ON WHEN THE UNION OF TWO ALGEBRAIC SETS IS ALGEBRAIC

Bernardo Rossi (joint work with E. Aichinger and M. Behrisch) 01.11.2022

Institute for Algebra, JKU Linz
Austrian Science Fund FWF P33878

Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a field.

Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a field.

Several notions from algebraic geometry have a counterpart in universal algebra.

Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a field.

Several notions from algebraic geometry have a counterpart in universal algebra.
In this talk we focus on the shape of solutions sets of equations in universal algebras.

Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a field.

Several notions from algebraic geometry have a counterpart in universal algebra.
In this talk we focus on the shape of solutions sets of equations in universal algebras.

We know that the solutions sets of systems of equations over a field induce a topology.

Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a field.

Several notions from algebraic geometry have a counterpart in universal algebra.
In this talk we focus on the shape of solutions sets of equations in universal algebras.

We know that the solutions sets of systems of equations over a field induce a topology.

We want to characterize clones with similar properties.

Algebraic sets

Definition (Universal algebraic geometry)

Let \mathcal{C} be a clone on a set A.
$B \subseteq A^{n}$ is \mathcal{C}-algebraic if there exist functions $\left(p_{i}\right)_{i \in I},\left(q_{i}\right)_{i \in I}$ in $\mathcal{C}^{[n]}$ such that

$$
B=\left\{\boldsymbol{x} \in A^{n} \mid \forall i \in I: p_{i}(\boldsymbol{x})=q_{i}(\boldsymbol{x})\right\} .
$$

Algebraic sets

Definition (Universal algebraic geometry)
Let \mathcal{C} be a clone on a set A.
$B \subseteq A^{n}$ is \mathcal{C}-algebraic if there exist functions $\left(p_{i}\right)_{i \in I},\left(q_{i}\right)_{i \in I}$ in $\mathcal{C}^{[n]}$ such that

$$
B=\left\{\boldsymbol{x} \in A^{n} \mid \forall i \in I: p_{i}(\boldsymbol{x})=q_{i}(\boldsymbol{x})\right\}
$$

For $n \in \mathbb{N}, \operatorname{Alg}_{n} \mathcal{C}$ is the collection of the algebraic subsets of A^{n}. $\operatorname{Alg} \mathcal{C}=\bigcup_{n \in \mathbb{N}} \operatorname{Alg}_{n} \mathcal{C}$ is the algebraic geometry of \mathcal{C}.

Algebraic sets

Definition (Universal algebraic geometry)
Let \mathcal{C} be a clone on a set A.
$B \subseteq A^{n}$ is \mathcal{C}-algebraic if there exist functions $\left(p_{i}\right)_{i \in I},\left(q_{i}\right)_{i \in I}$ in $\mathcal{C}^{[n]}$ such that

$$
B=\left\{\boldsymbol{x} \in A^{n} \mid \forall i \in I: p_{i}(\boldsymbol{x})=q_{i}(\boldsymbol{x})\right\}
$$

For $n \in \mathbb{N}, \operatorname{Alg}_{n} \mathcal{C}$ is the collection of the algebraic subsets of A^{n}.
$\operatorname{Alg} \mathcal{C}=\bigcup_{n \in \mathbb{N}} \operatorname{Alg}_{n} \mathcal{C}$ is the algebraic geometry of \mathcal{C}.
$\mathcal{K} \subseteq \bigcup_{n \in \mathbb{N}} \mathcal{P}\left(A^{n}\right)$ is an algebraic geometry if $\exists \mathcal{D}$ on A such that $\mathcal{K}=\operatorname{Alg} \mathcal{D}$.

Universal Algebraic Geometry

Studying universal algebraic geometries is related to studying the following equivalence relation:

Definition

Two clones \mathcal{C} and \mathcal{D} on A are algebraically equivalent $\left(\mathcal{C} \sim_{\operatorname{alg}} \mathcal{D}\right)$ if $\operatorname{Alg} \mathcal{C}=\operatorname{Alg} \mathcal{D}$.

Closure properties of algebraic geometries

Properties of $\mathrm{Alg} \mathcal{C}$

All algebraic geometries satisfy the following properties:

- $\forall n \in \mathbb{N}, \forall\left(B_{i}\right)_{i \in I}$ from $\operatorname{Alg}_{n} \mathcal{C}$ we have $\bigcap_{i \in I} B_{i} \in \operatorname{Alg}_{n} \mathcal{C}$;

■ $\forall n, m \in \mathbb{N}, \forall \sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}:$
$B \in \operatorname{Alg}_{n} \mathcal{C} \Rightarrow\left\{\left(a_{1}, \ldots, a_{m}\right) \mid\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right) \in B\right\} \in \operatorname{Alg}_{m} \mathcal{C}$.

