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Famous Example

A variety C is called Mal’cev if it satisfies the following equivalent
conditions:

1. Any reflexive homomorphic relation in C is a congruence
2. C is congruence permutable: RoS=SoR
3. C has a Mal'cev term t(x,z,z) = x, t(x,x,z) = z

Where a relation R on an algebra A is called homomorphic if it is
a subalgebra of A x A. A category C is called Mal’cev if:

1. Any reflexive internal relation in C is an equivalence.

When C is regular it is possible to define composition of internal
relations and so C is Mal'cev if and only if:

2. C is congruence permutable: RoS=S0oR



Commutative semirings

A commutative semiring is a system A = (A,0,+,1,) in which:
1. (A,0,+) and (A, 1,-) are commutative monoids;
2.a-0=0and a-(b+c)=a-b+ a-c (distributivity)

The category CSemiRings of commutative semirings forms a

variety of universal algebras. Then the product A x B is, as usual,

the product of the underlying sets A x B with component-wise
operations:

(a,b) + (a',b)=(a+a,b+ D)
(a,b)-(d',b)=(a-a',b-b)

Note that (1,0)-(0,1) =0 and (1,0) + (0,1) =1



Commutative semirings

To consider a commutative semiring S as a product is to give two
such elements e1, &2 € S with:

etec=0and e+ e =1

2

i

> e=¢-1l=¢ci(e1+e)=ce+eea=c¢

> ¢S = {ejs|s € S} is a commutative semiring with 1 = ¢; and
inheriting all other operations from S

1. ei(es) = (eiej)s = eis (multiplicative unit)

2. eis+es =ei(s+5)eeS (addition)

3. (eis)(eis’) = (eiei)(ss’) = ej(ss’) € ;S (multiplication)



Commutative semirings

We define maps:

¢:S—eS xeS o(s) = (e1s, &5)
V:eSxeS—S W(s,t) =s+t

Then S ~ ;S X &S:

¢¢(5):6’15—|—625:(e1—|-e2)5:1.5:5
oY (ers, ext) = (e1(ers + ext), ea(e1s + ext)) = (ers, ext)

In particular for S = A x B we have:

e1 = (1,0),e2 =(0,1)
(1,0)S={(a,0) c Ax B} ~ A
(0,1)S = {(0,b) € Ax B} ~ B

So every product is of the form S ~ ;5 x &S.
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Products

For objects A, B in a category C, the product A x B is an object
equipped with morphisms 7y, m such that:

» for all C,f,g there exists a unique (f, g) such that
7Tl(fag) = f amd 7T2(f,g) =8

/N

A< AxB—"2-B
When C is a variety, A X B is the usual product of two algebras:
» 7m1((a,b)) = a
» m((a, b)) =b



Pushouts

We say the square (1) is a pushout if:

> gf =fg
» for all h, k such that hf = kg there exists a unique ¢ such
that ¢g = h and ¢f = k



Pasting Law

One useful result about pushouts is the pasting law. In a diagram:

A B C

(1) (2)

D E F

If square (1) is a pushout then square (2) is a pushout if and only
if the rectangle (1)+(2) is a pushout




Co-extensivity

We say a category C is Co-extensive, if for any diagram:

X< Xxy-.vy

A S5 B
P1 P>

the bottom row of the following diagram is a product diagram if
and only if both squares are pushouts.



Initial objects

We say that an object 0 is initial in some category C, if for any
object A € C there exists a unique morphism !4 : 0— A.

In a variety, the initial object is the free algebra generated on the
empty set F(0)), whose elements are constant terms.

For example, in CSemiRings, we have constants 0,1 and binary
operations +, -, so the initial object 0 is F()) ~ N



Co-extensivity Simplified

Assume the condition holds when both objects in the top row are
initial. Then (1) and (3) are pushouts in the diagram:

0" ox0—"2.

'x (1) Ixxly (3) y

X< xXxy-.vy

A5 B'

So, by the pasting law, (2) and (4) are pushouts <= (1)+(2)
and (3)+(4) are pushouts <= the bottom row is a product
diagram. Therefore this is equivalent to co-extensivity.



Co-extensivity of commutative semirings

To find a homomorphism h: 0 x 0— S is exactly to find two
elements e; = h(1,0), e2 = h(0, 1) with:

e; - e = h(1,0) - h(0,1) = h(0,0)
e1 + e = h(1,0) + h(0,1) = h(1,1)

)

So we have S ~ h(1,0)S x h(0,1)S. It remains to show that the
squares (1) and (2) are pushouts:

T 2

0=——0x0———=0
hy (1) h (2) hy

h(1,0)S <5— S ——= h(0,1)S



pushout diagram

Let gmp = fh for some homomorphisms f, g.

Then the unique ¢ : h(0,1)S — R is given for all s € S by
¢(h(0,1)s) = f(h(0,1)s) = f(s).

Therefore (2) and similarly (1) are pushouts, and CSemiRings is
co-extensive.



