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V: variety in a finite language
KC: finite set of finite algebras in V
SMP(K):
o INPUT: by,...,br,c € Ay x--- x A, withAy,... A, € K.
@ QUESTION:Isc € (by,...,bi) ?

IfV is a residually small variety with a cube term, then

SMP(K) € P forevery finite K C V.

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 2/15
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For a finite algebra A,

° A has a cube term < A has few subpowers, i.e.
o log, |Sub(A™)| < const - n* for some k
[Berman, Idziak, Markovié, McKenzie, Valeriote, Willard, 2010]

A. Szendrei SMP for algebras with cube terms



Definition. A d-cube term (d > 2) for a class K of algebras is a term C s.t.

x| [y y|[x y
yo|x y|o|x y

’C ': C . Y . ety . 3y . ’ e =
Ll b ] bl y

d-tuples in x, y, with at least one x

Examples. Mal’tsev term, near unanimity term
For a finite algebra A,

o (V(A)CM <) Ahasacubeterm < A has few subpowers, i.e.
o log, |Sub(A™)| < const - n* for some k
[Berman, Idziak, Markovié, McKenzie, Valeriote, Willard, 2010]

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016



Definition. A d-cube term (d > 2) for a class K of algebras is a term C s.t.

x| [y y|[x y
yo|x y|o|x y

’C ': C . Y . ety . 3y . ’ e =
Ll b ] bl y

d-tuples in x, y, with at least one x

Examples. Mal’tsev term, near unanimity term
For a finite algebra A,

o (V(A)CM <) Ahasacubeterm < A has few subpowers, i.e.
o log, |Sub(A™)| < const - n* for some k
[Berman, Idziak, Markovié, McKenzie, Valeriote, Willard, 2010]
@ A has acube term =- A is finitely related
[Aichinger, Mayr, McKenzie, 2014]

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016



Definition. A d-cube term (d > 2) for a class K of algebras is a term C s.t.

X y y X y
Y X y X Y
K ): C I A SN IR I S IR B R R = |.
bl b ) bl y

d-tuples in x, y, with at least one x
Examples. Mal’tsev term, near unanimity term

For a finite algebra A,
o (V(A)CM <) Ahasacubeterm < A has few subpowers, i.e.
o log, |Sub(A™)| < const - n* for some k
[Berman, Idziak, Markovié, McKenzie, Valeriote, Willard, 2010]
@ A has acube term =- A is finitely related
[Aichinger, Mayr, McKenzie, 2014]
o A finitely related & V(A) CM = A has a cube term [Barto, 20167]
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Hard in general:
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o I finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]
Easy (in P) in many ‘classical’ varieties:
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@ NU varieties — based on the Baker—Pixley Theorem [1975]

°

groups expanded by multilinear operations (including rings, modules, ...)
—adapt Sim’s Algorithm [Willard, 2007]

@ expansions of nilpotent Mal’tsev algebras of order p* [Mayr, 2012]
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SMP(K): What Do we Know?

SMP(K): INPUT: by,...,bx,c € Ap X --- x A, with Ay,..., A, € K.
QUESTION: Is ¢ € (by, ..., b;) ?

Hard in general:
e SMP(K) € EXPTIME by naive algorithm
o I finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]
Easy (in P) in many ‘classical’ varieties:
@ vector spaces — use Gaussian elimination
@ groups — Sim’s Algorithm [~ 1970]
@ NU varieties — based on the Baker—Pixley Theorem [1975]
@ groups expanded by multilinear operations (including rings, modules, ...)
—adapt Sim’s Algorithm [Willard, 2007]
@ expansions of nilpotent Mal’tsev algebras of order p* [Mayr, 2012]

Problem. Is SMP(A) € P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007])/[IMMVW, 2010]
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SMP(K): An Application in Al

Learnability

Let A = (A, C) be a finite algebra with a cube operation C

Set of ‘concepts’ to be learned: I' = | J, Sub(AF), each S € I encoded by
its compact representation (a special generating set)

Learning model: ‘Exact learning with equivalence queries’

o Algorithm provides oracle with a hypothetical encoding e of a concept S
o The oracle either confirms that e encodes S, or it returns a counterexample
from the symmetric difference of S and the concept encoded by e.