Closure properties of algebraic geometries

Properties of $\mathrm{Alg} \mathcal{C}$

All algebraic geometries satisfy the following properties:
■ $\forall n \in \mathbb{N}, \forall\left(B_{i}\right)_{i \in I}$ from $\operatorname{Alg}_{n} \mathcal{C}$ we have $\bigcap_{i \in I} B_{i} \in \operatorname{Alg}_{n} \mathcal{C}$;
■ $\forall n, m \in \mathbb{N}, \forall \sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$:
$B \in \operatorname{Alg}_{n} \mathcal{C} \Rightarrow\left\{\left(a_{1}, \ldots, a_{m}\right) \mid\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right) \in B\right\} \in \operatorname{Alg}_{m} \mathcal{C}$.

In general algebraic geometries are not relational clones

Closure properties of algebraic geometries

The green line is the algebraic set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \cdot x_{2}=1\right\}$. Its projection on the first coordinate is not algebraic.

Closure properties of algebraic geometries

Properties of $\mathrm{Alg} \mathcal{C}$

All algebraic geometries satisfy the following properties:
■ $\forall n \in \mathbb{N}, \forall\left(B_{i}\right)_{i \in I}$ from $\operatorname{Alg}_{n} \mathcal{C}$ we have $\bigcap_{i \in I} B_{i} \in \operatorname{Alg}_{n} \mathcal{C}$;

- $\forall n, m \in \mathbb{N}, \forall \sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$:
$B \in \operatorname{Alg}_{n} \mathcal{C} \Rightarrow\left\{\left(a_{1}, \ldots, a_{m}\right) \mid\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right) \in B\right\} \in \operatorname{Alg}_{m} \mathcal{C}$.

In general algebraic geometries are not relational clones and are not closed under finite unions.

Adding additional closure properties

Lemma (Tòth and Waldhauser 2017)
Let \mathcal{C} be a clone such that $\operatorname{Alg} \mathcal{C}$ is a relational clone. Then $\operatorname{Alg} \mathcal{C}=\operatorname{lnv} \mathcal{C}^{*}$.

Adding additional closure properties

Lemma (Tòth and Waldhauser 2017)
Let \mathcal{C} be a clone such that $\operatorname{Alg} \mathcal{C}$ is a relational clone. Then $\operatorname{Alg} \mathcal{C}=\operatorname{lnv} \mathcal{C}^{*}$.

Theorem (Burris, Willard 1987)

On a finite set there are only finitely many clones of the form \mathcal{C}^{*}.

Adding additional closure properties

Lemma (Tòth and Waldhauser 2017)

Let \mathcal{C} be a clone such that $\operatorname{Alg} \mathcal{C}$ is a relational clone. Then $\operatorname{Alg} \mathcal{C}=\operatorname{lnv} \mathcal{C}^{*}$.

Theorem (Burris, Willard 1987)

On a finite set there are only finitely many clones of the form \mathcal{C}^{*}.

Corollary

On a finite set there are only finitely many algebraic geometries that are relational clones.

Geometries on the two-element set

Theorem (Kuznecov 1977, Herrmann 2008)
On the two element set there only 25 clones of the form \mathcal{C}^{*}.

Geometries on the two-element set

Theorem (Kuznecov 1977, Herrmann 2008)

On the two element set there only 25 clones of the form \mathcal{C}^{*}.

Theorem (Tòth and Waldhauser 2017)
Let \mathcal{C} be a clone on the two element set. Then $\operatorname{Alg} \mathcal{C}=\operatorname{lnv} \mathcal{C}^{*}$.

Geometries on the two-element set

Theorem (Kuznecov 1977, Herrmann 2008)

On the two element set there only 25 clones of the form \mathcal{C}^{*}.

Theorem (Tòth and Waldhauser 2017)
Let \mathcal{C} be a clone on the two element set. Then $\operatorname{Alg} \mathcal{C}=\operatorname{lnv} \mathcal{C}^{*}$. On the two-element set there are only 25 algebraic geometries.

Equationally additive clones

Definition (Equationally additive clone)
A clone \mathcal{C} on a set A is equationally additive if for all $n \in \mathbb{N}$ and for all $B, C \in$ $\operatorname{Alg}_{n} \mathcal{C}$ we have $B \cup C \in \operatorname{Alg}_{n} \mathcal{C}$.