Left Co-extensivity

We say C is left co-extensive when for any f, g the following
diagram is a pushout

AxB——A
TA

Again, by the pasting law this is equivalent to requiring that the
following is a pushout for any X, Y:

T

0x0 0

Ixxly Ix

XXY—X
X



Characterisation of left co-extensivity

A variety of universal algebras C is left co-extensive if and only if
there exist (n + m)-ary terms up, ..., uk, unary terms

tl, . s tm ], ..., th € F({x}), and constants

1, ... €n€,....en el ... en € F(0) such that for all 0 </ < k
the following identities hold:

/ / / "N i
up(ty, tyy .oty €1,€5, ..., €y) =X
Ui(t17t27”'7tmuel7e2)"'7en):X

/ / / / / / / / / 1/ " "
ui(ty, toy ooyt €1, €, 60) = Uip1(t, ty ooty €1, €0, ...y €h)

/ / / / / /
u(t, tyy .oy th,€1,65,...,€,) =0



pushout diagram

Let gmy = fh for some homomorphisms f, g.

Ox0—2 >0

!XX!Y !

Where E is the congruence generated by (e, €') ~¢ (e, €") for all
constants e, e’, e” € F(0)

Then the unique ¢ : (X x Y)/E—R is given by:
o([(x:)le) = F((x. ).

(XX Y)E~X < (x,y) ~g (x,z) forall xe X and y,z€ Y



Left Co-extensivity

((x,y),(x,z)) € Eforall xe X and y,z€ Y

Let X = Y = F({x}) and fix some constant 0 € F(0)
((x,x),(x,0)) € E

E is the transitive homomorphic symmetric reflexive closure of
R, where (e, ') ~g (e, ") for all e, €', e" € F(0)

> A sequence (x,x) ~q (x,a1) ~q - - ~q (x, ak) ~q (x,0)
Where Q is the homomorphic symmetric reflexive closure of R

>
>
>
>

» For each i < k there exists a term u; such that:

(X? ai) = ui((tlﬂ ti)? B (tmm t:n,-)v (el? 61/)7 SO (enn e;/;))

(Xv ai+1) = ui((tlv t{)v SRR (tmi7 t//n,-)’ (elv ei)v SRR (enn e:n))

for some unary terms to, ..., tm;, ty, ..., t,. € F({x}), and
constants e, ..., €n, €, ..., €n, €, ---,En € F(0)



Left Co-extensivity

Finally:

(x; 20)

(x;x)

( :) = Uj
(x,ai41) = ui((t1, t1)s - - -5 (tmss tm ), (e1,€),- .-

(x,ak) = (x,0)
Becomes:
up(ty, thy ... th el ef,... en) =x
u,-(tl,t2,...,tm,e1,e2,...,e,,):x
ui(ty, th, ..., th el e, ... en) = uir1(ty, th, ...
uk(ty, thy ... th e, e, ....,e))=0

As in our characterisation.
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Left co-extensive example

For example, the variety of algebras with a binary operation -,
constants 0,1 and satisfying x -1 = x and x-0 = 0.

Then for k=0,n=m=1, up=-,t; = x,e;1 = ¢/ =1, and
e; = 0 we have:

up(ty,ef) =x-1=x
u,-(tl,el) =x-1=x
ug(ty,e]) =x-0=0

Equivalently: (x,y) = (x,y)-(1,1) ~ (x,y) - (1,0) = (x, 0)



Diagonalising term

Any coextensive variety contains, for some k > 1, a (k + 2)-ary
term t and constants ey, ..., e, e€f,..., e, € F(0) such that the
identities hold:

t(x,y,€e1,...,ex) =X

t(x,y,e1,... €)=y
For h: X x Y —=Z we definethemap é: Z x Z—~Z
5(x,y) = t(x,y, h(er,e]), ..., h(ek, €L))
When h=f x g: X x Y—A x B we have:
5((a, b), (c,d)) = (t(a,c,e1,...,e), t(b,d,ef,...,e)) = (a,d)

in CRing we have 6(x,y) = x-(1,0)+y-(0,1)



Diagonalising term

Let A C F({x,y})? be generated by F(0)2U {(x,x),(y,y)}.
Consider the pushouts:

F(0) < F(0) x F(0) —=— F(0)

F({x,y}) =—"—A—"—=F({x,y})

Then since both squares are pushouts the bottom row is a product
diagram. In particular we have (x,y) € A and so for some t:

(x,y) = t((x;x), (v, ¥), (ex, ei)? oy (ks ef())
= (t(x,y,€1,---,ex), t(x,y,€1,...,€))



Diagonalising term

Let C be a variety of universal algebras containing a diagonalizing
term. The following conditions hold:

1. C is left co-extensive
2. forany h: X x Y —= Z the map (p1, p2) is surjective.

3. For surjective h, the map (p1, p2) is an isomorphism, so
h~ hl X h2.

X< xXxy- .y

h h hy

TP1

S

A x B




Diagonalising term
C is left coextensive by our characterisation since we can fix any
constant as 0 and have the equalities:

t(x,0,e1,...,60) =x X< Xxy—"Ysy

/ Iy
t(x,0,e1,...,6,) =0 b b ho

A'T R R i ﬁB'

e

A x B

» pi, po are surjective
» so for (a, b) € A’ x B’ there exist z1,z> € Z such that
pi(z1) = a and pa(z2) = b
> pi(0(z1,22)) = t(pi(z1), pi(22), pi(er, €1), - -, pilex, &)) =
pi(zi)
> (p1,p2)(6(21, 22)) = (p1(z1), p2(22)) = (a, b)
So (p1, p2) is surjective



