
The Subpower Membership Problem
for Finite Algebras with Cube Terms

Ágnes Szendrei

Joint work with A. Bulatov and P. Mayr

Algebra and Algorithms
Boulder, CO, May 19–22, 2016

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 1 / 15



Main Result

Algebras Algorithms

Structure Complexity

V: variety in a finite language
K: finite set of finite algebras in V

SMP(K):

INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.

QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Theorem
If V is a residually small variety with a cube term, then

SMP(K) ∈ P for every finite K ⊆ Vfin.
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Cube Terms

Definition. A d-cube term (d ≥ 2) for a class K of algebras is a term C s.t.

K |= C


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 =


y
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...
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 .
d-tuples in x, y, with at least one x

Examples. Mal’tsev term, near unanimity term

For a finite algebra A,
(V(A) CM ⇐) A has a cube term ⇔ A has few subpowers, i.e.

� log2 |Sub(An)| ≤ const · nk for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

A has a cube term ⇒ A is finitely related
[Aichinger, Mayr, McKenzie, 2014]

A finitely related & V(A) CM ⇒ A has a cube term [Barto, 2016?]
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[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

A has a cube term ⇒ A is finitely related
[Aichinger, Mayr, McKenzie, 2014]

A finitely related & V(A) CM ⇒ A has a cube term [Barto, 2016?]

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 3 / 15



Cube Terms

Definition. A d-cube term (d ≥ 2) for a class K of algebras is a term C s.t.

K |= C




x
y
...
y

 ,


y
x
...
y

 , . . . ,


y
y
...
x

 ,


x
x
...
y

 , . . .
 =


y
y
...
y

 .
d-tuples in x, y, with at least one x

Examples. Mal’tsev term, near unanimity term

For a finite algebra A,
(V(A) CM ⇐) A has a cube term ⇔ A has few subpowers, i.e.

� log2 |Sub(An)| ≤ const · nk for some k
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SMP(K): What Do we Know?

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Hard in general:

SMP(K) ∈ EXPTIME by naive algorithm

∃ finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]
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SMP(K): An Application in AI

Learnability

Let A = (A,C) be a finite algebra with a cube operation C

Set of ‘concepts’ to be learned: Γ =
⋃

k Sub(Ak), each S ∈ Γ encoded by
its compact representation (a special generating set)
Learning model: ‘Exact learning with equivalence queries’

Algorithm provides oracle with a hypothetical encoding e of a concept S
The oracle either confirms that e encodes S, or it returns a counterexample
from the symmetric difference of S and the concept encoded by e.

Γ is polynomially exactly learnable with equivalence queries.
[Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]

SMP(A) ∈ P would yield a simpler proof.
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SMP for K v. HK, SK, P≤mK

SMP(K) = SMP(SK)

SMP(K)
poly time⇐⇒ SMP(P≤mK) for all m ≥ 1.

SMP(K)
poly time⇐⇒ SMP(HK)
/

∃ 10-element semigroup S and a 9-element homomorphic image S of S
such that SMP(S) ∈ P while SMP(S̄) is NP-complete [Steindl, 2017?]

However:

Theorem
If V has a cube term, then for every finite K ⊆ Vfin we have that

SMP(K)
poly time⇐⇒ SMP(HK).
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Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.

Let R ≤sd R1 × · · · × Rn with R1, . . . ,Rn ∈ V .

Assume R is a critical subalgebra of R1 × · · · × Rn, that is,
R is completely ∩-irreducible in Sub(R1 × · · · × Rn), and
R is directly indecomposable, i.e., [n] has no partition {I, J} such that
R and R|I × R|J differ only by a permutation of coordinates.

Let θ = θ1 × · · · × θn (θi ∈ Con(Ri)) be the largest product congruence
of R1 × · · · × Rn such that R is θ-saturated, i.e.,

R[θ] :=(νθ1×. . .×νθn)
−1[R] = R ↪→ R1 × · · · × Rn

↓νθ ↓νθ1 ↓νθn

R/θ|R = R ↪→ R1 × · · · × Rn ∼= (R1 × · · · × Rn)/θ

Fact. a θ1 b iff au, bu ∈ R for some u ∈ R2 × · · · × Rn.

R is the reduced representation of R.
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Critical Algebras in Varieties with a Cube Term: Structure

Structure Theorem (Kearnes–Sz, 2012)

Let V be a variety with a d-cube term.

If R is the reduced representation of a critical subalgebra
R ≤sd R1 × · · · × Rn with R1, . . . ,Rn ∈ V and n ≥ d, then

R1, . . . ,Rn are similar SIs;

if n ≥ 3, then each Ri has abelian monolith µi (i ∈ [n]); and

for the centralizers ρ` := (0 : µ`) of the monoliths µ` (` ∈ [n]), the
image R|ij/(ρi × ρj) of the composite map

R
prij→ Ri × Rj � Ri/ρi × Rj/ρj.

is the graph of an isomorphism Ri/ρi → Rj/ρj for any i, j ∈ [n].
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Applying the Structure Theorem to SMP(K): Prelims

INPUT: b1, . . . , bk, c ∈ A1 × · · · × An (A1, . . . ,An ∈ K ⊆ Vfin)

Let B := 〈b1, . . . , bk〉 ≤sd B1 × · · · × Bn (Bi ≤ Ai)

QUESTION: Is c ∈ B ?

Assume V has a d-cube term, and n ≥ d.

Obvious necessary condition for c ∈ B:
(†) c|I ∈ B|I = 〈b1|I, . . . , bk|I〉 for all I ∈

([n]
d

)
.

[Can be checked in polynomial time.]