Equationally additive clones

Definition (Equationally additive clone)
A clone \mathcal{C} on a set A is equationally additive if for all $n \in \mathbb{N}$ and for all $B, C \in$ $\operatorname{Alg}_{n} \mathcal{C}$ we have $B \cup C \in \operatorname{Alg}_{n} \mathcal{C}$.

Theorem (Pinus 2017)

On a finite set there are only finitely many equationally additive clones modulo algebraic equivalence.

The number of geometries on finite sets

Theorem (Aichinger and R. 2022)
Let A be a finite set with at least three elements.
Then on A there are $2^{\aleph_{0}}$ distinct algebraic geometries.

The number of geometries on finite sets

Theorem (Aichinger and R. 2022)

Let A be a finite set with at least three elements.
Then on A there are $2^{\aleph_{0}}$ distinct algebraic geometries.

Theorem (Aichinger, Behrisch, R.)

On the two-element set there are exactly \aleph_{0} equationally additive clones.
On a finite set with at least three elements there are exactly $2^{\aleph_{0}}$ equationally additive clones.

Number of clones modulo $\sim_{\text {alg }}$

Property	Number of clones	Number of clones modulo $\sim_{\text {alg }}$
all $n=2$	\aleph_{0}	25
all $n>2$	$2^{\aleph_{0}}$	$2^{\aleph_{0}}$
equationally additive, $n>2$	$2^{\aleph_{0}}$	finite

We want to describe algebras whose clone of term functions or polynomial functions is equationally additive.

Known results

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

For a commutative associative ring A with $A \neq 0$ the following are equivalent:

- A has no zero divisors;
- $\mathrm{Pol} \mathbf{A}$ is equationally additive.

Known results

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

For a commutative associative ring A with $A \neq 0$ the following are equivalent:

- A has no zero divisors;
- $\operatorname{Pol} \mathbf{A}$ is equationally additive.

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

Let \mathbf{G} be a group.

- Then $\mathrm{Clo} \mathbf{A}$ is equationally additive if and only if $\mathbf{G} \cong\{0\}$.

Known results

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

For a commutative associative ring A with $A \neq 0$ the following are equivalent:

- A has no zero divisors;
- $\operatorname{Pol} \mathbf{A}$ is equationally additive.

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

Let G be a group.

- Then $\mathrm{Clo} \mathbf{A}$ is equationally additive if and only if $\mathbf{G} \cong\{0\}$.
- If \mathbf{G} is simple and non-Abelian, then $\operatorname{Pol} \mathbf{G}$ is equationally additive.

A special relation

For a set A we define

$$
\Delta_{A}^{(4)}:=\left\{\boldsymbol{x} \in A^{4} \mid x_{1}=x_{2} \text { or } x_{3}=x_{4}\right\} .
$$

A special relation

For a set A we define

$$
\Delta_{A}^{(4)}:=\left\{\boldsymbol{x} \in A^{4} \mid x_{1}=x_{2} \text { or } x_{3}=x_{4}\right\} .
$$

$$
\text { If } A=\{0,1\} \text {, then }(0,0,1,0) \in \Delta_{A}^{(4)},(1,0,1,0) \notin \Delta_{A}^{(4)}
$$

A special relation

For a set A we define

$$
\Delta_{A}^{(4)}:=\left\{\boldsymbol{x} \in A^{4} \mid x_{1}=x_{2} \text { or } x_{3}=x_{4}\right\}
$$

$$
\text { If } A=\{0,1\} \text {, then }(0,0,1,0) \in \Delta_{A}^{(4)},(1,0,1,0) \notin \Delta_{A}^{(4)}
$$

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)
A clone \mathcal{C} on a set A is equationally additive if and only if $\Delta_{A}^{(4)} \in \operatorname{Alg}_{4} \mathcal{C}$.

Proof

Let \mathcal{C} be a clone on a A with $\Delta_{A}^{(4)} \in \operatorname{Alg} \mathcal{C}$, let $B, C \subseteq A^{n}$ and let us suppose that

$$
\begin{array}{rlrl}
\Delta_{A}^{(4)} & =\left\{\boldsymbol{a} \in A^{4} \mid \forall i \in I: \quad p_{i}(\boldsymbol{a})=q_{i}(\boldsymbol{a})\right\} \\
B & =\left\{\boldsymbol{a} \in A^{n} \mid \forall j \in J: \quad f_{j}(\boldsymbol{a})=g_{j}(\boldsymbol{a})\right\} \\
C & =\left\{\boldsymbol{a} \in A^{n} \mid \forall k \in K:\right. & \left.h_{k}(\boldsymbol{a})=t_{k}(\boldsymbol{a})\right\}
\end{array}
$$