Lattices

A (bounded) lattice can be considered as a tuple (L, V,A,0,1)
where L is a set, V and A are binary operations on L, and 0 and 1
are constants. Any lattice satisfies the associative, commutative,
and absorption identities, and in particular the identities:

I1AXx =x OVx=x OAx=0 l1vx=1

The category of lattices Lat is then a variety of universal algebras,
with a diagonalising term t(a, b, c,d) = (aAc) V (b A c) since:

t(x,y,1,0) = (xA1)V(yA0)=xVO0=x
t(x,y,0,1) = (xAOQ)V(y A1) =0Vy=y
Lat is not co-extensive, but the category DLat of Distributive

lattices is coextensive as it is a full subcategory in CSemiRings
closed under products.



1

2.

Characterisation

. C has a diagonalising term t with constants ey, ..., ek, ef,..., e, € F(0)
There exist terms g, . .., an, Bo, - - -, Bn € F(X + U(F(0)?)), operations
g, ..., Um € F(X) and for all operations s € F(X) there exist u(()s), Cul) st
wo(Bos - - -, Bn) = 8(x, ). u$ (Bos - -, Bn) = 8(s(x1, -, x1), (X - - X))
Um(ag, ... ) = x. u(ag, ... o) = s(8(x1,x]),...,8(x1,x]))

Ui(a07 cee ,an) = Ui+1(507 cee >5n)~ U,(s)(am cee >an) = U,(Jsr)l(ﬁm . 75,7)

For each j < n one of the following is true:

3.1 Qj = ﬂj

3.2 o = (w,w’) and Bj = 6(w,w’) for some constants w,w’

3.3 Bj = (w,w’) and ¢ = d(w,w") for some constants w,w’

3.4 aj = v(d(wo,wp), - -, 0(wr,w))) and B = d(v(wo, ..., wi), v(wg, ..., wyp)) for
some constants wy, . . . , Wy, Wo, - - - , W]

3.5 Bj = v(6(wo,wp), - -, 0(wr,wy)) and aj = d(v(wo, . ..,w;), v(wg, ..., wp)) for

some constants wg,...,Ww, Wwo, - . . ,w;



From ¢ to co-extensivity
In a category with a diagonalising term, coextensivity is reduced to
the injectivity of (p1, p2) for any set X in the diagram:

F(0) <—=— F(0) x F(0) —=— F(0)

h

0~ F(X)+ FO)? — 2 F(X)

\ (pl‘,pz) /
¥
F(X) x F(X)
Recall, however, that § is defined such that:
pi(6(x1,x2)) = pi(t(x1, x2, (1, €1), - - -, (e, €)))
= t(pi(x1), pi(x2), pi(e1; €1)), - - -, pi((ex, €k)))
= pi(xi)
= (p1, P2)(6(x1,x2)) = (P1(x1), P2(x2))



Injectivity of (p1, p2)

From (p1, p2)(0(x1, x2)) = (p1(x1), p2(x2)), it can be shown that
(p1, p2) is injective if and only if:

1. 6(x,x) = x for any x € F(X) + F())?

2. u(d(x1,y1), -+ 0(Xny ¥n)) = 0(u(x1, .., xn), u(y1,...,yn)) for
any operation u and any x;,y; € F(X) + F()?

If F(X) + F(0)? is a product, then we can write x = (x’, x”) and
=(y',y"), s0 d0(x,y) = (x',y") and these conditions become:

1. (X, x") = (X, x")

2. u((Xl’yl )’ ] (X;nyrlrl)) = (U(Xiv te 7Xr,1)’ U(y{/’ te 7Yr/1/))
Which are true for any product



Characterisation

To produce a characterisation we need to consider F(X) + F(0)?
as a quotient on some free algebra.

>
| 4

F(X)+ F(0)? =~ F(X + U(F(0)?))/E

Here E is generated by (w,w’) ~ é(w,w’) and

v(0(wo,wp), - -+, 0(wr, wy)) = 6(v(wo, ..., wr), v(wg, - - -, w)))
for any constants wj, w!

We need d(x, x) ~g x and for any operation s

s(6(x1,¥1), -+, 0(Xny ¥n)) =g O(s(x1, -y %Xn)s S(V1s- -5 ¥n))
for all x;, y; (not just constants)

again we consider E as the transitive homomorphic symmetric
reflexive closure of this relation.

Sequences d(x,x) ~@ a1 ~qQ -+ - Q Ak ~Q X
s(0(x1,¥1), -+ 0(Xn, ¥n)) =@ ags) ~o g aE{S) ~0
d(s(x1,---sXn),s(y1,-..,Yyn)) for each operation s

Here Q is the homomorphic symmetric reflexive closure.
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