# Syntactical characterization of co-extensive varieties of universal algebras

David Neal Broodryk

November 26, 2020

#### Overview

- ► Characterisation Example
- Products of commutative semirings
- Coextensivity
- Characterisation of left coextensivity
- Diagonalising terms
- Characterisation of coextensivity

## Famous Example

A variety C is called **Mal'cev** if it satisfies the following equivalent conditions:

- 1. Any reflexive homomorphic relation in  $\mathcal C$  is a congruence
- 2. C is congruence permutable:  $R \circ S = S \circ R$
- 3. C has a Mal'cev term t(x, z, z) = x, t(x, x, z) = z

Where a relation R on an algebra A is called **homomorphic** if it is a subalgebra of  $A \times A$ . A category C is called **Mal'cev** if:

1. Any reflexive internal relation in  $\mathcal C$  is an equivalence.

When C is regular it is possible to define composition of internal relations and so C is Mal'cev if and only if:

2. C is congruence permutable:  $R \circ S = S \circ R$ 

# Commutative semirings

A **commutative semiring** is a system  $A = (A, 0, +, 1, \cdot)$  in which:

- 1. (A, 0, +) and  $(A, 1, \cdot)$  are commutative monoids;
- 2.  $a \cdot 0 = 0$  and  $a \cdot (b + c) = a \cdot b + a \cdot c$  (distributivity)

The category **CSemiRings** of commutative semirings forms a variety of universal algebras. Then the product  $A \times B$  is, as usual, the product of the underlying sets  $A \times B$  with component-wise operations:

$$(a,b) + (a',b') = (a+a',b+b')$$
  
 $(a,b) \cdot (a',b') = (a \cdot a',b \cdot b')$ 

Note that  $(1,0) \cdot (0,1) = 0$  and (1,0) + (0,1) = 1

# Commutative semirings

To consider a commutative semiring S as a product is to give two such elements  $e_1, e_2 \in S$  with:

$$e_1e_2 = 0$$
 and  $e_1 + e_2 = 1$ 

- $e_i = e_i \cdot 1 = e_i(e_1 + e_2) = e_i e_1 + e_i e_2 = e_i^2$
- ullet  $e_iS=\{e_is|s\in S\}$  is a commutative semiring with  $1=e_i$  and inheriting all other operations from S
- 1.  $e_i(e_i s) = (e_i e_i) s = e_i s$  (multiplicative unit)
- 2.  $e_i s + e_i s' = e_i (s + s') \in e_i S$  (addition)
- 3.  $(e_i s)(e_i s') = (e_i e_i)(ss') = e_i(ss') \in e_i S$  (multiplication)

# Commutative semirings

We define maps:

$$\phi: S \longrightarrow e_1 S \times e_2 S \qquad \phi(s) = (e_1 s, e_2 s)$$
  
$$\psi: e_1 S \times e_2 S \longrightarrow S \qquad \psi(s, t) = s + t$$

Then  $S \simeq e_1 S \times e_2 S$ :

$$\psi\phi(s) = e_1s + e_2s = (e_1 + e_2)s = 1 \cdot s = s$$
  
$$\phi\psi(e_1s, e_2t) = (e_1(e_1s + e_2t), e_2(e_1s + e_2t)) = (e_1s, e_2t)$$

In particular for  $S = A \times B$  we have:

$$e_1 = (1,0), e_2 = (0,1)$$
  
 $(1,0)S = \{(a,0) \in A \times B\} \simeq A$   
 $(0,1)S = \{(0,b) \in A \times B\} \simeq B$ 

So every product is of the form  $S \simeq e_1 S \times e_2 S$ .