for $\left(p_{i}\right)_{i \in I},\left(q_{i}\right)_{i \in I} \subseteq \mathcal{C}^{[4]},\left(f_{j}\right)_{j \in J},\left(g_{j}\right)_{j \in J},\left(h_{k}\right)_{k \in K},\left(t_{k}\right)_{k \in K} \subseteq \mathcal{C}^{[n]}$. Then we have

$$
\begin{aligned}
B \cup C=\{ & \left\{\boldsymbol{a} \in A^{n} \mid \forall(i, j, k) \in I \times J \times K:\right. \\
& \left.p_{i}\left(f_{j}(\boldsymbol{a}), g_{j}(\boldsymbol{a}), h_{k}(\boldsymbol{a}), t_{k}(\boldsymbol{a})\right)=q_{i}\left(f_{j}(\boldsymbol{a}), g_{j}(\boldsymbol{a}), h_{k}(\boldsymbol{a}), t_{k}(\boldsymbol{a})\right)\right\} .
\end{aligned}
$$

Integral domains

Let $\mathbf{K}=(K ;+,-, 0, \cdot)$ be a ring with no zero divisors. Then

$$
\begin{aligned}
\Delta_{K}^{(4)} & =\left\{\boldsymbol{k} \in K^{4} \mid k_{1}=k_{2} \text { or } k_{3}=k_{4}\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid\left(k_{1}-k_{2}\right) \cdot\left(k_{3}-k_{4}\right)=0\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid f(\boldsymbol{k})=0\right\},
\end{aligned}
$$

where $f=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right)$.

Integral domains

Let $\mathbf{K}=(K ;+,-, 0, \cdot)$ be a ring with no zero divisors. Then

$$
\begin{aligned}
\Delta_{K}^{(4)} & =\left\{\boldsymbol{k} \in K^{4} \mid k_{1}=k_{2} \text { or } k_{3}=k_{4}\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid\left(k_{1}-k_{2}\right) \cdot\left(k_{3}-k_{4}\right)=0\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid f(\boldsymbol{k})=0\right\},
\end{aligned}
$$

where $f=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right)$.
Let $\left\{p_{i} \mid i \in I\right\},\left\{q_{j} \mid j \in J\right\} \subseteq \operatorname{Clo}_{n} \mathbf{K}$.
Let $A=\left\{\boldsymbol{k} \in K^{n} \mid \forall i \in I: p_{i}(\boldsymbol{k})=0\right\}$ and
let $B=\left\{\boldsymbol{k} \in K^{n} \mid \forall j \in J: q_{j}(\boldsymbol{k})=0\right\}$.

Integral domains

Let $\mathbf{K}=(K ;+,-, 0, \cdot)$ be a ring with no zero divisors. Then

$$
\begin{aligned}
\Delta_{K}^{(4)} & =\left\{\boldsymbol{k} \in K^{4} \mid k_{1}=k_{2} \text { or } k_{3}=k_{4}\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid\left(k_{1}-k_{2}\right) \cdot\left(k_{3}-k_{4}\right)=0\right\} \\
& =\left\{\boldsymbol{k} \in K^{4} \mid f(\boldsymbol{k})=0\right\},
\end{aligned}
$$

where $f=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right)$.
Let $\left\{p_{i} \mid i \in I\right\},\left\{q_{j} \mid j \in J\right\} \subseteq \operatorname{Clo}_{n} \mathbf{K}$.
Let $A=\left\{\boldsymbol{k} \in K^{n} \mid \forall i \in I: p_{i}(\boldsymbol{k})=0\right\}$ and
let $B=\left\{\boldsymbol{k} \in K^{n} \mid \forall j \in J: q_{j}(\boldsymbol{k})=0\right\}$. Then
$A \cup B=\left\{\boldsymbol{k} \in K^{n} \mid \forall i \in I, \forall j \in J: f\left(p_{i}, 0, q_{j}, 0\right)(\boldsymbol{k})=0\right\}$.

Consequences

Corollary

Let A be a set. The set of equationally addive clones on A is an order filter in the poset of clones on A.

Consequences

Corollary

Let A be a set. The set of equationally addive clones on A is an order filter in the poset of clones on A.

On the two-element set we can describe the equationally additive clones by giving the generators of the filter.

Equationally additive Boolean clones

Theorem (Aichinger, Behrisch, R.)

For a clone \mathcal{C} on the two element set the following are equivalent:

1. \mathcal{C} is equationally additive;
2. \mathcal{C} is above one of the following clones:
$2.1 D_{2}$ generated by the majority operation;
$2.2 S_{00}$ generated by $(x, y, z) \mapsto x \vee(y \wedge z)$;
$2.3 S_{10}$ generated by $(x, y, z) \mapsto x \wedge(y \vee z)$.

