The Subpower Membership Problem for Finite Algebras with Cube Terms

Ágnes Szendrei

Joint work with A. Bulatov and P. Mayr

Algebra and Algorithms Boulder, CO, May 19–22, 2016

2

Structure

A. Szendrei

SMP for algebras with cube terms

Alg&Alg, May 2016 2 / 1:

Algebras

- \mathcal{V} : variety in a finite language
- \mathcal{K} : finite set of finite algebras in \mathcal{V}

▲ 同 ト ▲ 目

 $\begin{aligned} \mathcal{V}: \text{ variety in a finite language} \\ \mathcal{K}: \text{ finite set of finite algebras in } \mathcal{V} \end{aligned}$

 $SMP(\mathcal{K})$:

- INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$.
- QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

< A > < B

 $\begin{aligned} \mathcal{V}: \text{ variety in a finite language} \\ \mathcal{K}: \text{ finite set of finite algebras in } \mathcal{V} \end{aligned}$

 $SMP(\mathcal{K})$:

- INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$.
- QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

 $SMP(\mathcal{K}) \in \mathsf{P} \qquad \textit{for every finite } \mathcal{K} \subseteq \mathcal{V}_{fin}.$

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra **A**,

• A has a cube term \Leftrightarrow A has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \leq \operatorname{const} \cdot n^k$ for some k [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

 A has a cube term ⇒ A is *finitely related* [Aichinger, Mayr, McKenzie, 2014]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

- A has a cube term ⇒ A is *finitely related* [Aichinger, Mayr, McKenzie, 2014]
- A finitely related & $\mathcal{V}(\mathbf{A}) \operatorname{CM} \Rightarrow \mathbf{A}$ has a cube term [Barto, 2016?]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

3

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

• $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm

< //2 ト < 三 ト

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

• vector spaces - use Gaussian elimination

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker-Pixley Theorem [1975]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]

(1) マン・シン・ (1)

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^k [Mayr, 2012]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Easy (in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^k [Mayr, 2012]

Problem. Is $SMP(A) \in P$ whenever $\mathcal{V}(A)$ has a Mal'tsev/cube term? [Willard, 2007]/[IMMVW, 2010]

Learnability

イロト イポト イヨト イヨト

2

Learnability

• Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C

▲ 同 ▶ → ● 目

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.
- Γ *is polynomially exactly learnable with equivalence queries.* [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
 - Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.
- Γ *is polynomially exactly learnable with equivalence queries.* [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
 - Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]
- $SMP(A) \in P$ would yield a simpler proof.

2

• $SMP(\mathcal{K}) = SMP(S\mathcal{K})$

- $SMP(\mathcal{K}) = SMP(\mathbb{S}\mathcal{K})$
- $\mathrm{SMP}(\mathcal{K}) \stackrel{\mathrm{poly\ time}}{\longleftrightarrow} \mathrm{SMP}(\mathbb{P}_{\leq m}\mathcal{K}) \quad \text{ for all } m \geq 1.$

3

2

- $SMP(\mathcal{K}) = SMP(\mathbb{S}\mathcal{K})$
- $\mathrm{SMP}(\mathcal{K}) \stackrel{\mathrm{poly\,time}}{\Longleftrightarrow} \mathrm{SMP}(\mathbb{P}_{\leq m}\mathcal{K})$ for all $m \geq 1$.
- $SMP(\mathcal{K}) \stackrel{\text{poly/time}}{\iff} SMP(\mathbb{H}\mathcal{K})$
 - \exists 10-element semigroup S and a 9-element homomorphic image \overline{S} of S such that $SMP(S) \in P$ while $SMP(\overline{S})$ is NP-complete [Steindl, 2017?]

• \exists 10-element semigroup S and a 9-element homomorphic image \overline{S} of S such that $SMP(S) \in P$ while $SMP(\overline{S})$ is NP-complete [Steindl, 2017?]

