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Introduction

Classical algebraic geometry studies solutions sets of systems of equations over a
field.

Several notions from algebraic geometry have a counterpart in universal algebra.

In this talk we focus on the shape of solutions sets of equations in universal
algebras.

We know that the solutions sets of systems of equations over a field induce a
topology.

We want to characterize clones with similar properties.
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Algebraic sets

Definition (Universal algebraic geometry)
Let C be a clone on a set A.
B ⊆ An is C-algebraic if there exist functions (pi)i∈I , (qi)i∈I in C[n] such that

B = { x ∈ An | ∀i ∈ I : pi(x ) = qi(x ) } .

For n ∈ N, Algn C is the collection of the algebraic subsets of An.
Alg C =

⋃
n∈NAlgn C is the algebraic geometry of C.

K ⊆
⋃

n∈N P(An) is an algebraic geometry if ∃D on A such that K = AlgD.
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Universal Algebraic Geometry

Studying universal algebraic geometries is related to studying the following
equivalence relation:

Definition
Two clones C and D on A are algebraically equivalent (C ∼alg D) if Alg C = AlgD.
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Closure properties of algebraic geometries

Properties of Alg C
All algebraic geometries satisfy the following properties:

■ ∀n ∈ N, ∀(Bi)i∈I from Algn C we have
⋂

i∈I Bi ∈ Algn C;

■ ∀n,m ∈ N, ∀σ : {1, . . . , n} → {1, . . . ,m}:
B ∈ Algn C ⇒

{
(a1, . . . , am) | (aσ(1), . . . , aσ(n)) ∈ B

}
∈ Algm C.

In general algebraic geometries are not relational clones
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Closure properties of algebraic geometries

The green line is the algebraic
set {(x1, x2) | x1 · x2 = 1}.
Its projection on the first
coordinate is not algebraic.
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Adding additional closure properties

Lemma (Tòth and Waldhauser 2017)
Let C be a clone such that Alg C is a relational clone. Then Alg C = Inv C∗.

Theorem (Burris, Willard 1987)
On a finite set there are only finitely many clones of the form C∗.

Corollary
On a finite set there are only finitely many algebraic geometries that are relational
clones.
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Geometries on the two-element set

Theorem (Kuznecov 1977, Herrmann 2008)
On the two element set there only 25 clones of the form C∗.

Theorem (Tòth and Waldhauser 2017)
Let C be a clone on the two element set. Then Alg C = Inv C∗.
On the two-element set there are only 25 algebraic geometries.
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Equationally additive clones

Definition (Equationally additive clone)
A clone C on a set A is equationally additive if for all n ∈ N and for all B,C ∈
Algn C we have B ∪ C ∈ Algn C.

Theorem (Pinus 2017)
On a finite set there are only finitely many equationally additive clones modulo
algebraic equivalence.
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The number of geometries on finite sets

Theorem (Aichinger and R. 2022)
Let A be a finite set with at least three elements.
Then on A there are 2ℵ0 distinct algebraic geometries.

Theorem (Aichinger, Behrisch, R.)
On the two-element set there are exactly ℵ0 equationally additive clones.
On a finite set with at least three elements there are exactly 2ℵ0 equationally
additive clones.
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Number of clones modulo ∼alg

Property Number of clones Number of clones
modulo ∼alg

all n = 2 ℵ0 25

all n > 2 2ℵ0 2ℵ0

equationally additive, n > 2 2ℵ0 finite
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We want to describe algebras whose clone of term functions or polynomial
functions is equationally additive.
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Known results

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)
For a commutative associative ring A with A ̸= 0 the following are equivalent:

■ A has no zero divisors;

■ PolA is equationally additive.

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)
Let G be a group.

■ Then CloA is equationally additive if and only if G ∼= {0}.

■ If G is simple and non-Abelian, then PolG is equationally additive.
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A special relation

For a set A we define

∆
(4)
A :=

{
x ∈ A4 | x1 = x2 or x3 = x4

}
.