Goal: To strengthen this to a necessary and sufficient condition.

Will assume (†) from now on.
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Applying the Structure Theorem to SMP(K): SIs

Recall: b1, . . . , bk, c ∈ A1 × · · · × An (A1, . . . ,An ∈ K ⊆ Vfin)

B := 〈b1, . . . , bk〉 ≤sd B1 × · · · × Bn (Bi ≤ Ai), c satisfies (†)

B1 . . . Bi . . . Bj . . . BnB ≤ × × × × × ×

x1

xi

xj

xn

x

B̂w = Bi/σ

xîxw = xi/σ

Wi

x x1 xj

xn

x̂

W1 Wj Wn W

B̂ = 〈b̂1, . . . , b̂k〉≤sd
∏

w∈W

c ∈

ĉ ∈
iff

Bi ↪→
∏
σ∈Con∧-irr(Bi)

Bi/σ︸︷︷︸
B̂w

, xi 7→ ( xi/σ︸︷︷︸
x̂w

)σ

(w=(i,σ))
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ĉ ∈
iff

Bi ↪→
∏
σ∈Con∧-irr(Bi)

Bi/σ︸︷︷︸
B̂w

, xi 7→ ( xi/σ︸︷︷︸
x̂w

)σ

(w=(i,σ))

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 10 / 15



Applying the Structure Theorem to SMP(K): SIs

Recall: b1, . . . , bk, c ∈ A1 × · · · × An (A1, . . . ,An ∈ K ⊆ Vfin)

B := 〈b1, . . . , bk〉 ≤sd B1 × · · · × Bn (Bi ≤ Ai), c satisfies (†)

B1 . . . Bi . . . Bj . . . BnB ≤ × × × × × ×

x1

xi

xj

xn

x

B̂w = Bi/σ
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Applying the Structure Theorem to SMP(K): A Partition

Have: b̂1, . . . , b̂k, ĉ ∈
∏

w∈W B̂w (B̂w ∈ HSK ⊆ Vfin)

B̂ = 〈b̂1, . . . , b̂k〉 ≤sd
∏

w∈W B̂w (each B̂w SI with monolith µw)
Question: Is ĉ ∈ B̂ ? (Assuming c satisfies (†).)

Easy Fact. The following relation ∼ on W is an equivalence relation:
v ∼ w iff v = w or B̂v, B̂w are similar SIs with abelian monoliths µv, µw

such that for the centralizers ρv = (0 : µv), ρw = (0 : µw),
B̂|v,w/(ρv × ρw) is the graph of an isomorphism B̂v/ρv → B̂w/ρw.

B̂w

WiW1 Wj Wn W
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Applying the Structure Theorem to SMP(K): A Criterion

Theorem
Let V be a variety with a d-cube term, and let b1, . . . , bk, c ∈ A1 × · · · × An

be an input for SMP(K) with n ≥ d for some finite K ⊆ Vfin.

Let B := 〈b1, . . . , bk〉, and let W, B̂w (w ∈ W), B̂, and ∼ be as defined above.
Then c ∈ B holds of and only if

(†) c|I ∈ B|I for all I ∈
([n]

d

)
, and

(‡) ĉ|U ∈ B̂|U for all blocks U (⊆ W) of ∼ of size |U| ≥ max{d, 3}.

WiW1 Wj Wn W

instances of SMP(HSK)

applied to special inputs:
SMP∗

d(HSK)
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Applying the Structure Theorem to SMP(K): A Corollary

Corollary
Let V be a variety with a d-cube term.
For every finite K ⊆ Vfin,

SMP(K)
poly time⇐⇒ SMP∗d(HSK).

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 13 / 15



The RS Case: Prelim

Assume:

(∗) V is a RS variety with a d-cube term.

Recall: Our goal is to prove

Main Theorem. (∗) ⇒ SMP(K) ∈ P for all finite K ⊆ Vfin.

Enough to show:

Claim. (∗) ⇒ SMP∗d(K) ∈ P for all finite K ⊆ Vfin.

Important Facts.
V has a cube term ⇒ V CM.
(BIMMVW, 2010)

V CM & RS ⇒ for every SI S ∈ V with abelian monolith µ,
the centralizer ρ = (0 : µ) is abelian.

(Freese, McKenzie, 1981)
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The RS Case: Idea of Proof

INPUT: b1, . . . , bk, c ∈ B1 × · · · × Bn (B1, . . . ,Bn ∈ K ⊆ Vfin, n ≥ d, 3) s.t.
B := 〈b1, . . . , bk〉 ≤sd B1 × · · · × Bn and c|I ∈ B|I for all I ∈

([n]
d

)

Bis are similar SIs with abelian monoliths µi; let ρi := (0 : µi)
B|ij/(ρi × ρj) is the graph of an isomorphism Bi/ρi → Bj/ρj for all i, j

QUESTION: Is c ∈ B ?
B1 Bi Bn ρ = ρ1 × · · · × ρn classes:

G(1)
B[θ] = G(1)

B1
× · · · × G(1)

Bn

...
G(m)

B[θ] = G(m)
B1
× · · · × G(m)

Bn

ρ abelian ⇒ I each G(`)
B[θ] is an abelian group (choose zero o(`) ∈ B)

I operations are (affine) linear between the blocks
I each G(`)

B is a subgroup of G(`)
B[θ] = G(`)

B1
× · · · × G(`)

Bn

We have c ∈ G(r)
B[θ] for some r and G(`)

B[θ] ∩ B = G(`)
B for all `

Hence, a modified group algorithm decides c ∈ G(r)
B (⇔ c ∈ B)
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