However:

Theorem If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ we have that

 $SMP(\mathcal{K}) \stackrel{\text{poly time}}{\iff} SMP(\mathbb{H}\mathcal{K}).$

Let \mathcal{V} be a variety with a *d*-cube term.

Let \mathcal{V} be a variety with a *d*-cube term. Let $\mathbf{R} \leq_{sd} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$.

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,
Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,

$$\begin{array}{cccc}
\mathbf{R} & \hookrightarrow & \mathbf{R}_1 \times \cdots \times \mathbf{R}_n \\
\downarrow^{\nu_{\theta}} & \downarrow^{\nu_{\theta_1}} & \downarrow^{\nu_{\theta_n}} \\
\mathbf{R}/\theta|_{\mathbf{R}} = \overline{\mathbf{R}} & \hookrightarrow & \overline{\mathbf{R}}_1 \times \cdots \times \overline{\mathbf{R}}_n \cong (\mathbf{R}_1 \times \cdots \times \mathbf{R}_n)/\theta
\end{array}$$

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,

$$\nu_{\theta_1} \times \ldots \times \nu_{\theta_n})^{-1} [\mathbf{\overline{R}}] = \mathbf{R} \hookrightarrow \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$$
$$\mathbf{R}/\theta|_{\mathbf{R}} = \mathbf{\overline{R}} \hookrightarrow \mathbf{\overline{R}}_1 \times \cdots \times \mathbf{\overline{R}}_n \cong (\mathbf{R}_1 \times \cdots \times \mathbf{R}_n)/\theta$$

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{sd} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,

$$\mathbf{R}[\theta] := (\nu_{\theta_1} \times \ldots \times \nu_{\theta_n})^{-1}[\overline{\mathbf{R}}] = \mathbf{R} \hookrightarrow \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$$
$$\mathbf{R}/\theta|_{\mathbf{R}} = \overline{\mathbf{R}} \hookrightarrow \overline{\mathbf{R}}_1 \times \cdots \times \overline{\mathbf{R}}_n \cong (\mathbf{R}_1 \times \cdots \times \mathbf{R}_n)/\theta$$

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,

$$\mathbf{R}[\theta] := (\nu_{\theta_1} \times \ldots \times \nu_{\theta_n})^{-1}[\overline{\mathbf{R}}] = \mathbf{R} \hookrightarrow \mathbf{R}_1 \times \cdots \times \mathbf{R}_n \\
\downarrow^{\nu_{\theta_1}} \qquad \downarrow^{\nu_{\theta_n}} \qquad \downarrow^{\nu_{\theta_n}} \\
\mathbf{R}/\theta|_{\mathbf{R}} = \overline{\mathbf{R}} \hookrightarrow \overline{\mathbf{R}}_1 \times \cdots \times \overline{\mathbf{R}}_n \cong (\mathbf{R}_1 \times \cdots \times \mathbf{R}_n)/\theta$$

• Fact. $a \theta_1 b$ iff $a\mathbf{u}, b\mathbf{u} \in \mathbf{R}$ for some $\mathbf{u} \in \mathbf{R}_2 \times \cdots \times \mathbf{R}_n$.

Let \mathcal{V} be a variety with a *d*-cube term.

Let $\mathbf{R} \leq_{sd} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \ldots, \mathbf{R}_n \in \mathcal{V}$.

- Assume **R** is a *critical subalgebra* of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$, that is,
 - **R** is completely \cap -irreducible in Sub($\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$), and
 - **R** is *directly indecomposable*, i.e., [n] has no partition $\{I, J\}$ such that **R** and **R** $|_I \times \mathbf{R}|_J$ differ only by a permutation of coordinates.
- Let $\theta = \theta_1 \times \cdots \times \theta_n$ ($\theta_i \in \text{Con}(\mathbf{R}_i)$) be the largest product congruence of $\mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ such that **R** is θ -saturated, i.e.,

$$\mathbf{R}[\theta] := (\nu_{\theta_1} \times \ldots \times \nu_{\theta_n})^{-1}[\overline{\mathbf{R}}] = \mathbf{R} \hookrightarrow \mathbf{R}_1 \times \cdots \times \mathbf{R}_n \\
\downarrow^{\nu_{\theta}} \qquad \downarrow^{\nu_{\theta_1}} \qquad \downarrow^{\nu_{\theta_n}} \\
\mathbf{R}/\theta|_{\mathbf{R}} = \overline{\mathbf{R}} \hookrightarrow \overline{\mathbf{R}}_1 \times \cdots \times \overline{\mathbf{R}}_n \cong (\mathbf{R}_1 \times \cdots \times \mathbf{R}_n)/\theta$$

