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A general framework for the commutator

I Let G be some relational structure and X be a set. Any
function

f ∈ XG

inherits the structure of G, because it can be viewed as a copy
of S which is colored by some elements of X .

I For this talk, the exponent has the structure of an
(n)-dimensional cube, for n ≥ 0. Concretely, let Cn be the
graph with base set n = {0, . . . , n − 1} and edge relation
between f , g ∈ 2n if and only if

∃ exactly one i ∈ n(f (i) 6= g(i)).

I A (0)-dimensional cube is a single vertex, a (1)-dimensional
cube is a pair connected by an edge, a (2)-dimensional cube is
a square, a (3) dimensional cube is a cube, etc.
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I An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X :

R ⊆ X 2n

I The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any Q ⊆ X , we have a bijective map

CutQ : X 2n → (X 2n\Q )2Q ,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2n\Q . Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

I If Q = {i} is a singleton set, we call this map Facesi . If
n \ Q = {i} is a singleton set, we call this map Linesi



I An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X :

R ⊆ X 2n

I The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any Q ⊆ X , we have a bijective map

CutQ : X 2n → (X 2n\Q )2Q ,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2n\Q . Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

I If Q = {i} is a singleton set, we call this map Facesi . If
n \ Q = {i} is a singleton set, we call this map Linesi



I An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X :

R ⊆ X 2n

I The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any Q ⊆ X , we have a bijective map

CutQ : X 2n → (X 2n\Q )2Q ,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2n\Q .

Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

I If Q = {i} is a singleton set, we call this map Facesi . If
n \ Q = {i} is a singleton set, we call this map Linesi



I An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X :

R ⊆ X 2n

I The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any Q ⊆ X , we have a bijective map

CutQ : X 2n → (X 2n\Q )2Q ,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2n\Q . Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

I If Q = {i} is a singleton set, we call this map Facesi . If
n \ Q = {i} is a singleton set, we call this map Linesi



I An (n)-dimensional relation R on a set X is a set of
(n)-dimensional cubes colored by X :

R ⊆ X 2n

I The symmetries of the (n)-dimensional cube can be inherited
by (n)-dimensional relations. Elementary properties of
exponents give that for any Q ⊆ X , we have a bijective map

CutQ : X 2n → (X 2n\Q )2Q ,

which sends each colored (n)-cube to a |Q|-cube with vertices
colored by elements of 2n\Q . Thus, any colored cube can be
interpreted as an ‘outer cube’ that is colored by some ‘inner
cubes’.

I If Q = {i} is a singleton set, we call this map Facesi . If
n \ Q = {i} is a singleton set, we call this map Linesi



Example pictures:

γ(0,0,0,1)
γ(1,0,0,1)

γ(1,1,0,1)

γ(0,0,0,0) γ(1,0,0,0)

γ(0,1,0,0) γ(1,1,0,0)
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γ ∈ A24 Cut{1}(γ) or Faces1(γ)

Cut{0}(γ) or Faces0(γ)Cut{0,2,3}(γ) or Lines1(γ)
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Definition
An (n)-dimensional relation R is said to be

I (n)-symmetric if Facesi (R) is symmetric for each i ∈ R.
Here’s the n = 2 picture:

c d

ba

∈ R =⇒
d c

ab

,

a b

dc

∈ R.

I (n)-reflexive if Facesi (R) is reflexive for each i ∈ R. Here’s
the n = 2 picture:

c d

ba

∈ R =⇒
c c

aa

,

c d

dc

∈ R.

I (n)-transitive if Facesi (R) is transitive for each i ∈ R.
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Here’s the n = 3 picture of (n)-transitivity:

a

b

c

d

e f

g h

Each cube is an element of a (3)-transitive relation R.

−→ a

b

c

d

e f

hg

a

b

c

d

e f

g h

a

b

c

d

e f

g h



Definition
Let A be an algebra. An A-admissible (n)-dimensional relation is
called

I an (n)-dimensional tolerance of A if it is (n)-reflexive and
(n)-symmetric and

I an (n)-dimensional congruence of A if it is (n)-reflexive,
(n)-symmetric, and (n)-transitive.