The Post Lattice

The Post Lattice

o clones of TCT-type $1 \quad$ e clones of TCT-type $2 \quad$ clones of TCT-type 5

- clones of TCT-type 3 - clones of TCT-type 4

Equationally additive boolean clones

Corollary

For a clone \mathcal{C} on the two element set the following are equivalent:

1. \mathcal{C} is equationally additive;
2. \mathcal{C} is of TCT-type 3 or 4 ;
3. the algebra $(A ; \mathcal{C})$ generates a congruence distributive variety.

Structure of equationally additive algebras

Lemma (Aichinger, Behrisch, R.)

Let A be a finite set, let \mathcal{C} be a clone on A, let $\mathbf{A}=(A ; \mathcal{C})$, and let $f \in \mathcal{C}^{[4]}$ and $a \in A$ be such that $\Delta_{A}^{(4)}=\left\{\boldsymbol{a} \in A^{4} \mid f(\boldsymbol{a})=a\right\}$. Then

Structure of equationally additive algebras

Lemma (Aichinger, Behrisch, R.)

Let A be a finite set, let \mathcal{C} be a clone on A, let $\mathbf{A}=(A ; \mathcal{C})$, and let $f \in \mathcal{C}^{[4]}$ and $a \in A$ be such that $\Delta_{A}^{(4)}=\left\{\boldsymbol{a} \in A^{4} \mid f(\boldsymbol{a})=a\right\}$. Then

- A is subdirectly irreducible;

Structure of equationally additive algebras

Lemma (Aichinger, Behrisch, R.)

Let A be a finite set, let \mathcal{C} be a clone on A, let $\mathbf{A}=(A ; \mathcal{C})$, and let $f \in \mathcal{C}^{[4]}$ and $a \in A$ be such that $\Delta_{A}^{(4)}=\left\{\boldsymbol{a} \in A^{4} \mid f(\boldsymbol{a})=a\right\}$. Then

- A is subdirectly irreducible;
- $\exists b \in f[A] \backslash\{a\}$ such that $\mu=\operatorname{Con} \mathbf{A}(\{(a, b)\})$ is the monolith;

Structure of equationally additive algebras

Lemma (Aichinger, Behrisch, R.)

Let A be a finite set, let \mathcal{C} be a clone on A, let $\mathbf{A}=(A ; \mathcal{C})$, and let $f \in \mathcal{C}^{[4]}$ and $a \in A$ be such that $\Delta_{A}^{(4)}=\left\{\boldsymbol{a} \in A^{4} \mid f(\boldsymbol{a})=a\right\}$. Then

- A is subdirectly irreducible;
- $\exists b \in f[A] \backslash\{a\}$ such that $\mu=\operatorname{Con} \mathbf{A}(\{(a, b)\})$ is the monolith;
- $\left\langle 0_{\mathbf{A}}, \mu\right\rangle$ has TCT-type 3.

Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)
Let A be a finite algebra.
Then there exists $a \in A$ and a universal algebra \mathbf{B} such that

Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)
Let A be a finite algebra.
Then there exists $a \in A$ and a universal algebra \mathbf{B} such that

1. $\mathbf{C l o} \mathbf{B}$ is equationally additive,

Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)
Let A be a finite algebra.
Then there exists $a \in A$ and a universal algebra \mathbf{B} such that

1. $\mathbf{C l o} \mathbf{B}$ is equationally additive,
2. \mathbf{B} is subdirectly irreducible with monolith μ,

Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)
Let A be a finite algebra.
Then there exists $a \in A$ and a universal algebra \mathbf{B} such that

1. $\mathbf{C l o} \mathbf{B}$ is equationally additive,
2. \mathbf{B} is subdirectly irreducible with monolith μ,
3. the type of $\left\langle 0_{\mathbf{B}}, \mu\right\rangle$ is $\mathbf{3}$,

Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)

Let A be a finite algebra.
Then there exists $a \in A$ and a universal algebra \mathbf{B} such that

1. $\mathbf{C l o} \mathbf{B}$ is equationally additive,
2. \mathbf{B} is subdirectly irreducible with monolith μ,
3. the type of $\left\langle 0_{\mathbf{B}}, \mu\right\rangle$ is $\mathbf{3}$,
4. $\mathbf{B} / \mu \cong \mathbf{A}+a$;
where $\mathbf{A}+a$ is \mathbf{A} expanded with the 4 -ary function with constant value a.