• Fact. $a \theta_1 b$ iff $a\mathbf{u}, b\mathbf{u} \in \mathbf{R}$ for some $\mathbf{u} \in \mathbf{R}_2 \times \cdots \times \mathbf{R}_n$.

 $\overline{\mathbf{R}}$ is the reduced representation of \mathbf{R} .

Structure Theorem (Kearnes–Sz, 2012)

Let V *be a variety with a d-cube term.*

Structure Theorem (Kearnes–Sz, 2012)

Let \mathcal{V} be a variety with a d-cube term. If $\overline{\mathbf{R}}$ is the reduced representation of a critical subalgebra $\mathbf{R} \leq_{\text{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$ and $n \geq d$, then

Structure Theorem (Kearnes-Sz, 2012)

Let \mathcal{V} be a variety with a d-cube term. If $\overline{\mathbf{R}}$ is the reduced representation of a critical subalgebra $\mathbf{R} \leq_{\text{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$ and $n \geq d$, then

• $\overline{\mathbf{R}}_1, \ldots, \overline{\mathbf{R}}_n$ are similar SIs;

Structure Theorem (Kearnes–Sz, 2012)

Let \mathcal{V} be a variety with a d-cube term. If $\overline{\mathbf{R}}$ is the reduced representation of a critical subalgebra $\mathbf{R} \leq_{\text{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$ and $n \geq d$, then

- $\overline{\mathbf{R}}_1, \ldots, \overline{\mathbf{R}}_n$ are similar SIs;
- *if* $n \geq 3$, *then each* $\overline{\mathbf{R}}_i$ *has abelian monolith* μ_i ($i \in [n]$); *and*

Structure Theorem (Kearnes–Sz, 2012)

Let \mathcal{V} be a variety with a d-cube term. If $\overline{\mathbf{R}}$ is the reduced representation of a critical subalgebra $\mathbf{R} \leq_{\text{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$ and $n \geq d$, then

- $\overline{\mathbf{R}}_1, \ldots, \overline{\mathbf{R}}_n$ are similar SIs;
- *if* $n \ge 3$, *then each* $\overline{\mathbf{R}}_i$ *has abelian monolith* μ_i ($i \in [n]$); *and*
- for the centralizers $\rho_{\ell} := (0 : \mu_{\ell})$ of the monoliths μ_{ℓ} ($\ell \in [n]$), the image $\overline{\mathbf{R}}|_{ij}/(\rho_i \times \rho_j)$ of the composite map

$$\overline{\mathbf{R}} \stackrel{\mathrm{pr}_{ij}}{\to} \overline{\mathbf{R}}_i \times \overline{\mathbf{R}}_j \twoheadrightarrow \overline{\mathbf{R}}_i / \rho_i \times \overline{\mathbf{R}}_j / \rho_j.$$

Structure Theorem (Kearnes–Sz, 2012)

Let \mathcal{V} be a variety with a d-cube term. If $\overline{\mathbf{R}}$ is the reduced representation of a critical subalgebra $\mathbf{R} \leq_{\text{sd}} \mathbf{R}_1 \times \cdots \times \mathbf{R}_n$ with $\mathbf{R}_1, \dots, \mathbf{R}_n \in \mathcal{V}$ and $n \geq d$, then

•
$$\overline{\mathbf{R}}_1, \ldots, \overline{\mathbf{R}}_n$$
 are similar SIs;

