattice ∈ NP

First Ingredient (FV 2009)

Use the algorithm of Freese and Valeriote to check whether A has
a ternary nu term.

If A does not satisfty NU(3), then A certainly does not satisfy
Lattice.
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Polynomial-time verifier for SatIdLattice

Verifier

INPUT:

The instance A of SatIdLattice , and

operations ∨,∧ satisfying the lattice equations on A

PROCEDURE:

1 Verify that ∨ and ∧ satisfy the lattice equations

2 Verify that ∨ and ∧ are term operations of A
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Baker and Pixley

Theorem (Baker, Pixley 1975)

Let A be an algebra with a ternary near unanimity term. A
function f : An → A is a term operation of A if and only if every
subalgebra of A2 is closed under f .

The result in Baker and Pixley’s article is much more general.
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Back to the verifier

Verifying that ∨ is a term operation

Using the theorem of Baker and Pixley (and the fact that A has a
ternary nu term) we need only verify that for each a, b, c , d ∈ A we
have (

a ∨ c
b ∨ d

)
∈
〈(

a
b

)
,

(
c
d

)〉
A2
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SatIdLattice ∈ NP

Proof Summary.

First check that the instance A has a ternary nu term, then

given the operation tables for lattice term operations of A one
can verify in polynomial time that A satisfies Lattice.

The second item is achievable in polynomial time only because of
the existence of an nu term for A.
The first item is only known to be achievable in polynomial time
when A is idempotent.
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Can we remove idempotence?

An open question

What is the complexity of SatNU(k)?
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Do we need NU?

No!

Theorem (Rooney 2021)

Let Σ be a strong Mal’tsev condition which implies the existence
of an edge term. Then SatIdΣ ∈ NP .

The polynomial-time verifier in this case relies on a result of
Bulatov, Mayr and Szendrei from 2018 on subpower membership
problems for finite algebras with cube terms.
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What if we only look at linear conditions?

Theorem (Rooney 2020)

If Σ is a strong linear Mal’tsev condition which implies NU, then
SatIdΣ ∈ P .

This proof encodes the MCSP as a CSP over a template of
bounded width using Baker and Pixley’s result to prove correctness.
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Thank you

Thanks!
Rooney

james.rooney@bath.edu
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