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. \mathbf{A} is finitely subdirectly irreducible. $\forall \alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}: \alpha \cap \beta>0_{\mathbf{A}}$

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If A has a weak difference polynomial,

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If \mathbf{A} has a weak difference polynomial, then $\forall \alpha \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \alpha]>0_{\mathbf{A}}$.

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If \mathbf{A} has a weak difference polynomial, then $\forall \alpha \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \alpha]>0_{\mathbf{A}}$.
3. If A has a Mal'cev polynomial,

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If \mathbf{A} has a weak difference polynomial, then $\forall \alpha \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \alpha]>0_{\mathbf{A}}$.
3. If \mathbf{A} has a Malcev polynomial, then $\forall \alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \beta]>0_{\mathbf{A}}$.

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If \mathbf{A} has a weak difference polynomial, then $\forall \alpha \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \alpha]>0_{\mathbf{A}}$.
3. If \mathbf{A} has a Mal'cev polynomial, then $\forall \alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \beta]>0_{\mathbf{A}}$.

Let A be finite.
4. \mathbf{A} Taylor $\Rightarrow \mathbf{A}$ subdirectly irreducible with non-Abelian monolith.

Algebraic consequences of equational additivity

Let \mathcal{C} be an equationally additive clone on A and let $\mathbf{A}=(A ; \mathcal{C})$. Then we have:

1. A is finitely subdirectly irreducible.
2. If \mathbf{A} has a weak difference polynomial, then $\forall \alpha \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \alpha]>0_{\mathbf{A}}$.
3. If \mathbf{A} has a Mal'cev polynomial, then $\forall \alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \beta]>0_{\mathbf{A}}$.

Let A be finite.
4. \mathbf{A} Taylor \Rightarrow A subdirectly irreducible with non-Abelian monolith.
5. If \mathbf{A} is \mathbf{E}-minimal, then \mathbf{A} is not of type $\mathbf{1}$.

E-minimal algebras

Definition

A finite algebra A is E-minimal if the only non-constant idempotent polynomial of
\mathbf{A} is the identity.

E-minimal algebras

Definition

A finite algebra \mathbf{A} is E-minimal if the only non-constant idempotent polynomial of \mathbf{A} is the identity.

Examples of E-minimal algebras are

- Every two-element algebra;
- all p-groups.

E-minimal algebras

Definition

A finite algebra \mathbf{A} is E-minimal if the only non-constant idempotent polynomial of \mathbf{A} is the identity.

Examples of E-minimal algebras are
■ Every two-element algebra;
■ all p-groups.
Theorem (Aichinger, Behrisch, R.)
The clone of term operations of an E-minimal algebra \mathbf{A} is equationally additive if and only if A is of TCT-type $\mathbf{3}$ or 4 .

What can we say about the clone of polynomial functions of a Mal'cev algebra?

Interpolation Lemma

Interpolation Lemma

Let A be a subdirectly irreducible algebra with a nonAbelian monolith μ and a Mal'cev polynomial.

Figure: Con A

Interpolation Lemma

$$
\begin{aligned}
& \text { Interpolation Lemma } \\
& \text { Let } \mathbf{A} \text { be a subdirectly irre- } \\
& \text { ducible algebra with a non- } \\
& \text { Abelian monolith } \mu \text { and a } \\
& \text { Mal'cev polynomial. } \\
& \text { Let } o \in A \text {, let } U=o / \mu \text {, } \\
& \text { and let } l: A^{k} \rightarrow U \text { for } k \in \mathbb{N} \text {. }
\end{aligned}
$$

Figure: Polynomial interpolation

Interpolation Lemma

$$
\begin{aligned}
& \text { Interpolation Lemma } \\
& \text { Let } \mathbf{A} \text { be a subdirectly irre- } \\
& \text { ducible algebra with a non- } \\
& \text { Abelian monolith } \mu \text { and a } \\
& \text { Mal'cev polynomial. } \\
& \text { Let } o \in A \text {, let } U=o / \mu \text {, } \\
& \text { and let } l: A^{k} \rightarrow U \text { for } k \in \mathbb{N} \text {. } \\
& \text { Then for all } T \subseteq A^{k} \text { finite, }
\end{aligned}
$$

Figure: Polynomial interpolation

Interpolation Lemma

Interpolation Lemma
Let A be a subdirectly irre-ducible algebra with a non-Abelian monolith μ and aMal'cev polynomial.

$$
\text { Let } o \in A \text {, let } U=o / \mu \text {, }
$$

$$
\text { and let } l: A^{k} \rightarrow U \text { for } k \in \mathbb{N} \text {. }
$$

$$
\text { Then for all } T \subseteq A^{k} \text { finite, }
$$

$$
\exists p_{T} \in \operatorname{Pol}_{k} \mathbf{A} \text { such that }
$$

$$
\forall \boldsymbol{t} \in T: p_{T}(\boldsymbol{t})=l(\boldsymbol{t})
$$

$$
\text { and } \forall \boldsymbol{x} \in A^{k}: p_{T}(\boldsymbol{x}) \in U
$$

Figure: Polynomial interpolation

Consequences of the Interpolation Lemma

Let A be a finite, subdirectly irreducible algebra with a Mal'cev polynomial and a non-Abelian monolith.