# Coextensivity Overview

- Products
- Pushouts
- ► Initial objects
- Coextensivity of commutative semirings

#### **Products**

For objects A, B in a category C, the product  $A \times B$  is an object equipped with morphisms  $\pi_1, \pi_2$  such that:

• for all C, f, g there exists a unique (f, g) such that  $\pi_1(f, g) = f$  amd  $\pi_2(f, g) = g$ 



When C is a variety,  $A \times B$  is the usual product of two algebras:

- $\blacktriangleright \ \pi_1((a,b)) = a$
- $\pi_2((a,b)) = b$

#### **Pushouts**

We say the square (1) is a pushout if:



- $ightharpoonup \overline{g}f = \overline{f}g$
- for all h, k such that hf = kg there exists a unique  $\phi$  such that  $\phi \overline{g} = h$  and  $\phi \overline{f} = k$

## Pasting Law

One useful result about pushouts is the pasting law. In a diagram:



If square (1) is a pushout then square (2) is a pushout if and only if the rectangle (1)+(2) is a pushout

## Co-extensivity

We say a category C is Co-extensive, if for any diagram:



the bottom row of the following diagram is a product diagram if and only if both squares are pushouts.

## Initial objects

We say that an object 0 is **initial** in some category C, if for any object  $A \in C$  there exists a unique morphism  $!_A : 0 \longrightarrow A$ .

In a variety, the initial object is the free algebra generated on the empty set  $F(\emptyset)$ , whose elements are constant terms.

For example, in **CSemiRings**, we have constants 0,1 and binary operations  $+,\cdot$ , so the initial object 0 is  $F(\emptyset)\simeq\mathbb{N}$ 

# Co-extensivity Simplified

Assume the condition holds when both objects in the top row are initial. Then (1) and (3) are pushouts in the diagram:



So, by the pasting law, (2) and (4) are pushouts  $\iff$  (1)+(2) and (3)+(4) are pushouts  $\iff$  the bottom row is a product diagram. Therefore this is equivalent to co-extensivity.

## Co-extensivity of commutative semirings

To find a homomorphism  $h: 0 \times 0 \longrightarrow S$  is exactly to find two elements  $e_1 = h(1,0), e_2 = h(0,1)$  with:

$$e_1 \cdot e_2 = h(1,0) \cdot h(0,1) = h(0,0) = 0$$
  
 $e_1 + e_2 = h(1,0) + h(0,1) = h(1,1) = 1$ 

So we have  $S \simeq h(1,0)S \times h(0,1)S$ . It remains to show that the squares (1) and (2) are pushouts:

$$\begin{array}{c|c}
0 \stackrel{\pi_1}{\longleftarrow} 0 \times 0 \stackrel{\pi_2}{\longrightarrow} 0 \\
h_1 \downarrow & (1) & h \downarrow & (2) \downarrow h_2 \\
h(1,0)S \stackrel{P_1}{\longleftarrow} S \stackrel{P_2}{\longrightarrow} h(0,1)S
\end{array}$$

## pushout diagram

Let  $g\pi_2 = fh$  for some homomorphisms f, g.



Then the unique  $\phi: h(0,1)S \longrightarrow R$  is given for all  $s \in S$  by  $\phi(h(0,1)s) = f(h(0,1)s) = f(s)$ .

Therefore (2) and similarly (1) are pushouts, and **CSemiRings** is co-extensive.

## Left Co-extensivity

We say  $\mathcal C$  is left co-extensive when for any f,g the following diagram is a pushout



Again, by the pasting law this is equivalent to requiring that the following is a pushout for any X, Y:



# Characterisation of left co-extensivity

A variety of universal algebras  $\mathcal C$  is left co-extensive if and only if there exist (n+m)-ary terms  $u_0,\ldots,u_k$ , unary terms  $t_1,\ldots,t_m,t_1',\ldots,t_m'\in F(\{x\})$ , and constants  $e_1,\ldots,e_n,e_1',\ldots,e_n',e_1'',\ldots,e_n''\in F(\emptyset)$  such that for all  $0\leq i< k$  the following identities hold:

$$u_{0}(t'_{1}, t'_{2}, \dots, t'_{m}, e''_{1}, e''_{2}, \dots, e''_{n}) = x$$

$$u_{i}(t_{1}, t_{2}, \dots, t_{m}, e_{1}, e_{2}, \dots, e_{n}) = x$$

$$u_{i}(t'_{1}, t'_{2}, \dots, t'_{m}, e'_{1}, e'_{2}, \dots, e'_{n}) = u_{i+1}(t'_{1}, t'_{2}, \dots, t'_{m}, e''_{1}, e''_{2}, \dots, e''_{n})$$

$$u_{k}(t'_{1}, t'_{2}, \dots, t'_{m}, e'_{1}, e'_{2}, \dots, e'_{n}) = 0$$

#### pushout diagram

Let  $g\pi_2 = fh$  for some homomorphisms f, g.



