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A general framework for the commutator

> Let G be some relational structure and X be a set. Any

function
feXe

inherits the structure of G, because it can be viewed as a copy
of S which is colored by some elements of X.

» For this talk, the exponent has the structure of an
(n)-dimensional cube, for n > 0. Concretely, let C, be the
graph with base set n = {0,...,n— 1} and edge relation
between f, g € 2" if and only if

3 exactly one i € n(f(i) # g(i)).

» A (0)-dimensional cube is a single vertex, a (1)-dimensional
cube is a pair connected by an edge, a (2)-dimensional cube is
a square, a (3) dimensional cube is a cube, etc.
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» An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X:

R C X%

» The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any @ C X, we have a bijective map

Cutg : X2 (X2n\Q)2Q,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2"\9. Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

» If @ ={i} is a singleton set, we call this map Faces;. If
n\ Q = {i} is a singleton set, we call this map Lines;
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Example pictures:
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» (n)-reflexive if Faces;(R) is reflexive for each i € R. Here's
the n = 2 picture:
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» (n)-transitive if Faces;(R) is transitive for each i € R.



Here's the n = 3 picture of (n)-transitivity:
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Each cube is an element of a (3)-transitive relation R.
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Definition
Let A be an algebra. An A-admissible (n)-dimensional relation is
called
» an (n)-dimensional tolerance of A if it is (n)-reflexive and
(n)-symmetric and
» an (n)-dimensional congruence of A if it is (n)-reflexive,
(n)-symmetric, and (n)-transitive.

Note: The (1)-dimensional congruences form a bigger collection
(in general) than the congruences of an algebra. This follows from
the definitions. The (0)-dimensional congruences of an algebra are
subalgebras of A and the (1)-dimensional congruences are the
congruences of subalgebras of A.
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» The concept of a Mal'cev chain nicely generalizes to higher
dimensions.

» An (n)-reflexive, (n)-symmetric, (n)-transitive set X on the
universe of an algebra A which contains all constant cubes is
compatible with the operations of A if and only if it is
compatible with the (n)-ary polynomials of A .

» So, to generate an (n)-dimensional congruence from a set
S C A% of some A-colored (n)-cubes,

> Take the (n)-reflexive and (n)-symmetric closure of S,
» Close under the (n)-ary polynomials, and then
» Take the transitive closure of the resulting set in ‘all directions’.



Usual congruence lattice for A
R(A)

Cong(A) CO (A)

Usual congruence lattice for B < A.
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» There are higher dimensional analogues of these A — R
intervals. Let n > 2 and let 6p,...,0,—1 € Con(A) be a
system of congruences. Set

/A,R(907 ce ,9,,_1) = {’}/ e Conn(A) : LineS,‘(’}/) C (9,’)2n\i}

» Each Ia r(6o,...,0nh—1) is an interval in Con,(A). We call the
top element R(fo,...,0,-1) and the bottom element
A(bg, ... ,0p-1).



Example: Groups

Normal Section
P

Cong(G) Con; (A)
N(a)={g€G:(1l,g9) € a}
={a7ly: (z,y) €a}
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Example: Groups

» For G a group, we can define a ‘normal section’ map from any
higher dimensional congruence lattice to Cong(G): for a
particular o € Con,,(G), take N(«) to be the set of all g that
color a vertex in a cube belonging to « that is colored by the
identity everywhere else.



Example: Groups

» For example, for a € Consz(G),

1 1
“1|-g
Na)=<geG: ! ! €
N N
1 1
c d
N AN
= hfteg7lca lhd™!: g h €a
b
\ e f

In this case, the subgroups that are the image of this map are
those subgroups that one can quotient (a particular subgroup)
by to obtain a 2-step nilpotent group.
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Example: Groups

» Main idea: The method of obtaining a normal subgroup from
a congruence of a group generalizes to a method of obtaining
more special kinds of normal subgroups (quotients are abelian,
(2)-step nilpotent, etc.) of a group from a higher dimensional
congruence. Of particular importance are the A — R intervals,
which are higher dimensional analogues of ‘regular’
congruence lattices.