Consequences of the Interpolation Lemma

Let A be a finite, subdirectly irreducible algebra with a Mal'cev polynomial and a non-Abelian monolith.

Let us define $f: A^{4} \rightarrow A$ by

$$
f(\boldsymbol{x})= \begin{cases}a & \text { if } \boldsymbol{x} \in \Delta_{A}^{(4)} \\ b & \text { otherwise }\end{cases}
$$

where $a, b \in A$ and (a, b) generates the monolith.

Consequences of the Interpolation Lemma

Let A be a finite, subdirectly irreducible algebra with a Mal'cev polynomial and a non-Abelian monolith.

Let us define $f: A^{4} \rightarrow A$ by

$$
f(\boldsymbol{x})= \begin{cases}a & \text { if } \boldsymbol{x} \in \Delta_{A}^{(4)} \\ b & \text { otherwise }\end{cases}
$$

where $a, b \in A$ and (a, b) generates the monolith.
Then the Interpolation Lemma yields $f \in \operatorname{Pol}_{4} \mathbf{A}$, and we have

Consequences of the Interpolation Lemma

Let A be a finite, subdirectly irreducible algebra with a Mal'cev polynomial and a non-Abelian monolith.

Let us define $f: A^{4} \rightarrow A$ by

$$
f(\boldsymbol{x})= \begin{cases}a & \text { if } \boldsymbol{x} \in \Delta_{A}^{(4)} \\ b & \text { otherwise }\end{cases}
$$

where $a, b \in A$ and (a, b) generates the monolith.
Then the Interpolation Lemma yields $f \in \operatorname{Pol}_{4} \mathbf{A}$, and we have

$$
\Delta_{A}^{(4)}=\left\{\boldsymbol{x} \in A^{4} \mid f(\boldsymbol{x})=a\right\}
$$

Main result. Finite case

Theorem (Aichinger, Behrisch, R.)

For a finite Mal'cev algebra \mathbf{A} with $|A| \geq 2$ the following are equivalent:

1. \mathbf{A} is subdirectly irreducible and the monolith is non-Abelian.
2. There exists $f \in \operatorname{Pol}_{4} \mathbf{A}$ and $a \in A$ such that $\Delta_{A}^{(4)}=\{\boldsymbol{x} \mid f(\boldsymbol{x})=a\}$.
3. $\operatorname{Pol} \mathbf{A}$ is equationally additive.

Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one consider the clone of term functions of a universal algebra:

Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one consider the clone of term functions of a universal algebra:

- $A(5)$ is simple and non-Abelian, thus it satisfies condition (1);

Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one consider the clone of term functions of a universal algebra:

- $A(5)$ is simple and non-Abelian, thus it satisfies condition (1);
- Clo $A(5)$ is not equationally additive (cf. Daniyarova, Myasnikov, Remeslennikov 2011).

Expansions of finite Abelian groups

Corollary (Aichinger, Behrisch, R.)

Let G be a finite Abelian group.
The number of constantive equationally additive expansions of \mathbf{G} is

- finite, if $|G|$ is square free or the square of a prime,
- countably infinite, otherwise.

What can we say about algebras with infinite domain?

Absorption Lemma

Let \mathbf{A} be an algebra with a Mal'cev polynomial.

Absorption Lemma

Let A be an algebra with a Mal'cev polynomial.
A binary polynomial p is absorbing at $\left(u_{1}, u_{2}\right) \in A^{2}$ if $\forall x_{1}, x_{2} \in A$ we have $p\left(x_{1}, u_{2}\right)=p\left(u_{1}, x_{2}\right)=p\left(u_{1}, u_{2}\right)$.

Absorption Lemma

Let A be an algebra with a Mal'cev polynomial.
A binary polynomial p is absorbing at $\left(u_{1}, u_{2}\right) \in A^{2}$ if
$\forall x_{1}, x_{2} \in A$ we have $p\left(x_{1}, u_{2}\right)=p\left(u_{1}, x_{2}\right)=p\left(u_{1}, u_{2}\right)$.

