# A CSP Algorithm for some Subvarieties of Maltsev Products

# Ian Payne

University of Waterloo

May 20, 2016

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti

May 20, 2016 1 / 22



## 2 Bulatov's Result on 2-semilattices

# **3** Bulatov Solutions





# (2,3)-consistency

We call an input,  $\mathcal{I} = (X, \mathbf{D}, \mathcal{C})$  to  $\text{CSP}(\mathbf{D}, 2)$  a standard (2, 3)-instance if  $\mathcal{C}$  takes the form

$$\{(x, P_x) : x \in X\} \cup \{((x, y), R_{xy}) : x, y \in X\}$$

(P4) 
$$R_{y,x} = R_{xy}^{-1}$$
 for each  $x, y \in X$ .

We call an input,  $\mathcal{I} = (X, \mathbf{D}, \mathcal{C})$  to  $\text{CSP}(\mathbf{D}, 2)$  a standard (2, 3)-instance if  $\mathcal{C}$  takes the form

$$\{(x, P_x) : x \in X\} \cup \{((x, y), R_{xy}) : x, y \in X\}$$

(P4) 
$$R_{y,x} = R_{xy}^{-1}$$
 for each  $x, y \in X$ .

## Proposition (Folklore)

There is a polynomial time algorithm which transforms an input,  $\mathfrak{I}$  of  $\mathrm{CSP}(\mathbf{D},2)$ , into a standard (2,3)-instance with exactly the same set of solutions as  $\mathfrak{I}$ . Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti May 20, 2016 4 / 22

# Bulatov's Result on 2-semilattices

- A 2-semilattice operation,  $\cdot$ , is a binary operation satisfying
  - $x \cdot x \approx x$
  - $x \cdot y \approx y \cdot x$
  - $x \cdot y \approx x \cdot (x \cdot y)$

# Definition

A 2-semilattice is an algebra  $(A, \cdot)$  where  $\cdot$  is a 2-semilattice operation.

### Definition

The variety of 2-semilattices will be denoted by S.

- A 2-semilattice operation,  $\cdot$ , is a binary operation satisfying
  - $x \cdot x \approx x$
  - $x \cdot y \approx y \cdot x$
  - $x \cdot y \approx x \cdot (x \cdot y)$

# Definition

A 2-semilattice is an algebra  $(A, \cdot)$  where  $\cdot$  is a 2-semilattice operation.

### Definition

The variety of 2-semilattices will be denoted by S.

# Theorem (Bulatov '06)

If **D** has a "2-semilattice" operation, then every "nonempty" standard (2,3)-instance of  $CSP(\mathbf{D},2)$  has a solution.

For a finite 2-semilattice, **A**. Define a digraph relation on A by  $a \longrightarrow b$  iff  $a \cdot b = b$ .

For a finite 2-semilattice, **A**. Define a digraph relation on A by  $a \longrightarrow b$  iff  $a \cdot b = b$ .

#### Lemma

- 2 If A is strongly connected, so are all of its quotients.
- If we quasi-order the strongly connected components by U ≥ V if u → v for some u ∈ U, v ∈ V, there is a unique minimal component, called A'.
- A' is a minimal absorbing subuniverse of A.

Fix a standard (2,3)-instance,  $\mathcal{I}$  of  $CSP(\mathbf{D},2)$  for some finite  $\mathbf{D} \in \mathcal{S}$ . Reduce  $\mathcal{I}$  to  $\mathcal{I}'$  as follows: Fix a standard (2,3)-instance,  $\mathcal{I}$  of  $CSP(\mathbf{D}, 2)$  for some finite  $\mathbf{D} \in \mathcal{S}$ . Reduce  $\mathcal{I}$  to  $\mathcal{I}'$  as follows:

• For each  $x \in X$ , replace  $P_x$  by  $P'_x$ , its smallest strongly connected component.

