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“Logicians and category theorists seem to have resisted
each others’ ideas to a large extent.”

M. Makkai - G. Reyes (1977)
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First of all. . .

The work of Makkai and Reyes has been important in (at least) two
different lines of research that have marked the path in Abstract
Elementary Classes and Categorical Logic:

• (with S. Shelah) a crucial paper toward the (long) line of
research on categoricity in Abstract Elementary Classes
(Categoricity of theories in Lκω, with κ a compact cardinal,
Annals of Pure and Applied Logic, vol. 47, 1990) and

• (with G. Reyes) a crucial book (First Order Categorical Logic,
Lecture Notes in Mathematics 611, 1977) - with the precisely
descriptive subtitle Model Theoretic Methods in the Theory of

Topoi and related categories.
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Those early days (Makkai-Reyes, Makkai-Shelah)

• The influence of large cardinals on structural properties of
abstract elementary classes (originally strongly compact, later
other people continued this line),

• The internal logic of a topos – again, structural properties of
objects linked originally to Grothendieck constructions, with
extreme influence outside of their original realm.
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A “classical enigma”: reconstructing from symmetry.

Several classical enigmas are
variants of the following question:

There is some object M.
I give you a few moves that
somehow leave the object in
place Tell me what is M!
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Reconstructing models?

In Model Theory (and in other parts of Mathematics!), the
following naïve enigma has important variants. The main version is
usually called “The Reconstruction Problem”:

• if for some (First Order) structure M we are given
Aut(M), what can we say about M? (In general, not
much! by e.g. Ehrenfeucht-Mostowski).

• a more reasonable question: if for some (First Order)
structure M we are given Aut(M), what can we say about
Th(M)?

• an even more reasonable question: if for some (FO)
structure M we are given Aut(M), when can we recover
all models biinterpretable with M?
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Reconstructing structures: Ahlbrandt-Ziegler

• Every automorphism of M extends uniquely to an
automorphism of Meq; therefore, Aut(M) ≈ Aut(Meq)

canonically.

• Having that Meq ≈ Neq implies that M and N are
bi-interpretable.

• If M is ℵ0-categorical, any open subgroup of Aut(M) is a
stabilizer Autα(M) for some imaginary α. Also
Aut(M) ↷ {H ≤ Aut(M) | H open} (conjugation).

• The action Aut(M) ↷ is (almost) ≈ to Aut(M) ↷ Meq. So,
we have recovered the action of Aut(M) on Meq from the
topology of Aut(M)... so, if M,N are countable ℵ0-categorical
structures, TFAE:

• There is a bicontinuous isomorphism from Aut(M) onto
Aut(N)

• M and N are bi-interpretable.
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Interpretation between FO theories - Models as functors

(Makkai-Reyes)

• Let us fix a first order theory T in a vocabulary L, and let us
consider the category T of the definables of T .

• Objects are equivalence classes between L-formulas mod T .
A :: φ(x), etc.

• Morphisms correspond to definable functions: if A :: ϕ(x) and
B :: ψ(y), a definable morphism f : A→ B is a definable
f :: χ(x , y) such that T |= ∀x∀y(χ(x , y)→ φ(x) ∧ ψ(y)) and
T |= ∀x(φ(x)→ ∃yχ(x , y)).

• Given any L-structure M and a formula φ(x), the solution set is
φ(M) = {a ∈ Mx |M |= φ(x)}.

• With this, we regard models of T as functors from T to Set:
M(A) = φ(M). Natural transformations ≡ elementary maps.
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Interpretation between FO theories - Models as functors

The category T = Def (T ) is Boolean (regular, and with Boolean
algebras of subobjects) and extensive (co-products exist and they
form an equivalence between the categories Sub(X )× Sub(Y ) and
Sub(X ⊔ Y )).

Boolean categories ←→ First Order

An interpretation between T0 and T is a Boolean and extensive
morphism

ι : T0 → T

between the categories T0 and T (in the vocabularies L0 and L).

(ι preserves finite limits, induces homomorphisms of Boolean
algebras in subobjects and respects images - and respects
co-products)
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Interpretation functor between classes of models

We lift the interpretation to classes of models:

Given ι : T0 → T ,

ι∗ : Mod(T )→ Mod(T0)

M |= T 7→ ι∗(M) = M0

where
M0 = M ◦ ι : T → Set

and if σ : N→M is an elementary embedding (σ = (σY )Y∈T )
then

ι∗(σ) : N0 →M0 : ι∗σX = σιX

for each X ∈ T0.
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Examples - ACF, RCF

An interpretation we have known for some 200 years is the
following:

ι : Def (ACF )→ Def (RCF )

ι(K ) = R2 , componentwise sum

multiplication (a, b)(ι·)(c , d) = (ac − bd , bc + ad)

if R |= RCF

ι∗(R) = R[
√
−1].