» For a general algebra A, there is no analogue of a normal
subgroup. We can still define a normal section map to the
(1)-dimensional congruence lattice that generalizes the normal
section map for groups. For n > 2, we set

N : Conp(A) — Coni(A)
a — {(x,y) : Jcube € a with 2" — 1 vertices colored by
x, and 1 vertex colored by y}



Normal Section

N(A(w, B)) is [, B, the ‘hypercommutator’ of a and .
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to be
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We say a congruence 0 is (n)-step supernilpotent if
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Definition
Let A be an algebra, n > 0, and let 6y, ...,0,-1 be (ordinary)
congruences of A. Set the hypercommutator of these congruences
to be

[0o,...,0n—1]n = N(A(Op,...,00-1)).

We say a congruence 0 is (n)-step supernilpotent if

[0,...,0]y = A(A) (the least congruence of A).
—_———

n-ary commutator

NB It is known that there exist abelian Taylor algebras with
nonabelian quotients. A natural question is: which quotients of
abelian Taylor algebras are abelian? The answer is: exactly those
quotients whose kernel is the normal section of a (2)-dimensional
congruence belonging to Ia r(R(A), R(A)).
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Term condition commutator

» The commutator is usually defined with a term condition,
which is defined with respect to a particular (n)-dimensional
tolerance, not a congruence.

» Let n> 2 and let p,...,0,_1 € Con(A) be a system of
congruences. Set

IR0 On-1) = {7 € Tola(A) : Lines;(7) < (6;*""}

» Each /a r(bo,...,0, — 1) is an interval in Tol,(A). The top

element is again R(6o,...,0,-1) and we call the bottom
element M(6p,...,0,-1). It is called the algebra of
(6o, . ..,0,—1)-matrices.

P> The term condition was generalized to higher arity by Bulatov.
Using our terminology, we say that Cr¢ (6o, ...,0,—1;0) holds
if there is no cube v belonging to M(fy,...,60,_1) with
exactly 272 — 1 vertices of Lines,_1(7) colored by J-pairs.
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» We then set the term condition commutator to be

[6o, ... 0n-1]7c = /\{6 : Crc(bo, ... 0n-1:6)}

» For example, take three congruences g, 01, 0>. We have that

X y
N
y
M(6o,61,6>) = Sg,» ({X XJyF (X, ) e@o}
N

<

S (x,y) € Gl}u

S(x,y) € 02}>

7/
x
B

—N—
X
7/
<
X
7/
X —<

x

X
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—N
X
7/
<
fo
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<
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satisfying the implication
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» The commutator [0p, 01, 02] rc is then the least congruence §
satisfying the implication

(a,e),(b,f),(c,g) €d = (d,h) €,

for all g

d
b € M(bo, 61,62)

/

» We could have defined the hypercommutator with a similar
kind of condition, but quantified over A instead of matrices:
Ch(bo, . ..,0h—1;0) holds if there is no cube v belonging to
A(fo, ..., 0,_1) with exactly 272 — 1 vertices of Lines,_1(7)
colored by d-pairs.
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» So, we are discussing two commutators. The term condition
commutator and the hypercommutator.

» The hypercommutator seems more natural as a congruence
lattice operation, because of the nice properties that higher
dimensional congruences have.

» The term condition commutator is useful because it is (much)
easier to check that the term condition holds than to check for
hypercentrality.

» Therefore, we think of the term condition as a local condition
that sometimes enforces a global condition corresponding to
the hypercommutator.

» To obtain a higher dimensional congruence from a higher
dimensional tolerance, we must pass to a higher dimensional
transitive closure, iterated over all directions in the cube 27. If
the algebra has a Taylor term, we can connect the weaker
term condition commutator to the stronger hypercommutator:

[0,....017c=1[0,...,0]n

for a congruence 6 of a Taylor algebra A.
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> When A is an algebra belonging to a modular variety, the
term condition commutator and hypercommutator agree on
all inputs.

» A related consequence of modularity is that the generation of
higher dimensional congruences is nicer in a modular variety
than usual.

» An aspect of this was understood early on in the development
of commutator theory. Freese and McKenzie define A(«, 3)
to be congruence of 3 (as a subalgebra of A2) generated by

M(a, B) (interpreted as a compatible binary relation on
B < A2).

| i esen = S T[T
i . ~_

elements of M (a, 3)
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Modular Varieties

» They show that (in a modular variety) this relation when
interpreted as a binary relation on its rows is already
transitively closed.