Where E is the congruence generated by  $(e, e') \simeq_E (e, e'')$  for all constants  $e, e', e'' \in F(\emptyset)$ 

Then the unique  $\phi: (X \times Y)/E \longrightarrow R$  is given by:  $\phi([(x,y)]_E) = f((x,y))$ .

$$(X \times Y)/E \simeq X \iff (x,y) \simeq_E (x,z) \text{ for all } x \in X \text{ and } y,z \in Y$$

# Left Co-extensivity

- $((x,y),(x,z)) \in E$  for all  $x \in X$  and  $y,z \in Y$
- ▶ Let  $X = Y = F(\{x\})$  and fix some constant  $0 \in F(\emptyset)$
- $((x,x),(x,0)) \in E$
- ▶ E is the transitive homomorphic symmetric reflexive closure of R, where  $(e, e') \simeq_R (e, e'')$  for all  $e, e', e'' \in F(\emptyset)$
- A sequence  $(x,x) \simeq_Q (x,a_1) \simeq_Q \cdots \simeq_Q (x,a_k) \simeq_Q (x,0)$ Where Q is the homomorphic symmetric reflexive closure of R
- For each i < k there exists a term  $u_i$  such that:

$$(x, a_i) = u_i((t_1, t'_1), \dots, (t_{m_i}, t'_{m_i}), (e_1, e''_1), \dots, (e_{n_i}, e''_{n_i}))$$
  
$$(x, a_{i+1}) = u_i((t_1, t'_1), \dots, (t_{m_i}, t'_{m_i}), (e_1, e'_1), \dots, (e_{n_i}, e'_{n_i}))$$

for some unary terms  $t_0, \ldots, t_{m_i}, t'_0, \ldots, t'_{m_i} \in F(\{x\})$ , and constants  $e_0, \ldots, e_{n_i}, e'_0, \ldots, e'_{n_i}, e''_0, \ldots, e''_{n_i} \in F(\emptyset)$ 

# Left Co-extensivity

Finally:

$$(x, a_0) = (x, x)$$

$$(x, a_i) = u_i((t_1, t'_1), \dots, (t_{m_i}, t'_{m_i}), (e_1, e''_1), \dots, (e_{n_i}, e''_{n_i}))$$

$$(x, a_{i+1}) = u_i((t_1, t'_1), \dots, (t_{m_i}, t'_{m_i}), (e_1, e'_1), \dots, (e_{n_i}, e'_{n_i}))$$

$$(x, a_k) = (x, 0)$$

Becomes:

$$u_{0}(t'_{1}, t'_{2}, \dots, t'_{m}, e''_{1}, e''_{2}, \dots, e''_{n}) = x$$

$$u_{i}(t_{1}, t_{2}, \dots, t_{m}, e_{1}, e_{2}, \dots, e_{n}) = x$$

$$u_{i}(t'_{1}, t'_{2}, \dots, t'_{m}, e'_{1}, e'_{2}, \dots, e'_{n}) = u_{i+1}(t'_{1}, t'_{2}, \dots, t'_{m}, e''_{1}, e''_{2}, \dots, e''_{n})$$

$$u_{k}(t'_{1}, t'_{2}, \dots, t'_{m}, e'_{1}, e'_{2}, \dots, e'_{n}) = 0$$

As in our characterisation.



## Left co-extensive example

For example, the variety of algebras with a binary operation  $\cdot$ , constants 0,1 and satisfying  $x \cdot 1 = x$  and  $x \cdot 0 = 0$ .