- *if* $n \ge 3$, *then each* $\overline{\mathbf{R}}_i$ *has abelian monolith* μ_i $(i \in [n])$ *; and*
- for the centralizers $\rho_{\ell} := (0 : \mu_{\ell})$ of the monoliths μ_{ℓ} ($\ell \in [n]$), the image $\overline{\mathbf{R}}|_{ij}/(\rho_i \times \rho_j)$ of the composite map

$$\overline{\mathbf{R}} \stackrel{\mathrm{pr}_{ij}}{\to} \overline{\mathbf{R}}_i \times \overline{\mathbf{R}}_j \twoheadrightarrow \overline{\mathbf{R}}_i / \rho_i \times \overline{\mathbf{R}}_j / \rho_j.$$

is the graph of an isomorphism $\overline{\mathbf{R}}_i/\rho_i \to \overline{\mathbf{R}}_j/\rho_j$ for any $i, j \in [n]$.

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

- (同) - (三)

Э

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

Assume \mathcal{V} has a *d*-cube term, and $n \ge d$.

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

Assume \mathcal{V} has a *d*-cube term, and $n \ge d$.

Obvious necessary condition for $c \in \mathbf{B}$: (†) $c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$ for all $I \in {[n] \choose d}$.

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

Assume \mathcal{V} has a *d*-cube term, and $n \ge d$.

Obvious necessary condition for $c \in \mathbf{B}$ **:**

(†)
$$c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$$
 for all $I \in {[n] \choose d}$.
[Can be checked in polynomial time.]

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

Assume \mathcal{V} has a *d*-cube term, and $n \geq d$.

Obvious necessary condition for $c \in \mathbf{B}$ **:**

(†)
$$c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$$
 for all $I \in {[n] \choose d}$.
[Can be checked in polynomial time.]

Goal: To strengthen this to a necessary and sufficient condition.

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

Assume \mathcal{V} has a *d*-cube term, and $n \geq d$.

Obvious necessary condition for $c \in \mathbf{B}$ **:**

(†)
$$c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$$
 for all $I \in {[n] \choose d}$.
[Can be checked in polynomial time.]

Goal: To strengthen this to a necessary and sufficient condition.

Will assume (\dagger) from now on.

Recall: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}})$ $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i), \ c \text{ satisfies } (\dagger)$

< 17 > <

Recall: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$ $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i), \ c \text{ satisfies } (\dagger)$

< 17 > <

Recall:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

 $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i), \ c \text{ satisfies } (\dagger)$

イロト イポト イヨト イヨト

3

$$\mathbf{B}_{i} \hookrightarrow \prod_{\sigma \in \operatorname{Con}_{\wedge \operatorname{-irr}}(\mathbf{B}_{i})} \underbrace{\mathbf{B}_{i}/\sigma}_{\widehat{\mathbf{B}}_{w}}, \quad x_{i} \mapsto \underbrace{(x_{i}/\sigma}_{\widehat{x}_{w}})_{\sigma}_{(w=(i,\sigma))}$$

$$\mathbf{D}_{i} \hookrightarrow \Pi_{\sigma \in \operatorname{Con}_{\wedge \operatorname{-irr}}(\mathbf{B}_{i})} \underbrace{\mathbf{D}_{i}^{\prime}}_{\widehat{\mathbf{B}}_{w}}, \quad x_{i} \mapsto \underbrace{(x_{i}^{\prime})}_{\widehat{x}_{w}} \underbrace{(x=(i,\sigma))}_{(w=(i,\sigma))}$$

$$\mathbf{B}_{i} \hookrightarrow \prod_{\sigma \in \operatorname{Con}_{\wedge \operatorname{-irr}}(\mathbf{B}_{i})} \underbrace{\mathbf{B}_{i}/\sigma}_{\widehat{\mathbf{B}}_{w}}, \quad x_{i} \mapsto (\underbrace{x_{i}/\sigma}_{\widehat{x}_{w}})_{\sigma}$$
(w=(i,\sigma))

