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CSP = specifications of subpowers of a finite algebra

Fix a finite algebra A.

Definition
A constraint network over A is a pair (n, ϕ) where

I n ≥ 1

I ϕ is a quantifier-free formula of the form
∧

i∈I Ri (xi ),

where for each i ∈ I ,

I xi is a d-tuple of variables from {x1, . . . , xn} (for some d)

I Ri is a subuniverse of Ad .

The relation defined by (n, ϕ) is

RelA(n, ϕ) = {a ∈ An : ϕ(a)}.



Example

Let A = ({0, 1}; x+y+z)

R0 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
R1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

R0,R1 ≤ A3. Thus the following is a constraint network over A:

(6, R0(x1, x2, x3) ∧ R1(x1, x4, x5) ∧ R0(x2, x4, x6) ∧ R1(x3, x5, x6)︸ ︷︷ ︸
ϕ

).

We can view ϕ as asserting (over Z2)

x1 + x2 + x3 = 0

x1 + x4 + x5 = 1

x2 + x4 + x6 = 0

+ x3 + x5 + x6 = 1.

RelA(6, ϕ) is the solution-set to this linear system.



Variant notations

A constraint network over A is a pair (n, ϕ), ϕ =
∧

i Ri (xi ) . . .

. . . may be written as . . .

n {x1, . . . , xn} ( = V , the set of variables)

ϕ {(xi ,Ri ) : i ∈ I} ( = C)

• (xi ,Ri ) is called a constraint
• xi is its scope
• Ri is its constraint relation

(n, ϕ) (V ,C) or (V ,A,C)

RelA(n, ϕ) Sol(V ,C)



Decision Problems

Definition
(n, ϕ) is k-ary if each scope has length ≤ k.

Definition
CSP(A, k)

Input: A k-ary constraint network (n, ϕ) over A.
Question: Is RelA(n, ϕ) 6= ∅?

Dichotomy Conjecture (Feder & Vardi)

For all A and k, CSP(A, k) is in P or is NP-hard.

Algebraic Dichotomy Conjecture (Bulatov, Krokhin & Jeavons)

If A has a Taylor operation, then CSP(A, k) is in P for every k︸ ︷︷ ︸
A is tractable

.



Taylor operations

Definition
An operation t : An → A is a Taylor operation if

1. t is idempotent (t(x , x , . . . , x) ≈ x);

2. For each i = 1, . . . , n, t satisfies an identity of the form
t(x) ≈ t(y) with xi 6= yi .

Theorem (Taylor; Barto & Kozik; Hobby & McKenzie)

For a finite algebra A, the following are equivalent:

1. A has a Taylor (term) operation.

2. A satisfies some idempotent Maltsev condition not satisfied by
Sets.

3. A has an idempotent cyclic term t(x1, . . . , xn), i.e.,

t(x1, x2, . . . , xn) ≈ t(x2, . . . , xn, x1).

4. V (A) omits type 1.



Progress

Algebraic Dichotomy Conjecture

If A has a Taylor operation, then CSP(A, k) is in P for every k︸ ︷︷ ︸
A is tractable

.

Theorem
A is known to be tractable if:

1. V (A) is CM. (Dalmau ‘05 + IMMVW ‘07, using Barto ‘16?)

2. V (A) is SD(∧). (Barto & Kozik ‘09; Bulatov ‘09)

3. A is Taylor + conservative, i.e. Su(A) = P(A). (Bulatov ‘03)

4. A is Taylor and |A| = 2 or 3. (Schaefer ‘78, Bulatov ‘02)



Definition
Let A be a finite algebra, A a set of finite algebras.

1. CSP(A) =
⋃

k CSP(A, k). “Global”

2. CSP(A, k) =
⋃

A∈A CSP(A, k). “Uniform”

Can’t ask these problems to be in P. (Set of inputs is problematic.)

Definition
Say CSP(A) [CSP(A, k)] is “in” P if there is a poly-time algorithm
which correctly decides all inputs to CSP(A) [CSP(A, k)].

Global Tractability Problem

If A is tractable, does it follow that CSP(A) is “in” P︸ ︷︷ ︸
A is globally tractable

?

Uniform Tractability Question

(For a given Taylor class A): Is CSP(A, k) “in” P for all k︸ ︷︷ ︸
A is uniformly tractable

?