Note: The (1)-dimensional congruences form a bigger collection
(in general) than the congruences of an algebra. This follows from
the definitions. The (0)-dimensional congruences of an algebra are
subalgebras of A and the (1)-dimensional congruences are the
congruences of subalgebras of A.
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Mal’cev complexes

I The concept of a Mal’cev chain nicely generalizes to higher
dimensions.

I An (n)-reflexive, (n)-symmetric, (n)-transitive set X on the
universe of an algebra A which contains all constant cubes is
compatible with the operations of A if and only if it is
compatible with the (n)-ary polynomials of A .

I So, to generate an (n)-dimensional congruence from a set
S ⊆ A2n of some A-colored (n)-cubes,
I Take the (n)-reflexive and (n)-symmetric closure of S ,
I Close under the (n)-ary polynomials, and then
I Take the transitive closure of the resulting set in ‘all directions’.
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B

Con0(A) Con1(A)

∆(B)

R(B)

Usual congruence lattice for B ≤ A.

∆(A)

R(A)
Usual congruence lattice for A



I There are higher dimensional analogues of these ∆− R
intervals. Let n ≥ 2 and let θ0, . . . , θn−1 ∈ Con(A) be a
system of congruences. Set

I∆,R(θ0, . . . , θn−1) = {γ ∈ Conn(A) : Linesi (γ) ⊆ (θi )
2n\i}

I Each I∆,R(θ0, . . . , θn−1) is an interval in Conn(A). We call the
top element R(θ0, . . . , θn−1) and the bottom element
∆(θ0, . . . , θn−1).
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Example: Groups

Con0(G) Con1(A)

Normal Section
←−

R(G)

∆(G)

N(α) = {g ∈ G : 〈1, g〉 ∈ α}
= {x−1y : 〈x, y〉 ∈ α}



Example: Groups

Con0(G) Con2(G)

Normal Section
←−

∆(R(G), R(G))

N(β) = {g ∈ G :

= {c−1ab−1d :

1 1

1 g
∈ β}

a b

c d
∈ β}

R(R(G), R(G))All quotients are abelian

[G,G] = N(∆(R(G), R(G)))



Example: Groups

I For G a group, we can define a ‘normal section’ map from any
higher dimensional congruence lattice to Con0(G): for a
particular α ∈ Conn(G), take N(α) to be the set of all g that
color a vertex in a cube belonging to α that is colored by the
identity everywhere else.



Example: Groups

I For example, for α ∈ Con3(G ),

N(α) =

g ∈ G :

1 1

11

1 g

11

∈ α


=

hf −1eg−1ca−1bd−1 :

c d

ba

g h

fe

∈ α


In this case, the subgroups that are the image of this map are
those subgroups that one can quotient (a particular subgroup)
by to obtain a 2-step nilpotent group.



Example: Groups

I Main idea: The method of obtaining a normal subgroup from
a congruence of a group generalizes to a method of obtaining
more special kinds of normal subgroups (quotients are abelian,
(2)-step nilpotent, etc.) of a group from a higher dimensional
congruence. Of particular importance are the ∆− R intervals,
which are higher dimensional analogues of ‘regular’
congruence lattices.

I For a general algebra A, there is no analogue of a normal
subgroup. We can still define a normal section map to the
(1)-dimensional congruence lattice that generalizes the normal
section map for groups. For n ≥ 2, we set

N : Conn(A)→ Con1(A)

α 7→ {〈x , y〉 : ∃cube ∈ α with 2n − 1 vertices colored by

x , and 1 vertex colored by y}
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x , and 1 vertex colored by y}



Con1(A)

∆(A)

R(A)

α β

α ∧ β

R(α, β)

∆(α, β)

Normal Section

←−

Con2(A)

N(∆(α, β)) is [α, β]H , the ‘hypercommutator’ of α and β.



Definition
Let A be an algebra, n ≥ 0, and let θ0, . . . , θn−1 be (ordinary)
congruences of A. Set the hypercommutator of these congruences
to be

[θ0, . . . , θn−1]H = N(∆(θ0, . . . , θn−1)).

We say a congruence θ is (n)-step supernilpotent if

[θ, . . . , θ]H︸ ︷︷ ︸
n-ary commutator

= ∆(A) (the least congruence of A).