Absorption Lemma

Let $\alpha=\operatorname{Con}_{\mathbf{A}}\left(\left\{\left(u_{1}, v_{1}\right)\right\}\right)$ and $\beta=\operatorname{Con}_{\mathbf{A}}\left(\left\{\left(u_{2}, v_{2}\right)\right\}\right)$. Then

$$
[\alpha, \beta]=\left\{\left(c\left(v_{1}, v_{2}\right), c\left(u_{1}, u_{2}\right)\right) \mid c \in \operatorname{Pol}_{2} \mathbf{A} \text { is absorbing at }\left(u_{1}, u_{2}\right)\right\} .
$$

Consequences of the Absorption Lemma

The Absorption Lemma allows us to prove the following:

Proposition

Let A be an algebra with a Mal'cev polynomial such that $\forall \alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}:[\alpha, \beta]>0_{\mathbf{A}}$.
Then $\operatorname{Pol} \mathbf{A}$ is equationally additive.

Main result

Let \mathbf{A} be an algebra and let $\operatorname{Pol} \mathbf{A}$ be equationally additive.

Main result

Let \mathbf{A} be an algebra and let $\mathrm{Pol} \mathbf{A}$ be equationally additive.
$\forall \boldsymbol{a} \in A^{n}:\{\boldsymbol{a}\} \in \operatorname{Alg}_{n} \operatorname{Pol} \mathbf{A}$, since

$$
\{\boldsymbol{a}\}=\left\{\boldsymbol{x} \in A^{n} \mid x_{1}=a_{1}, \ldots, x_{n}=a_{n}\right\} .
$$

Main result

Let \mathbf{A} be an algebra and let $\mathrm{Pol} \mathbf{A}$ be equationally additive.
$\forall \boldsymbol{a} \in A^{n}:\{\boldsymbol{a}\} \in \operatorname{Alg}_{n} \mathrm{Pol} \mathbf{A}$, since

$$
\{\boldsymbol{a}\}=\left\{\boldsymbol{x} \in A^{n} \mid x_{1}=a_{1}, \ldots, x_{n}=a_{n}\right\} .
$$

Thus, every finite set is algebraic.

Main result

Theorem (Aichinger, Behrisch, R.)
Let A be an algebra with a Mal'cev polynomial such that $|A| \geq 2$. Then TFAE:

1. $\operatorname{Pol} \mathbf{A}$ is equationally additive.

Main result

Theorem (Aichinger, Behrisch, R.)
Let A be an algebra with a Mal'cev polynomial such that $|A| \geq 2$. Then TFAE:

1. $\operatorname{Pol} \mathbf{A}$ is equationally additive.
2. For each $n \in \mathbb{N}$, every finite subset of A^{n} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.

Main result

Theorem (Aichinger, Behrisch, R.)

Let A be an algebra with a Mal'cev polynomial such that $|A| \geq 2$. Then TFAE:

1. $\mathrm{Pol} \mathbf{A}$ is equationally additive.
2. For each $n \in \mathbb{N}$, every finite subset of A^{n} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.
3. Every three-element subset of A^{4} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.

Main result

Theorem (Aichinger, Behrisch, R.)

Let A be an algebra with a Mal'cev polynomial such that $|A| \geq 2$. Then TFAE:

1. $\operatorname{Pol} \mathbf{A}$ is equationally additive.
2. For each $n \in \mathbb{N}$, every finite subset of A^{n} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.
3. Every three-element subset of A^{4} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.
4. For all $\alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}$ we have $[\alpha, \beta]>0_{\mathbf{A}}$.

Main result

Theorem (Aichinger, Behrisch, R.)

Let A be an algebra with a Mal'cev polynomial such that $|A| \geq 2$. Then TFAE:

1. $\operatorname{Pol} \mathbf{A}$ is equationally additive.
2. For each $n \in \mathbb{N}$, every finite subset of A^{n} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.
3. Every three-element subset of A^{4} belongs to $\operatorname{Alg}(\operatorname{Pol}(\mathbf{A}))$.
4. For all $\alpha, \beta \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}$ we have $[\alpha, \beta]>0_{\mathbf{A}}$.

If A is finite, then (1)-(4) are equivalent to the following:
5. A is subdirectly irreducible and the monolith μ is non-Abelian.
6. There exist $f \in \operatorname{Pol}_{4} \mathbf{A}$ and $a \in A$ such that $\Delta_{A}^{(4)}=\{\boldsymbol{x} \mid f(\boldsymbol{x})=a\}$ and f_{γ} is constant for all $\gamma \in \operatorname{Con} \mathbf{A} \backslash\left\{0_{\mathbf{A}}\right\}$.