If A = {0, 1}, then (0, 0, 1, 0) ∈ ∆
(4)
A , (1, 0, 1, 0) /∈ ∆

(4)
A .

Theorem (Daniyarova, Myasnikov, Remeslennikov 2011)

A clone C on a set A is equationally additive if and only if ∆(4)
A ∈ Alg4 C.
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Proof

Let C be a clone on a A with ∆
(4)
A ∈ Alg C, let B,C ⊆ An and let us suppose that

∆
(4)
A = {a ∈ A4 | ∀i ∈ I : pi(a) = qi(a)}
B = {a ∈ An | ∀j ∈ J : fj(a) = gj(a)}
C = {a ∈ An | ∀k ∈ K : hk(a) = tk(a)}

for (pi)i∈I , (qi)i∈I ⊆ C[4], (fj)j∈J , (gj)j∈J , (hk)k∈K , (tk)k∈K ⊆ C[n]. Then we have

B ∪ C = {a ∈ An | ∀(i, j, k) ∈ I × J ×K :

pi(fj(a), gj(a), hk(a), tk(a)) = qi(fj(a), gj(a), hk(a), tk(a))}.
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Integral domains

Let K = (K; +,−, 0, ·) be a ring with no zero divisors. Then

∆
(4)
K = {k ∈ K4 | k1 = k2 or k3 = k4}

= {k ∈ K4 | (k1 − k2) · (k3 − k4) = 0}
= {k ∈ K4 | f(k) = 0},

where f = (x1 − x2) · (x3 − x4).

Let { pi | i ∈ I } , { qj | j ∈ J } ⊆ ClonK.

Let A = { k ∈ Kn | ∀i ∈ I : pi(k) = 0 } and
let B = { k ∈ Kn | ∀j ∈ J : qj(k) = 0 }. Then
A ∪B = { k ∈ Kn | ∀i ∈ I, ∀j ∈ J : f(pi, 0, qj , 0)(k) = 0 }.

14/33



Integral domains

Let K = (K; +,−, 0, ·) be a ring with no zero divisors. Then

∆
(4)
K = {k ∈ K4 | k1 = k2 or k3 = k4}

= {k ∈ K4 | (k1 − k2) · (k3 − k4) = 0}
= {k ∈ K4 | f(k) = 0},

where f = (x1 − x2) · (x3 − x4).

Let { pi | i ∈ I } , { qj | j ∈ J } ⊆ ClonK.

Let A = { k ∈ Kn | ∀i ∈ I : pi(k) = 0 } and
let B = { k ∈ Kn | ∀j ∈ J : qj(k) = 0 }.

Then
A ∪B = { k ∈ Kn | ∀i ∈ I, ∀j ∈ J : f(pi, 0, qj , 0)(k) = 0 }.

14/33



Integral domains

Let K = (K; +,−, 0, ·) be a ring with no zero divisors. Then

∆
(4)
K = {k ∈ K4 | k1 = k2 or k3 = k4}

= {k ∈ K4 | (k1 − k2) · (k3 − k4) = 0}
= {k ∈ K4 | f(k) = 0},

where f = (x1 − x2) · (x3 − x4).

Let { pi | i ∈ I } , { qj | j ∈ J } ⊆ ClonK.

Let A = { k ∈ Kn | ∀i ∈ I : pi(k) = 0 } and
let B = { k ∈ Kn | ∀j ∈ J : qj(k) = 0 }. Then
A ∪B = { k ∈ Kn | ∀i ∈ I, ∀j ∈ J : f(pi, 0, qj , 0)(k) = 0 }.

14/33



Consequences

Corollary
Let A be a set. The set of equationally addive clones on A is an order filter in the
poset of clones on A.