I is polynomially exactly learnable with equivalence queries.
[Idziak, Markovi¢, McKenzie, Valeriote, Willard, 2010]

o Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]
SMP(A) € P would yield a simpler proof.
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SMP for K v. HXC, SKC, P,

o SMP(K) = SMP(SK)
o SMP(K) "2%° SMP(P.,K) forallm > 1.
o SMP(K) p"%@“ SMP(HK)

o 3 10-element semigroup S and a 9-element homomorphic image S of S

such that SMP(S) € P while SMP(S) is NP-complete [Steindl, 2017?]

However:

IfV has a cube term, then for every finite K C Vg, we have that

poly time
<~

SMP(K) SMP(HK).

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 6/15



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 7115



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 7115



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

o Assume Ris a critical subalgebra of Ry x --- X Ry, that is,
e R is completely N-irreducible in Sub(R; x --- x R,), and
o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.

A. Szendrei S for algebras with cube terms



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,

e R is completely N-irreducible in Sub(R; x --- x R,), and
o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.

o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
of R; x -+ x R, such that R is #-saturated, i.e.,

A. Szendrei SMP for algebras with cube terms



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,
e R is completely N-irreducible in Sub(R; x --- x R,), and
o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.
o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
of R; x -+ x R, such that R is #-saturated, i.e.,

R — R;yx---xR,

\LVQ J/VH] \l/llgn
R/Hleﬁ (SN ﬁ] X oo Xﬁng(RI x...an)/Q

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 7115



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,
e R is completely N-irreducible in Sub(R; x --- x R,), and
o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.
o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
of R; x -+ x R, such that R is #-saturated, i.e.,

(VQIX...XVQH)_][E] =R — R;x---xR,

\LVQ J/VH] \l/llgn
R/Hleﬁ (SN ﬁ] X oo Xﬁng(RI x...an)/Q

A. Szendrei SMP for algebras with cube terms Alg&Alg, May 2016 7115



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <y Ry x--- xR, withRy,... R, € V.

@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,

e R is completely N-irreducible in Sub(R; x --- x R,), and

o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.

o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
of R; x -+ x R, such that R is #-saturated, i.e.,

R[O] :==(vg,x...xvp,) '[Rl=R < Ry x-- xR,
\LVQ J/VH] \l/llgn
R/Hleﬁ (SN §1X'--Xﬁng(R1X'--XRn)/9

A. Szendrei

SMP for algebras with cube terms

Alg&Alg, May 2016 7/15



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR < Ry x -+ xR, withRy, ..., R, € V.
@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,

e R is completely N-irreducible in Sub(R; x --- x R,), and

o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.

o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
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\LVQ J/VH] \Lugn
R/Hleﬁ (SN EIX"’Xﬁng(RIX”'XRn)/Q

o Fact. a6, b iff au,bu € Rforsomeu € R; x --- X R,,.

A. Szendrei

SMP for algebras with cube terms

Alg&Alg, May 2016 7/15



Critical Algebras in Varieties with a Cube Term: Reduction

Let V be a variety with a d-cube term.
LetR <4 R; x--- xR, withRy,... R, € V.
@ Assume R is a critical subalgebra of Ry x --- X Ry, that is,
e R is completely N-irreducible in Sub(R; x --- x R,), and

o Ris directly indecomposable, i.e., [n] has no partition {/,J} such that
R and R|; x R|, differ only by a permutation of coordinates.

o Letd =6 x---x 0, (6 € Con(R;)) be the largest product congruence
of R; x -+ x R, such that R is #-saturated, i.e.,

R[Q] ::(VQIX.. .XV@ll)_l[i] =R — R;x---xR,
\LVQ J/VH] \Lugn
R/Hleﬁ (SN EIX"’Xﬁng(RIX”'XRn)/Q
o Fact. a6, b iff au,bu € Rforsomeu € R; x --- X R,,.