Then for k = 0, n = m = 1,  $u_0 = \cdot$ ,  $t_1 = x$ ,  $e_1 = e_1'' = 1$ , and  $e_1' = 0$  we have:

$$u_0(t'_1, e''_1) = x \cdot 1 = x$$
  
 $u_i(t_1, e_1) = x \cdot 1 = x$   
 $u_k(t'_1, e'_1) = x \cdot 0 = 0$ 

Equivalently:  $(x, y) = (x, y) \cdot (1, 1) \simeq (x, y) \cdot (1, 0) = (x, 0)$ 



Any coextensive variety contains, for some  $k \geq 1$ , a (k+2)-ary term t and constants  $e_1, \ldots, e_k, e'_1, \ldots, e'_k \in F(\emptyset)$  such that the identities hold:

$$t(x, y, e_1, \dots, e_k) = x$$
  
$$t(x, y, e'_1, \dots, e'_k) = y$$

For  $h: X \times Y \longrightarrow Z$  we define the map  $\delta: Z \times Z \longrightarrow Z$ 

$$\delta(x,y) = t(x,y,h(e_1,e_1'),\ldots,h(e_k,e_k'))$$

When  $h = f \times g : X \times Y \longrightarrow A \times B$  we have:

$$\delta((a,b),(c,d)) = (t(a,c,e_1,\ldots,e_k),t(b,d,e'_1,\ldots,e'_k)) = (a,d)$$

in CRing we have  $\delta(x, y) = x \cdot (1, 0) + y \cdot (0, 1)$ 



Let  $A \subseteq F(\{x,y\})^2$  be generated by  $F(\emptyset)^2 \cup \{(x,x),(y,y)\}$ . Consider the pushouts:



Then since both squares are pushouts the bottom row is a product diagram. In particular we have  $(x, y) \in A$  and so for some t:

$$(x,y) = t((x,x),(y,y),(e_1,e'_1),\ldots,(e_k,e'_k))$$
  
=  $(t(x,y,e_1,\ldots,e_k),t(x,y,e'_1,\ldots,e'_k))$ 

Let  $\mathcal C$  be a variety of universal algebras containing a diagonalizing term. The following conditions hold:

- 1. C is left co-extensive
- 2. for any  $h: X \times Y \longrightarrow Z$  the map  $(p_1, p_2)$  is surjective.
- 3. For surjective h, the map  $(p_1, p_2)$  is an isomorphism, so  $h \simeq h_1 \times h_2$ .



 ${\cal C}$  is left coextensive by our characterisation since we can fix any constant as 0 and have the equalities:

$$t(x, 0, e_1, \dots, e_k) = x$$
  
 $t(x, 0, e'_1, \dots, e'_k) = 0$ 



- $ightharpoonup p_1, p_2$  are surjective
- ▶ so for  $(a, b) \in A' \times B'$  there exist  $z_1, z_2 \in Z$  such that  $p_1(z_1) = a$  and  $p_2(z_2) = b$
- $p_i(\delta(z_1,z_2)) = t(p_i(z_1),p_i(z_2),p_i(e_1,e_1'),\ldots,p_i(e_k,e_k')) = p_i(z_i)$
- $(p_1, p_2)(\delta(z_1, z_2)) = (p_1(z_1), p_2(z_2)) = (a, b)$

So  $(p_1, p_2)$  is surjective



#### Lattices

A (bounded) lattice can be considered as a tuple  $(L, \vee, \wedge, 0, 1)$  where L is a set,  $\vee$  and  $\wedge$  are binary operations on L, and 0 and 1 are constants. Any lattice satisfies the associative, commutative, and absorption identities, and in particular the identities:

$$1 \land x = x$$
  $0 \lor x = x$   $0 \land x = 0$   $1 \lor x = 1$ 

The category of lattices **Lat** is then a variety of universal algebras, with a diagonalising term  $t(a, b, c, d) = (a \land c) \lor (b \land c)$  since:

$$t(x, y, 1, 0) = (x \land 1) \lor (y \land 0) = x \lor 0 = x$$
  
$$t(x, y, 0, 1) = (x \land 0) \lor (y \land 1) = 0 \lor y = y$$

Lat is not co-extensive, but the category **DLat** of Distributive lattices is coextensive as it is a full subcategory in **CSemiRings** closed under products.