Many other natural examples: retracts, boolean algebras in boolean
rings, etc.
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Stable Interpretations - a bit on Galois theory

The notion of stability is reflected in a natural way in
interpretations:

Remember a theory T is stable if no formula can define an infinite
linear order (in tuples).

An interpretation ι : T0 → T is stable if for each model M of T ,
the “expanded interpretation” ιM : T M0

0 → T M is an immersion.
This means each definable in ιX (X ∈ T0) using parameters from
M is the image of a definable set in X using parameters fromM0.

If T is a stable theory and ι : T0 → T is an interpretation, then ι is
a stable interpretation and T0 is a stable theory.

Hrushovski and Kamensky went as far as reframing a “Galois
theory” of model theory for internal covers - Galois theory à la
Grothendieck (Exposé IV).
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The Galois group of a first order theory

(Assuming that T eliminates imaginaries), A definably closed,

Gal(T/A) := Aut(M)/Autf (M)

where M is a saturated model of T and

Autf (M) = ⟨
⋃

A⊂N≺M

AutN(M)⟩

This is an invariant of the theory, allowing a Galois connection
between definably closed submodels of M and closed subgroups of
the Galois group.
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SIP - the link between algebra and topology

Now, to the main property of the group Aut(M) that
enables us to capture its topology...
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The classical topology.

Fix M for now a countable structure. The classical way of making
Aut(M) into a topological space is by decreeing that basic open
sets around 1M are pointwise stabilizers of finite subsets Afin ⊂ M,
AutA(M) = {f ∈ Aut(M) | f ↾ A = 1A}.

This gives Aut(M) the structure of a Polish space.
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The Small Index Property (countable version)

Definition (Small Index Property - SIP)
Let M be a countable structure. M has the small index property if
for any subgroup H of Aut(M) of index less than 2ℵ0 , there exists a
finite set A ⊂ M such that AutA(M) ⊂ H.

In other words, if G is “large algebraically speaking” then it is also
“large topologically speaking”.
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Basic facts on countable SIP

SIP allows us to recover the topological structure of Aut(M) from
its pure group structure:
Open neighborhoods of 1 in pointwise convergence topology =

Subgroups containing pointwise stabilizers AutA(M) for some finite
A.

• SIP holds for random graph, infinite set, DLO, vector spaces
over finite fields, generic relational structures, ℵ0-categorical
ℵ0-stable structures, etc.

• It fails e.g. for M |= ACF0 with ∞ transc. degree.
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Galois group (of a theory)

The Galois group of a model M,

Gal(M) := Aut(M)/Autf (M),

is invariant across saturated models of a theory1.

Possible failures of SIP are encoded in this quotient.

1Lascar, Daniel. Automorphism Groups of Saturated Structures, ICM 2002,
Vol. III - 1-3.
Lascar, Daniel. Les automorphismes d’un ensemble fortement minimal, JSL,
vol. 57, n. 1. March 1992.
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SIP for uncountable structures

We now switch focus to the uncountable, first order, case.

Fix λ = λ<λ an uncountable cardinal, and fix M a saturated model
of cardinality λ.

We now use the topology T λ on Aut(M), whose basic open sets
around 1M are stabilizers of subsets of size < λ - as before
AutA(M) but now A ⊂ M with |A| < λ.

Aut(M) with this topology is of course no longer a Polish space.
The techniques from Descriptive Set Theory that have been used
for the countable case need to be replaced (Friedman, Hyttinen and
Kulikov’s Descriptive Set Theory for some uncountable cardinalities
might become relevant to this2).

2Sy-David Friedman, Tapani Hyttinen and Vadim Kulikov, Generalized
descriptive set theory and classification theory, Memoirs of the American
Mathematical Society, 2014; Volume 230, Number 1081
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Lascar-Shelah’s Theorem

Theorem (Lascar-Shelah: Uncountable saturated models
have the SIP)
Let M be saturated, of cardinality λ = λ<λ and let G be a
subgroup of Aut(M) such that [Aut(M) : G ] < 2λ. Then there
exists A ⊂ M with |A| < λ such that AutA(M) ⊂ G .

The proof3 consists of building directly (assuming that G does not
contain any open set AutA(M) around the identity) a binary tree
of height λ of automorphisms of M in such a way that every two of
them are not conjugate. This is enough but requires two crucial
notions: generic and existentially closed (sequences of)
automorphisms. These are obtained by assuming that G is not
open.