Have: $\hat{b}_1, \ldots, \hat{b}_k, \hat{c} \in \prod_{w \in W} \hat{\mathbf{B}}_w \ (\hat{\mathbf{B}}_w \in \mathbb{HSK} \subseteq \mathcal{V}_{fin})$ $\hat{\mathbf{B}} = \langle \hat{b}_1, \ldots, \hat{b}_k \rangle \leq_{sd} \prod_{w \in W} \hat{\mathbf{B}}_w \ (each \ \hat{\mathbf{B}}_w \ SI \ with \ monolith \ \mu_w)$ Question: Is $\hat{c} \in \hat{B}$? (Assuming *c* satisfies (†).)

Have: $\hat{b}_1, \ldots, \hat{b}_k, \hat{c} \in \prod_{w \in W} \hat{\mathbf{B}}_w \ (\hat{\mathbf{B}}_w \in \mathbb{HSK} \subseteq \mathcal{V}_{fin})$ $\hat{\mathbf{B}} = \langle \hat{b}_1, \ldots, \hat{b}_k \rangle \leq_{sd} \prod_{w \in W} \hat{\mathbf{B}}_w \ (each \ \hat{\mathbf{B}}_w \ SI \ with \ monolith \ \mu_w)$ Question: Is $\hat{c} \in \hat{B}$? (Assuming *c* satisfies (†).)

Easy Fact. The following relation \sim on W is an equivalence relation: $v \sim w$ iff v = w or $\widehat{\mathbf{B}}_{v}$, $\widehat{\mathbf{B}}_{w}$ are similar SIs with abelian monoliths μ_{v} , μ_{w} such that

Have: $\hat{b}_1, \ldots, \hat{b}_k, \hat{c} \in \prod_{w \in W} \hat{\mathbf{B}}_w \ (\hat{\mathbf{B}}_w \in \mathbb{HSK} \subseteq \mathcal{V}_{fin})$ $\hat{\mathbf{B}} = \langle \hat{b}_1, \ldots, \hat{b}_k \rangle \leq_{sd} \prod_{w \in W} \hat{\mathbf{B}}_w \ (each \ \hat{\mathbf{B}}_w \ SI \ with \ monolith \ \mu_w)$ Question: Is $\hat{c} \in \hat{B}$? (Assuming *c* satisfies (†).)

Easy Fact. The following relation \sim on W is an equivalence relation: $v \sim w$ iff v = w or $\widehat{\mathbf{B}}_{v}$, $\widehat{\mathbf{B}}_{w}$ are similar SIs with abelian monoliths μ_{v} , μ_{w} such that for the centralizers $\rho_{v} = (0 : \mu_{v})$, $\rho_{w} = (0 : \mu_{w})$, $\widehat{\mathbf{B}}|_{v,w}/(\rho_{v} \times \rho_{w})$ is the graph of an isomorphism $\widehat{\mathbf{B}}_{v}/\rho_{v} \to \widehat{\mathbf{B}}_{w}/\rho_{w}$.

Have: $\hat{b}_1, \ldots, \hat{b}_k, \hat{c} \in \prod_{w \in W} \widehat{\mathbf{B}}_w \ (\widehat{\mathbf{B}}_w \in \mathbb{HSK} \subseteq \mathcal{V}_{fin})$ $\widehat{\mathbf{B}} = \langle \hat{b}_1, \ldots, \hat{b}_k \rangle \leq_{sd} \prod_{w \in W} \widehat{\mathbf{B}}_w \ (each \ \widehat{\mathbf{B}}_w \ SI \ with \ monolith \ \mu_w)$ Question: Is $\hat{c} \in \widehat{B}$? (Assuming *c* satisfies (†).)