NB It is known that there exist abelian Taylor algebras with
nonabelian quotients. A natural question is: which quotients of
abelian Taylor algebras are abelian? The answer is: exactly those
quotients whose kernel is the normal section of a (2)-dimensional
congruence belonging to I∆,R(R(A),R(A)).
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Term condition commutator

I The commutator is usually defined with a term condition,
which is defined with respect to a particular (n)-dimensional
tolerance, not a congruence.

I Let n ≥ 2 and let θ0, . . . , θn−1 ∈ Con(A) be a system of
congruences. Set

IM,R(θ0, . . . , θn−1) = {γ ∈ Toln(A) : Linesi (γ) ⊆ (θi )
2n\i}

I Each I∆,R(θ0, . . . , θn − 1) is an interval in Toln(A). The top
element is again R(θ0, . . . , θn−1) and we call the bottom
element M(θ0, . . . , θn−1). It is called the algebra of
(θ0, . . . , θn−1)-matrices.

I The term condition was generalized to higher arity by Bulatov.
Using our terminology, we say that CTC (θ0, . . . , θn−1; δ) holds
if there is no cube γ belonging to M(θ0, . . . , θn−1) with
exactly 2n−2 − 1 vertices of Linesn−1(γ) colored by δ-pairs.
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I We then set the term condition commutator to be

[θ0, . . . , θn−1]TC =
∧
{δ : CTC (θ0, . . . , θn−1; δ)}

I For example, take three congruences θ0, θ1, θ2. We have that

M(θ0, θ1, θ2) = SgA23

({ x y

yx

x y

yx

: 〈x , y〉 ∈ θ0

}
∪

{ y y

xx

y y

xx

: 〈x , y〉 ∈ θ1

}
∪

{ x x

xx

y y

yy

: 〈x , y〉 ∈ θ2

})
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I The commutator [θ0, θ1, θ2]TC is then the least congruence δ
satisfying the implication

〈a, e〉, 〈b, f 〉, 〈c, g〉 ∈ δ =⇒ 〈d , h〉 ∈ δ,

for all

c d

ba

g h

fe

∈ M(θ0, θ1, θ2)

I We could have defined the hypercommutator with a similar
kind of condition, but quantified over ∆ instead of matrices:
CH(θ0, . . . , θn−1; δ) holds if there is no cube γ belonging to
∆(θ0, . . . , θn−1) with exactly 2n−2 − 1 vertices of Linesn−1(γ)
colored by δ-pairs.
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I So, we are discussing two commutators. The term condition
commutator and the hypercommutator.

I The hypercommutator seems more natural as a congruence
lattice operation, because of the nice properties that higher
dimensional congruences have.

I The term condition commutator is useful because it is (much)
easier to check that the term condition holds than to check for
hypercentrality.

I Therefore, we think of the term condition as a local condition
that sometimes enforces a global condition corresponding to
the hypercommutator.

I To obtain a higher dimensional congruence from a higher
dimensional tolerance, we must pass to a higher dimensional
transitive closure, iterated over all directions in the cube 2n. If
the algebra has a Taylor term, we can connect the weaker
term condition commutator to the stronger hypercommutator:

[θ, . . . , θ]TC = [θ, . . . , θ]H

for a congruence θ of a Taylor algebra A.
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Modular Varieties

I When A is an algebra belonging to a modular variety, the
term condition commutator and hypercommutator agree on
all inputs.

I A related consequence of modularity is that the generation of
higher dimensional congruences is nicer in a modular variety
than usual.

I An aspect of this was understood early on in the development
of commutator theory. Freese and McKenzie define ∆(α, β)
to be congruence of β (as a subalgebra of A2) generated by
M(α, β) (interpreted as a compatible binary relation on
β ≤ A2).

a b

c d
∈ ∆(α, β) ⇐⇒

a b

c d

elements of M(α, β)

β

α
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Modular Varieties

I They show that (in a modular variety) this relation when
interpreted as a binary relation on its rows is already
transitively closed.

I We can restate this result in a slightly more general way: In a
modular variety, every (2)-dimensional tolerance that is
transitively closed in one direction is already transitively closed
in the other.