Theorem
A is known to be globally tractable if:

1. A has a cube term. (Dalmau ‘05 + IMMVW ‘07)

2. V (A) is SD(∧). (Bulatov ‘09; Barto ‘14)

3. A is Taylor + conservative. (Bulatov ‘03)

4. A is Taylor and |A| = 2 or 3. (Schaefer ‘78, Bulatov ‘02)

Theorem (Bulatov ‘09; Barto ‘14)

The class SD∧ of all finite algebras generating an SD(∧) variety is
uniformly globally tractable.



Open problems

1. If V (A) is congruence modular, is A globally tractable?

2. Is the class M of finite Maltsev algebras uniformly tractable?

3. If A has a difference term, is A tractable?

4. Suppose A is idempotent and has a congruence θ such that
I A/θ ∈ SD∧, and
I Each θ-block is in M.

(“SD(∧) over Maltsev.”) Is A tractable?



Standard reductions

CSP(A, k) reduces to:

1. CSP(A‖U , k), where U is a minimal range of a unary
idempotent term, and A‖U is the induced term-minimal
algebra defined on U.

2. CSP((A‖U)id, k) where (B)id is the idempotent reduct of B.

(This is the “reduction to the idempotent case.”)

3. CSP(Adk/2e, 2)

4. multi-CSP(H(A)si , kd), where A is a subdirect product of d
subdirectly irreducible homomorphic images.

5. CSP(A+, k) where A+ = (A; Pol(Su(Ak))).



Conditioning the input – local consistency

Let (n, ϕ) be a 2-ary constraint network over A.

At essentially no cost, one can assume that (n, ϕ) is “determined”
by a “(2,3)-minimal” constraint network.

Definition
A 2-ary constraint network (n, ϕ) is a (2,3)-system1 provided for
all i , j ∈ {1, 2, . . . , n}:

1. ϕ has exactly one constraint Ri , j(xi , xj) with scope (xi , xj).

2. Rj ,i = (Ri , j)
−1.

3. For all k , Ri , j ⊆ Ri ,k ◦ Rk, j .

The “associated potatoes” are Ai := proj1(Ri , j), i = 1, . . . , n.

Fact
There is a poly-time algorithm which, given a 2-ary constraint
network over A, outputs an equivalent (2,3)-system over A.

1There is no standard terminology.



Conditioning the input – absorption

Definition
Suppose A is a finite idempotent algebra and B ≤ A.

1. B is an absorbing subalgebra if there exists a term operation
t(x1, . . . , xm) of A such that

t(B, . . . ,B,A,B, . . . ,B) ⊆ B

for all possible positions of A.

2. A is absorption-free if it has no proper absorbing subalgebra.

Given a (2,3)-system (n, ϕ) over an idempotent A, Barto & Kozik
show how to “shrink” the associated potatoes to absorption-free
algebras, though losing (2,3)-systemhood and equivalency.

In some situations this has proven to be useful.



Miklós magic

Lemma (Maróti ‘09)

Suppose A is idempotent and has a term operation t(x , y) such
that:

1. A |= t(x , t(x , y)) ≈ t(x , y).

2. t(a, x) is non-surjective, for all a ∈ A.

3. There exists a proper subalgebra C < A such that if t(x , a) is
surjective then a ∈ C .

Then CSP(A, k) can be reduced to multi-CSP(B \ {A}, `), where

I B is the closure of {A} under H, S , and “idempotent unary
polynomial retracts.”

I ` = max(k , |A|).

This may seem random, but it is useful (and the proof is beautiful).



Moving forward

Suppose (n, ϕ) is a k-ary constraint network over A, and
R = RelA(n, ϕ) ≤ An.

Definition
A compact k-frame for R is a subset F ⊆ R such that

1. projJ(F ) = projJ(R) for all J ⊆ {1 . . . , n} with |J| ≤ k .

2. |F | ≤ |A|k(nk).

Every relation definable by a k-ary constraint network over A has a
compact k-frame, and is determined by any one of its k-frames.

Speculation: Is it possible to mimic the few subpowers algorithm
without having few subpowers?



To carry this out, we would need a notion of “compact
k-representation” extending compact k-frames with more data.

The following problem seems central:

Functional Dependency Problem

Suppose

I A is finite, idempotent, Taylor.

I F is a compact k-frame for a relation R ≤ An defined by
some k-ary constraint network over A.

I X ⊆ {1, . . . , n} and ` ∈ {1, . . . , n} \ X .

What additional data would enable us to efficiently decide whether
projX∪{`}(R) is the graph of a function f : projX (R)→ proj`(R)?
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