3Daniel Lascar and Saharon Shelah, Uncountable Saturated Structures have
the Small Index Property, Bull. London Math. Soc. 25 (1993) 125-131.
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Now, beyond First Order
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Logics - AECs?
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New Logics and AECs
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Beyond First Order

Although results on the reconstruction problem, so far have been
stated and proved for saturated models in first order theories, the
scope of the matter can go far beyond:

• Abstract Elementary Classes with a well-behaved closure
notion, and the particular case:

• Quasiminimal (qm excellent) Classes.
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The main result: SIP for homogeneous AEC.

With Ghadernezhad we have proved4:

Theorem (SIP for (Aut(M), T cl) - Ghadernezhad, V.)
“Strong” amalgamation classes have the SIP (in homogeneous
models).

(Reasonable conditions to begin a Galois theoretical analysis of
AECs)

4Ghadernezhad, Zaniar and Villaveces, Andrés. The Small Index Property for
Homogeneous AEC’s, Archive for Mathematical Logic, February 2018, Volume
57, Issue 1–2, pp 141–157.
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Example: quasiminimal classes, “Zilber field”

• Q qm pregeom. class → for every model M of Q, Aut(M) has
SIP,

• The “Zilber field” has SIP.

• The j-invariant has the SIP.
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Toward interpretation between AECs

We already have some ingredients:

• A good and solid (category-theoretical) way of dealing with
interpretation, leading to a Galois theory in the sense of
Grothendieck.

• A criterion for reconstruction (the SIP) lifting to some AECs
and their homogeneous models.

So, where can we go? Interpretation is a natural way.
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Ultimate goal: reconstruction

With the ultimate goal of reconstruction in mind (what properties
of an AEC are reflected by the automorphims of a large
homogeneous model?) it is natural to study interpretations in
various different ways.
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Using specific logics to build the interpretation

Boney-Vasey have used a logic harking back to Stavi (structural
logic) to capture AECs with intersections. These classes are closely
related to our strong amalgamation classes with closures.

They prove that AECs with intersections correspond to classes
axiomatizable by universal theories in that logic.

Other AECs can be axiomatized by sentences in infinitary logics
L(2κ)+,κ+ , for κ = LS(K) (Shelah-V., 2020; independently, Leung
(in a logic with a game quantifier)).
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Interpretation of a Lκ−struct-axiomatizable classes

Given ι : Defψ0 → Defψ,

ι∗ : K → K0

M |= T 7→ ι∗(M) = M0

where (again)
M0 = M ◦ ι : T → Set

and if σ : N→M is an Lκ−struct-elementary embedding
(σ = (σY )Y∈Defψ then

ι∗(σ) : N0 →M0 : ι∗σX = σιX

for each X ∈ Defψ0 .

36



Interpretation of a Lκ−struct-axiomatizable classes

Given ι : Defψ0 → Defψ,

ι∗ : K → K0

M |= T 7→ ι∗(M) = M0

where (again)
M0 = M ◦ ι : T → Set

and if σ : N→M is an Lκ−struct-elementary embedding
(σ = (σY )Y∈Defψ then

ι∗(σ) : N0 →M0 : ι∗σX = σιX

for each X ∈ Defψ0 .

36



Using types to build the interpretation

A more direct approach may either use Morleyization of the
vocabulary (expanding by adding all orbital types as predicates), or
use Shelah’s Presentation Theorem (but dealing with omitting
types functorially will require additional understanding):
Theorem (Shelah)
Let (K,≤K ) be an AEC in a language L. Then there exist

• A language L′ ⊃ L, with size LS(K),

• A (first order) theory T ′ in L′ and

• A set of T ′-types, Γ′, such that

K = PC(L,T ′, Γ′) := {M ′ ↾ L | M ′ |= T ′,M ′ omits Γ′}.

Moreover, if M ′,N ′ |= T ′, they both omit Γ′, M = M ′ ↾ L and N = N ′ ↾ L,

M ′ ⊂ N ′ ⇔ M ≤K N.
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The Galois group of an AEC

This is well defined in Strong Amalgamation AECs:

N ∈ K, K

Gal(K/A) := Aut(M)/Autf (M)

where M is a homogeneous model in K, N ≺K M is small and as
before

Autf (M) = ⟨
⋃

N≺KN′≺M

AutN′(M)⟩

This is an invariant of K.

A Galois connection between definably closed submodels of M and
closed subgroups of the Galois group...
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Thank you for your attention!
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