#### Characterisation

- 1. C has a diagonalising term t with constants  $e_1, \ldots, e_k, e'_1, \ldots, e'_k \in F(\emptyset)$
- 2. There exist terms  $\alpha_0, \ldots, \alpha_n, \beta_0, \ldots, \beta_n \in F(X + U(F(\emptyset)^2))$ , operations  $u_0, \ldots, u_m \in F(X)$  and for all operations  $s \in F(X)$  there exist  $u_0^{(s)}, \ldots, u_m^{(s)}$  s.t

$$u_0(\beta_0,\ldots,\beta_n) = \delta(x,x). \qquad u_0^{(s)}(\beta_0,\ldots,\beta_n) = \delta(s(x_1,\ldots,x_l),s(x_1'\ldots x_l'))$$

$$u_m(\alpha_0,\ldots,\alpha_n) = x. \qquad u_m^{(s)}(\alpha_0,\ldots,\alpha_n) = s(\delta(x_1,x_1'),\ldots,\delta(x_l,x_l'))$$

$$u_i(\alpha_0,\ldots,\alpha_n) = u_{i+1}(\beta_0,\ldots,\beta_n). \quad u_i^{(s)}(\alpha_0,\ldots,\alpha_n) = u_{i+1}^{(s)}(\beta_0,\ldots,\beta_n)$$

- 3. For each j < n one of the following is true:
  - 3.1  $\alpha_i = \beta_i$
  - 3.2  $\alpha_j = (\omega, \omega')$  and  $\beta_j = \delta(\omega, \omega')$  for some constants  $\omega, \omega'$
  - 3.3  $\beta_j = (\omega, \omega')$  and  $\alpha_j = \delta(\omega, \omega')$  for some constants  $\omega, \omega'$
  - 3.4  $\alpha_j = v(\delta(\omega_0, \omega_0'), \dots, \delta(\omega_l, \omega_l'))$  and  $\beta_j = \delta(v(\omega_0, \dots, \omega_l), v(\omega_0', \dots, \omega_l'))$  for some constants  $\omega_0, \dots, \omega_l, \omega_0, \dots, \omega_l'$
  - 3.5  $\beta_j = v(\delta(\omega_0, \omega_0'), \dots, \delta(\omega_l, \omega_l'))$  and  $\alpha_j = \delta(v(\omega_0, \dots, \omega_l), v(\omega_0', \dots, \omega_l'))$  for some constants  $\omega_0, \dots, \omega_l, \omega_0, \dots, \omega_l'$

## From $\delta$ to co-extensivity

In a category with a diagonalising term, coextensivity is reduced to the injectivity of  $(p_1, p_2)$  for any set X in the diagram:

$$F(\emptyset) \stackrel{\pi_1}{\longleftarrow} F(\emptyset) \times F(\emptyset) \stackrel{\pi_2}{\longrightarrow} F(\emptyset)$$

$$\downarrow h_1 \qquad \qquad \downarrow h_2 \qquad \qquad \downarrow h_2$$

$$F(X) \stackrel{p_1}{\longleftarrow} F(X) + F(\emptyset)^2 \stackrel{p_2}{\longleftarrow} F(X)$$

$$\downarrow (p_1, p_2) \qquad \qquad \downarrow \pi_2 \qquad \qquad \downarrow F(X) \times F(X)$$

Recall, however, that  $\delta$  is defined such that:

$$p_{i}(\delta(x_{1}, x_{2})) = p_{i}(t(x_{1}, x_{2}, (e_{1}, e'_{1}), \dots, (e_{k}, e'_{k})))$$

$$= t(p_{i}(x_{1}), p_{i}(x_{2}), p_{i}((e_{1}, e'_{1})), \dots, p_{i}((e_{k}, e'_{k})))$$

$$= p_{i}(x_{i})$$

$$\Longrightarrow (p_{1}, p_{2})(\delta(x_{1}, x_{2})) = (p_{1}(x_{1}), p_{2}(x_{2}))$$

# Injectivity of $(p_1, p_2)$

From  $(p_1, p_2)(\delta(x_1, x_2)) = (p_1(x_1), p_2(x_2))$ , it can be shown that  $(p_1, p_2)$  is injective if and only if:

- 1.  $\delta(x,x) = x$  for any  $x \in F(X) + F(\emptyset)^2$
- 2.  $u(\delta(x_1,y_1),\ldots,\delta(x_n,y_n))=\delta(u(x_1,\ldots,x_n),u(y_1,\ldots,y_n))$  for any operation u and any  $x_i,y_i\in F(X)+F(\emptyset)^2$

If  $F(X) + F(\emptyset)^2$  is a product, then we can write x = (x', x'') and y = (y', y''), so  $\delta(x, y) = (x', y'')$  and these conditions become:

- 1. (x', x'') = (x', x'')
- 2.  $u((x'_1, y''_1), \dots, (x'_n, y''_n)) = (u(x'_1, \dots, x'_n), u(y''_1, \dots, y''_n))$

Which are true for any product

#### Characterisation

To produce a characterisation we need to consider  $F(X) + F(\emptyset)^2$  as a quotient on some free algebra.