Easy Fact. The following relation \sim on W is an equivalence relation: $v \sim w$ iff v = w or $\widehat{\mathbf{B}}_{v}$, $\widehat{\mathbf{B}}_{w}$ are similar SIs with abelian monoliths μ_{v} , μ_{w} such that for the centralizers $\rho_{v} = (0 : \mu_{v})$, $\rho_{w} = (0 : \mu_{w})$, $\widehat{\mathbf{B}}|_{v,w}/(\rho_{v} \times \rho_{w})$ is the graph of an isomorphism $\widehat{\mathbf{B}}_{v}/\rho_{v} \to \widehat{\mathbf{B}}_{w}/\rho_{w}$.

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for SMP(\mathcal{K}) with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$.

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for $SMP(\mathcal{K})$ with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$,

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for $SMP(\mathcal{K})$ with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$, and let W, $\widehat{\mathbf{B}}_w$ ($w \in W$), $\widehat{\mathbf{B}}$, and \sim be as defined above.

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for $SMP(\mathcal{K})$ with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$, and let W, $\widehat{\mathbf{B}}_w$ ($w \in W$), $\widehat{\mathbf{B}}$, and \sim be as defined above. Then $c \in \mathbf{B}$ holds of and only if (†) $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$, and

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for SMP(\mathcal{K}) with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$, and let W, $\widehat{\mathbf{B}}_w$ ($w \in W$), $\widehat{\mathbf{B}}$, and \sim be as defined above. Then $c \in \mathbf{B}$ holds of and only if (\dagger) $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$, and (\ddagger) $\widehat{c}|_U \in \widehat{\mathbf{B}}|_U$ for all blocks $U (\subseteq W)$ of \sim of size $|U| \ge \max\{d, 3\}$.

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for SMP(\mathcal{K}) with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$, and let W, $\widehat{\mathbf{B}}_w$ ($w \in W$), $\widehat{\mathbf{B}}$, and \sim be as defined above. Then $c \in \mathbf{B}$ holds of and only if (†) $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$, and (‡) $\widehat{c}|_U \in \widehat{\mathbf{B}}|_U$ for all blocks $U \subseteq W$) of \sim of size $|U| \ge \max\{d, 3\}$.

Theorem

Let \mathcal{V} be a variety with a d-cube term, and let $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be an input for SMP(\mathcal{K}) with $n \ge d$ for some finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$. Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle$, and let W, $\widehat{\mathbf{B}}_w$ ($w \in W$), $\widehat{\mathbf{B}}$, and \sim be as defined above. Then $c \in \mathbf{B}$ holds of and only if (\dagger) $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$, and (\ddagger) $\widehat{c}|_U \in \widehat{\mathbf{B}}|_U$ for all blocks $U (\subseteq W)$ of \sim of size $|U| \ge \max\{d, 3\}$.

Applying the Structure Theorem to $SMP(\mathcal{K})$: A Corollary

Corollary

Let \mathcal{V} *be a variety with a d-cube term. For every finite* $\mathcal{K} \subseteq \mathcal{V}_{fin}$ *,*

 $\operatorname{SMP}(\mathcal{K}) \stackrel{\operatorname{poly time}}{\iff} \operatorname{SMP}_d^*(\mathbb{HSK}).$

Assume:

(*) \mathcal{V} is a RS variety with a *d*-cube term.

< 4 P > <

Assume:

(*) \mathcal{V} is a RS variety with a *d*-cube term.

Recall: Our goal is to prove

Main Theorem. $(*) \Rightarrow \text{SMP}(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$.

< 🗇 🕨 <

Assume:

(*) \mathcal{V} is a RS variety with a *d*-cube term.

Recall: Our goal is to prove

Main Theorem. $(*) \Rightarrow \text{SMP}(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$.

Enough to show:

Claim. $(*) \Rightarrow \text{SMP}^*_d(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$.

(1) マント (1) マント (1)

Assume:

(*) \mathcal{V} is a RS variety with a *d*-cube term.

Recall: Our goal is to prove

Main Theorem. $(*) \Rightarrow \text{SMP}(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$.

Enough to show:

Claim. $(*) \Rightarrow \text{SMP}^*_d(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$.

Important Facts.