On the two-element set we can describe the equationally additive clones by giving
the generators of the filter.
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Equationally additive Boolean clones

Theorem (Aichinger, Behrisch, R.)
For a clone C on the two element set the following are equivalent:

1. C is equationally additive;
2. C is above one of the following clones:

2.1 D2 generated by the majority operation;
2.2 S00 generated by (x, y, z) 7→ x ∨ (y ∧ z);
2.3 S10 generated by (x, y, z) 7→ x ∧ (y ∨ z).
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The Post Lattice

S1

S3
1

S2
1

S12

S11

S10

S3
12

S2
12

S3
11

S2
11

S3
10

S2
10

S00

S3
00

S01

S3
01

S02

S3
02

S0

S3
0

S2
0

S2
00

S2
01

S2
02

I2

E2 V2

I0 I1

N2

N

I

L0 L1

L2

L3

L
D2

E0 V1V0E1

E V

M2

R0 R1

O2

M1

M0

M
R2

D1

D

clones of TCT-type 1 clones of TCT-type 2 clones of TCT-type 5

clones of TCT-type 3 clones of TCT-type 4

17/33



The Post Lattice

S1

S3
1

S2
1

S12

S11

S10

S3
12

S2
12

S3
11

S2
11

S3
10

S2
10

S00

S3
00

S01

S3
01

S02

S3
02

S0

S3
0

S2
0

S2
00

S2
01

S2
02

I2

E2 V2

I0 I1

N2

N

I

L0 L1

L2

L3

L
D2

E0 V1V0E1

E V

M2

R0 R1

O2

M1

M0

M
R2

D1

D

clones of TCT-type 1 clones of TCT-type 2 clones of TCT-type 5

clones of TCT-type 3 clones of TCT-type 4

17/33



Equationally additive boolean clones

Corollary
For a clone C on the two element set the following are equivalent:

1. C is equationally additive;

2. C is of TCT-type 3 or 4;

3. the algebra (A; C) generates a congruence distributive variety.
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Structure of equationally additive algebras

Lemma (Aichinger, Behrisch, R.)
Let A be a finite set, let C be a clone on A, let A = (A; C), and let f ∈ C[4] and
a ∈ A be such that ∆(4)

A = {a ∈ A4 | f(a) = a}. Then

■ A is subdirectly irreducible;

■ ∃b ∈ f [A] \ {a} such that µ = ConA({(a, b)}) is the monolith;

■ ⟨0A, µ⟩ has TCT-type 3.
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Structure of equationally additive algebras

Theorem (Aichinger, Behrisch, R.)
Let A be a finite algebra.
Then there exists a ∈ A and a universal algebra B such that

1. CloB is equationally additive,

2. B is subdirectly irreducible with monolith µ,

3. the type of ⟨0B, µ⟩ is 3,

4. B/µ ∼= A+ a;
where A+ a is A expanded with the 4-ary function with constant value a.
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Algebraic consequences of equational additivity

Let C be an equationally additive clone on A and let A = (A; C). Then we have:

1. A is finitely subdirectly irreducible.

∀α, β ∈ ConA \ {0A} : α ∩ β > 0A

2. If A has a weak difference polynomial, then ∀α ∈ ConA \ {0A} : [α, α] > 0A.

3. If A has a Mal’cev polynomial, then ∀α, β ∈ ConA \ {0A} : [α, β] > 0A.

Let A be finite.

4. A Taylor ⇒ A subdirectly irreducible with non-Abelian monolith.

5. If A is E-minimal, then A is not of type 1.
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Algebraic consequences of equational additivity
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E-minimal algebras

Definition
A finite algebra A is E-minimal if the only non-constant idempotent polynomial of
A is the identity.

Examples of E-minimal algebras are

■ Every two-element algebra;

■ all p-groups.

Theorem (Aichinger, Behrisch, R.)
The clone of term operations of an E-minimal algebra A is equationally additive
if and only if A is of TCT-type 3 or 4.
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What can we say about the clone of polynomial functions of a Mal’cev algebra?
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Interpolation Lemma

Interpolation Lemma
Let A be a subdirectly irre-
ducible algebra with a non-
Abelian monolith µ and a
Mal’cev polynomial.