> We can restate this result in a slightly more general way: In a
modular variety, every (2)-dimensional tolerance that is
transitively closed in one direction is already transitively closed
in the other.

» In general, it is only necessary in a modular variety to take
(n — 1)-many transitive closures (in different directions) of an
(n)-dimensional tolerance to produce an (n)-dimensional
congruence.
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> If A has a Mal'cev term, the situation is as nice as possible.
The (n)-dimensional tolerances are already (n)-dimensional
congruences (because every reflexive compatible binary
relation is a congruence).

> Also, if A has a Mal'cev operation p, then any partial square
can be ‘completed’ to an element of A(«, ), for any
a, € Con(A)

C
| .
5 o b completes to

«

p(C, a, CL)

p(a‘aa7b) a—

p(a,a,a)
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» Oprsal discovered how to compose a Mal'cev operation with
itself to obtain terms with analogous completion properties for
higher dimensional A.



» Oprsal discovered how to compose a Mal'cev operation with
itself to obtain terms with analogous completion properties for
higher dimensional A. Let p satisfy the identities

p(x,y,x) = p(x,x,y) = y
and now recursively define the strong cube terms
p2(X7y7 Z) = p(X7y7Z)7 and
pn(X0, X1, ..., Xon_2) =

P(pn—1(X0, - - - Xon-1_5), Xon—1_1, Pn—1(Xon—1, ..., Xon_2))



3(a,b,¢,d, e, f,9)

each face belongs to corresponding (2)-dim. A-relation



» Oprsal uses this property of strong cube terms to show that,
for a Mal'cev algebra A, the congruences and all higher
commutator operations determine the A-relations, and vice
versa. So, for any Mal'cev algebra A there is a greatest clone
that shares the same Mal’cev operation, congruences,and
higher commutator operations with A (just look at the clone
of polymorphisms of all A(6p,...,0,-1) for all sequences of
congruences of A).
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» Oprsal uses this property of strong cube terms to show that,
for a Mal'cev algebra A, the congruences and all higher
commutator operations determine the A-relations, and vice
versa. So, for any Mal'cev algebra A there is a greatest clone
that shares the same Mal’cev operation, congruences,and
higher commutator operations with A (just look at the clone
of polymorphisms of all A(6p,...,0,-1) for all sequences of
congruences of A).

» Every modular variety has a difference term, but it can only
complete to a A(a, §) element if o < 5.

> Kiss discovered that every modular variety has a special
(4)-ary term, now called a Kiss term, which can be used to
modify elements of R(«, 3) and produce elements of A(a, ).

c-d & 7(J(a7bvca d)
5 c‘z _ b completes to C‘Lf })

«



> We recursively define a sequence of ‘higher dimensional’ Kiss
terms:

q2(X7y727 U) = q(X7y727 U) and
an(x0, .-, Xon_1) =

q(gn—1(x0, - - - yXon—1_1), Xpn-1_1, Gn—1(Xpn-1, . .., Xan_1), Xon_1)



> We recursively define a sequence of ‘higher dimensional’ Kiss
terms:

q2(X7y727 U) = q(X7y727 U) and
q,,(xo, v 7XQn_l) =

q(gn—1(x0, - - - yXon—1_1), Xpn-1_1, Gn—1(Xpn-1, . .., Xan_1), Xon_1)

» These higher Kiss terms modify labeled cubes with the
property that every face belongs to the appropriate lower
dimensional A to produce an element of the correct dimension
A. For example:
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» We can now mimic Opr3al's argument. If an algebra has Day
terms, then the congruences and all higher commutator
operations determine the A-relations and vice versa. So, for
any algebra A that generates a modular variety, there exists a
largest clone sharing Day terms, congruences, and higher
commutator operations with A.



Some questions:

» When is the normal section map injective?



Some questions:

» When is the normal section map injective?

» Fix an algebraic signature 7. What is an implication base for
the class of 7 structures that embed into a reduct of the clone
of polynomials of some supernilpotent Mal'cev algebra?



Thank you!