- $F(X) + F(\emptyset)^2 \simeq F(X + U(F(\emptyset)^2))/E$
- ▶ Here *E* is generated by  $(\omega, \omega') \simeq \delta(\omega, \omega')$  and  $v(\delta(\omega_0, \omega_0'), \ldots, \delta(\omega_l, \omega_l')) \simeq \delta(v(\omega_0, \ldots, \omega_l), v(\omega_0', \ldots, \omega_l'))$  for any constants  $\omega_i, \omega_i'$
- ▶ We need  $\delta(x,x) \simeq_E x$  and for any operation s  $s(\delta(x_1,y_1),\ldots,\delta(x_n,y_n)) \simeq_E \delta(s(x_1,\ldots,x_n),s(y_1,\ldots,y_n))$  for all  $x_i,y_i$  (not just constants)
- ▶ again we consider E as the transitive homomorphic symmetric reflexive closure of this relation.
- ► Sequences  $\delta(x,x) \simeq_Q a_1 \simeq_Q \cdots \simeq_Q a_k \simeq_Q x$
- ▶ Here *Q* is the homomorphic symmetric reflexive closure.



#### Characterisation

- 1. C has a diagonalising term t with constants  $e_1, \ldots, e_k, e'_1, \ldots, e'_k \in F(\emptyset)$
- 2. There exist terms  $\alpha_0, \ldots, \alpha_n, \beta_0, \ldots, \beta_n \in F(X + U(F(\emptyset)^2))$ , operations  $u_0, \ldots, u_m \in F(X)$  and for all operations  $s \in F(X)$  there exist  $u_0^{(s)}, \ldots, u_m^{(s)}$  s.t

$$u_0(\beta_0,\ldots,\beta_n) = \delta(x,x). \qquad u_0^{(s)}(\beta_0,\ldots,\beta_n) = \delta(s(x_1,\ldots,x_l),s(x_1'\ldots x_l'))$$

$$u_m(\alpha_0,\ldots,\alpha_n) = x. \qquad u_m^{(s)}(\alpha_0,\ldots,\alpha_n) = s(\delta(x_1,x_1'),\ldots,\delta(x_l,x_l'))$$

$$u_i(\alpha_0,\ldots,\alpha_n) = u_{i+1}(\beta_0,\ldots,\beta_n). \quad u_i^{(s)}(\alpha_0,\ldots,\alpha_n) = u_{i+1}^{(s)}(\beta_0,\ldots,\beta_n)$$

- 3. For each j < n one of the following is true:
  - 3.1  $\alpha_i = \beta_i$
  - 3.2  $\alpha_j = (\omega, \omega')$  and  $\beta_j = \delta(\omega, \omega')$  for some constants  $\omega, \omega'$
  - 3.3  $\beta_j = (\omega, \omega')$  and  $\alpha_j = \delta(\omega, \omega')$  for some constants  $\omega, \omega'$
  - 3.4  $\alpha_j = v(\delta(\omega_0, \omega_0'), \dots, \delta(\omega_l, \omega_l'))$  and  $\beta_j = \delta(v(\omega_0, \dots, \omega_l), v(\omega_0', \dots, \omega_l'))$  for some constants  $\omega_0, \dots, \omega_l, \omega_0, \dots, \omega_l'$
  - 3.5  $\beta_j = v(\delta(\omega_0, \omega_0'), \dots, \delta(\omega_l, \omega_l'))$  and  $\alpha_j = \delta(v(\omega_0, \dots, \omega_l), v(\omega_0', \dots, \omega_l'))$  for some constants  $\omega_0, \dots, \omega_l, \omega_0, \dots, \omega_l'$