I In general, it is only necessary in a modular variety to take
(n − 1)-many transitive closures (in different directions) of an
(n)-dimensional tolerance to produce an (n)-dimensional
congruence.
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I If A has a Mal’cev term, the situation is as nice as possible.
The (n)-dimensional tolerances are already (n)-dimensional
congruences (because every reflexive compatible binary
relation is a congruence).

I Also, if A has a Mal’cev operation p, then any partial square
can be ‘completed’ to an element of ∆(α, β), for any
α, β ∈ Con(A)

a b

c

β

α

a b

c
completes to

p(a, a, a) p(a, a, b)

p(c, a, a) p(c, a, b) p(c, a, b)
=
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I Opřsal discovered how to compose a Mal’cev operation with
itself to obtain terms with analogous completion properties for
higher dimensional ∆. Let p satisfy the identities

p(x , y , x) ≈ p(x , x , y) ≈ y

and now recursively define the strong cube terms

p2(x , y , z) = p(x , y , z), and

pn(x0, x1, . . . , x2n−2) =

p(pn−1(x0, . . . ,x2n−1−2), x2n−1−1, pn−1(x2n−1 , . . . , x2n−2))
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I Opřsal discovered how to compose a Mal’cev operation with
itself to obtain terms with analogous completion properties for
higher dimensional ∆. Let p satisfy the identities

p(x , y , x) ≈ p(x , x , y) ≈ y

and now recursively define the strong cube terms

p2(x , y , z) = p(x , y , z), and

pn(x0, x1, . . . , x2n−2) =

p(pn−1(x0, . . . ,x2n−1−2), x2n−1−1, pn−1(x2n−1 , . . . , x2n−2))



α

β

γ

a b

c d

e f

g
each face belongs to corresponding (2)-dim. ∆-relation

a a

a a

a a

a a

a

a

a

a

a a
a a

a
a

a

a

a

a

a a

a

a

b

b

b

b

b
b

b

c

c

c

c

c c

d
d

c
c

e

e e

e

e e

g g

b

e

e

f

f

a b

c d

e f

g p3(a, b, c, d, e, f, g)



I Opřsal uses this property of strong cube terms to show that,
for a Mal’cev algebra A, the congruences and all higher
commutator operations determine the ∆-relations, and vice
versa. So, for any Mal’cev algebra A there is a greatest clone
that shares the same Mal’cev operation, congruences,and
higher commutator operations with A (just look at the clone
of polymorphisms of all ∆(θ0, . . . , θn−1) for all sequences of
congruences of A).

I Every modular variety has a difference term, but it can only
complete to a ∆(α, β) element if α ≤ β.

I Kiss discovered that every modular variety has a special
(4)-ary term, now called a Kiss term, which can be used to
modify elements of R(α, β) and produce elements of ∆(α, β).
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I Every modular variety has a difference term, but it can only
complete to a ∆(α, β) element if α ≤ β.

I Kiss discovered that every modular variety has a special
(4)-ary term, now called a Kiss term, which can be used to
modify elements of R(α, β) and produce elements of ∆(α, β).

a b

c

β

α

a b

c
completes to

q(a, b, c, d)d



I We recursively define a sequence of ‘higher dimensional’ Kiss
terms:

q2(x , y , z , u) = q(x , y , z , u) and

qn(x0, . . . , x2n−1) =

q(qn−1(x0, . . . ,x2n−1−1), x2n−1−1, qn−1(x2n−1 , . . . , x2n−1), x2n−1)

I These higher Kiss terms modify labeled cubes with the
property that every face belongs to the appropriate lower
dimensional ∆ to produce an element of the correct dimension
∆. For example:
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c d
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c d

e f

g h ∈ ∆(β, γ)

Then,

a b

c d

e f

g q3(a, b, c, d, e, f, g, h)

∈ ∆(α, β, γ)

If



I We can now mimic Opřsal’s argument. If an algebra has Day
terms, then the congruences and all higher commutator
operations determine the ∆-relations and vice versa. So, for
any algebra A that generates a modular variety, there exists a
largest clone sharing Day terms, congruences, and higher
commutator operations with A.



Some questions:

I When is the normal section map injective?

I Fix an algebraic signature τ . What is an implication base for
the class of τ structures that embed into a reduct of the clone
of polynomials of some supernilpotent Mal’cev algebra?
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Thank you!