R is the reduced representation of R.
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Let V be a variety with a d-cube term.
If R is the reduced representation of a critical subalgebra
R<4yRy x--- xR, withRy,...,R, €V andn > d, then

o Ry, ... R, are similar SIs;
e ifn > 3, then each R; has abelian monolith y; (i € [n]); and

o for the centralizers py := (0 : py) of the monoliths p; (¢ € [n)), the
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Critical Algebras in Varieties with a Cube Term: Structure

Structure Theorem (Kearnes—Sz, 2012)

Let V be a variety with a d-cube term.
If R is the reduced representation of a critical subalgebra
R<4yRy x--- xR, withRy,...,R, €V andn > d, then

o Ry, ... R, are similar SIs;
e ifn > 3, then each R; has abelian monolith y; (i € [n]); and

o for the centralizers py := (0 : py) of the monoliths p; (¢ € [n)), the
image R|ij/(pi x p;) of the composite map

— pr;i — — — —
R—;R,‘ X Rj — R,‘/pi X Rj/pj.

is the graph of an isomorphism R;/p; — R;/p; for any i,j € [n].
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Applying the Structure Theorem to SMP(K): Prelims

INPUT: by,...,br,c € Ay X --- X A, (A17...,An E]CQVﬁn)
LetB := (b],...,bk> <aB; x---xB, (B,' SAZ)
QUESTION: Isc € B ?

Assume V has a d-cube term, and n > d.

Obvious necessary condition for ¢ € B:

(1) clr € Bl = (bilr,....buls) forall 1€ (7).
[Can be checked in polynomial time.]

Goal: To strengthen this to a necessary and sufficient condition.

Will assume () from now on.
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Applying the Structure Theorem to SMP(K): A Partition

Have: bl, ... b,C€ H wew B (B ) € HSK C Vin)
<b1, ooy bi) <aa HweW w (each B ST with monolith y,,)
Questlon. IsceB ? (Assuming c satisfies (1).)
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Applying the Structure Theorem to SMP(K): A Criterion

Let V be a variety with a d-cube term, and let by, ... ,by,c € A} X --- X A,
be an input for SMP(K) with n > d for some finite KK C V.
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Applying the Structure Theorem to SMP(K): A Criterion

Let V be a variety with a d-cube term, and let by, ... ,by,c € A} X --- X A,
be an input for SMP(K) with n > - d for some finite IC C Vin.

LetB := (by,...,by), and let W, B, (w € W), B, and ~ be as defined above.
Then ¢ € B holds of and only if

() ¢l €B|iforalll € ([Z]), and
(1) €y € By for all blocks U (C W) of ~ of size |U| > max{d, 3}.

------- L instances of SMP(HSK)
R applied to special inputs:
SMP;;(HSK)
1 L W I L ]
| Wi Wi j W, |W
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Applying the Structure Theorem to SMP(K): A Corollary

Let V be a variety with a d-cube term.
For every finite KC C Vg,

poly time
<~

SMP(K) SMP’(HSK).
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The RS Case: Prelim

Assume:

(¥) Vis aRS variety with a d-cube term.
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The RS Case: Prelim

Assume:

(¥) Vis aRS variety with a d-cube term.

Recall: Our goal is to prove
Main Theorem. (x) = SMP(K) € P for all finite K C Vp.

Enough to show:
Claim. (x) = SMP}(K) € P for all finite K C V.

Important Facts.
@ Vhasacube term = VYV CM.
(BIMMVW, 2010)

eV CM & RS = forevery SI S € V with abelian monolith p,

the centralizer p = (0 : u) is abelian.
(Freese, McKenzie, 1981)
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The RS Case: Idea of Proof

INPUT: by, ..., be,c €By x -+~ x B, (By,...,B, € K.C Vi, n >d,3) sit.
e B = <b1,...,bk> <aBi x---xB, andc|1€B|1f0rallle ([Z])
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