Let o ∈ A, let U = o/µ,
and let l : Ak → U for k ∈ N.
Then for all T ⊆ Ak finite,
∃pT ∈ Polk A such that
∀t ∈ T : pT (t) = l(t),
and ∀x ∈ Ak : pT (x ) ∈ U .

1A

0A

µ = [µ, µ]

Figure: ConA
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Consequences of the Interpolation Lemma

Let A be a finite, subdirectly irreducible algebra with a Mal’cev polynomial and a
non-Abelian monolith.

Let us define f : A4 → A by

f(x ) =

a if x ∈ ∆
(4)
A ,

b otherwise,

where a, b ∈ A and (a, b) generates the monolith.

Then the Interpolation Lemma yields f ∈ Pol4A, and we have

∆
(4)
A = {x ∈ A4 | f(x ) = a}.
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Main result. Finite case

Theorem (Aichinger, Behrisch, R.)
For a finite Mal’cev algebra A with |A| ≥ 2 the following are equivalent:

1. A is subdirectly irreducible and the monolith is non-Abelian.

2. There exists f ∈ Pol4A and a ∈ A such that ∆(4)
A = {x | f(x ) = a}.

3. PolA is equationally additive.
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Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one
consider the clone of term functions of a universal algebra:

■ A(5) is simple and non-Abelian, thus it satisfies condition (1);

■ CloA(5) is not equationally additive (cf. Daniyarova, Myasnikov,
Remeslennikov 2011).

27/33



Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one
consider the clone of term functions of a universal algebra:

■ A(5) is simple and non-Abelian, thus it satisfies condition (1);

■ CloA(5) is not equationally additive (cf. Daniyarova, Myasnikov,
Remeslennikov 2011).

27/33



Clones of term operations

The conditions in the previous theorem are NOT necessarily equivalent if one
consider the clone of term functions of a universal algebra:

■ A(5) is simple and non-Abelian, thus it satisfies condition (1);

■ CloA(5) is not equationally additive (cf. Daniyarova, Myasnikov,
Remeslennikov 2011).

27/33



Expansions of finite Abelian groups

Corollary (Aichinger, Behrisch, R.)
Let G be a finite Abelian group.
The number of constantive equationally additive expansions of G is

■ finite, if |G| is square free or the square of a prime,

■ countably infinite, otherwise.
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What can we say about algebras with infinite domain?
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Absorption Lemma

Let A be an algebra with a Mal’cev polynomial.

A binary polynomial p is absorbing at (u1, u2) ∈ A2 if
∀x1, x2 ∈ A we have p(x1, u2) = p(u1, x2) = p(u1, u2).

Absorption Lemma
Let α = ConA({(u1, v1)}) and β = ConA({(u2, v2)}). Then

[α, β] = {(c(v1, v2), c(u1, u2)) | c ∈ Pol2A is absorbing at (u1, u2)}.
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Consequences of the Absorption Lemma

The Absorption Lemma allows us to prove the following:

Proposition
Let A be an algebra with a Mal’cev polynomial such that
∀α, β ∈ ConA \ {0A} : [α, β] > 0A.
Then PolA is equationally additive.
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Main result

Let A be an algebra and let PolA be equationally additive.

∀a ∈ An : {a} ∈ Algn PolA, since

{a} = {x ∈ An | x1 = a1, . . . , xn = an}.

Thus, every finite set is algebraic.
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Main result

Theorem (Aichinger, Behrisch, R.)
Let A be an algebra with a Mal’cev polynomial such that |A| ≥ 2. Then TFAE:

1. PolA is equationally additive.

2. For each n ∈ N, every finite subset of An belongs to Alg(Pol(A)).

3. Every three-element subset of A4 belongs to Alg(Pol(A)).

4. For all α, β ∈ ConA \ {0A} we have [α, β] > 0A.

If A is finite, then (1)-(4) are equivalent to the following:

5. A is subdirectly irreducible and the monolith µ is non-Abelian.

6. There exist f ∈ Pol4A and a ∈ A such that ∆(4)
A = {x | f(x ) = a} and fγ is

constant for all γ ∈ ConA \ {0A}.
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