• \mathcal{V} has a cube term $\Rightarrow \mathcal{V}$ CM. (BIMMVW, 2010)

・ 同 ト ・ ヨ ト ・

Assume:

 $(*) \ \mathcal{V}$ is a RS variety with a *d*-cube term.

Recall: Our goal is to prove

Main Theorem. $(*) \Rightarrow \text{SMP}(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$.

Enough to show:

Claim. $(*) \Rightarrow \text{SMP}^*_d(\mathcal{K}) \in \mathsf{P}$ for all finite $\mathcal{K} \subseteq \mathcal{V}_{\text{fin}}$.

Important Facts.

- \mathcal{V} has a cube term $\Rightarrow \mathcal{V}$ CM. (BIMMVW, 2010)
- \mathcal{V} CM & RS \Rightarrow for every SI S $\in \mathcal{V}$ with abelian monolith μ , the centralizer $\rho = (0:\mu)$ is abelian.

(Freese, McKenzie, 1981)

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in \binom{[n]}{d}$

< 17 > <

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \geq d, 3$) s.t.

- $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\mathrm{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$
- **B**_is are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)$

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, \ n \geq d, 3)$ s.t.

- $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\mathrm{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$
- **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^{-1}$
- $\mathbf{B}_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, j

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \geq d, 3$) s.t.

- $\mathbf{B} := \langle b_1, \dots, b_k \rangle \leq_{\mathrm{sd}} \mathbf{B}_1 \times \dots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {\binom{[n]}{d}}$
- **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)$

• $\mathbf{B}_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose I}$

• **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose I}$

• **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^{\uparrow}$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

 ρ abelian $\Rightarrow \triangleright$ each $G_{\mathbf{B}[\theta]}^{(\ell)}$ is an abelian group (choose zero $o^{(\ell)} \in \mathbf{B}$)

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose I}$

• **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^{\uparrow}$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

 ρ abelian $\Rightarrow \triangleright$ each $G_{\mathbf{B}[\theta]}^{(\ell)}$ is an abelian group (choose zero $o^{(\ell)} \in \mathbf{B}$) \triangleright operations are (affine) linear between the blocks

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose I}$

• **B**_{*i*}s are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^{\uparrow}$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

▶ operations are (affine) linear between the blocks
▶ each G_B^(ℓ) is a subgroup of G_{B[θ]}^(ℓ) = G_{B1}^(ℓ) ×···× G_{Bn}^(ℓ)

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in \binom{[n]}{d}$

• **B**_is are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^T$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

• each
$$G_{\mathbf{B}}^{(\ell)}$$
 is a subgroup of $G_{\mathbf{B}[\theta]}^{(\ell)} = G_{\mathbf{B}_1}^{(\ell)} \times \cdots \times G_{\mathbf{B}_n}^{(\ell)}$
We have $c \in G_{\mathbf{B}[\theta]}^{(r)}$ for some r and $G_{\mathbf{B}[\theta]}^{(\ell)} \cap \mathbf{B} = G_{\mathbf{B}}^{(\ell)}$ for all ℓ

INPUT: $b_1, \ldots, b_k, c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ ($\mathbf{B}_1, \ldots, \mathbf{B}_n \in \mathcal{K} \subseteq \mathcal{V}_{\text{fin}}, n \ge d, 3$) s.t. • $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{\text{sd}} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$ and $c|_I \in \mathbf{B}|_I$ for all $I \in {[n] \choose d}$

• **B**_is are similar SIs with abelian monoliths μ_i ; let $\rho_i := (0 : \mu_i)^{-1}$

• $\mathbf{B}|_{ij}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$ for all i, jQUESTION: Is $c \in \mathbf{B}$?

We have $c \in G_{\mathbf{B}[\theta]}^{(r)}$ for some r and $G_{\mathbf{B}[\theta]}^{(\ell)} \cap \mathbf{B} = G_{\mathbf{B}}^{(\ell)}$ for all ℓ Hence, a modified group algorithm decides $c \in G_{\mathbf{B}}^{(r)}$ ($\Leftrightarrow c \in \mathbf{B}$).