Fix a standard (2,3)-instance,  $\mathcal{I}$  of  $CSP(\mathbf{D}, 2)$  for some finite  $\mathbf{D} \in \mathcal{S}$ . Reduce  $\mathcal{I}$  to  $\mathcal{I}'$  as follows:

- For each  $x \in X$ , replace  $P_x$  by  $P'_x$ , its smallest strongly connected component.
- For each  $(x, y) \in X^2$ , replace  $R_{xy}$  by  $R'_{xy}$ .

More precisely, the constraint  $(x, P_x)$  gets replaced by  $(x, P'_x)$ , and  $((x, y), R_{xy})$  by  $((x, y), R'_{xy})$ .

Fix a standard (2,3)-instance,  $\mathcal{I}$  of  $CSP(\mathbf{D},2)$  for some finite  $\mathbf{D} \in \mathcal{S}$ . Reduce  $\mathcal{I}$  to  $\mathcal{I}'$  as follows:

• For each  $x \in X$ , replace  $P_x$  by  $P'_x$ , its smallest strongly connected component.

May 20, 2016

8 / 22

• For each  $(x, y) \in X^2$ , replace  $R_{xy}$  by  $R'_{xy}$ .

More precisely, the constraint  $(x, P_x)$  gets replaced by  $(x, P'_x)$ , and  $((x, y), R_{xy})$  by  $((x, y), R'_{xy})$ .

### Lemma (Reduction 1 Lemma)

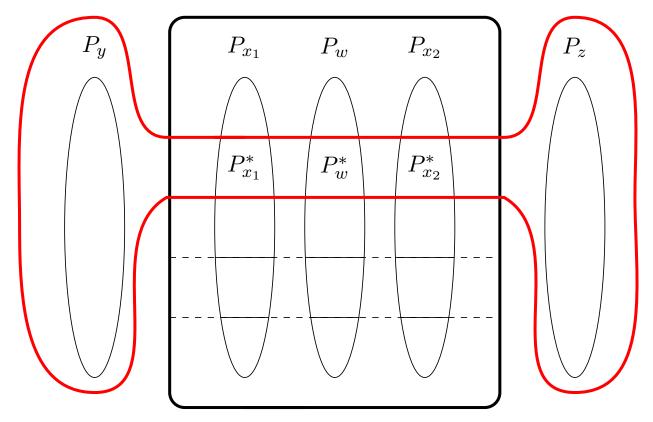
If  $\mathfrak{I}$  is a nonempty standard (2,3)-instance, so is  $\mathfrak{I}'$ .

# A Picture of Reduction 2

In the situation where  $\mathcal{I} = \mathcal{I}'$  and some potato,  $\mathbf{P}_w$  is not simple, there is another way to shrink.

# A Picture of Reduction 2

In the situation where  $\mathcal{I} = \mathcal{I}'$  and some potato,  $\mathbf{P}_w$  is not simple, there is another way to shrink.



# Lemma (Reduction 2 Lemma)

If  $\mathcal{J}$  is a standard (2,3)-instance, so is  $\mathfrak{I}^*$ , where  $\mathfrak{I}^*$  is the result of applying reduction 2 to  $\mathfrak{I}$ .

#### Lemma

# Let $\mathbf{A}, \mathbf{B} \in S$ be simple and strongly connected. If $R \leq_{\mathrm{sd}} \mathbf{A} \times \mathbf{B}$ , then Either R is the graph of a bijection, or it is $A \times B$ .

May 20, 2016

11 / 22

#### Lemma

Let  $\mathbf{A}, \mathbf{B} \in S$  be simple and strongly connected. If  $R \leq_{\mathrm{sd}} \mathbf{A} \times \mathbf{B}$ , then Either R is the graph of a bijection, or it is  $A \times B$ .

### Proof/"Algorithm" for Bulatov's Theorem.

Let  $\mathcal{I}$  be a standard (2,3)-instance of  $CSP(\mathbf{D},2)$  for some  $\mathbf{D} \in \mathcal{S}$ .

- Apply Reduction 1  $(\mathcal{I} \leftarrow \mathcal{I}')$ .
- ② If  $\mathcal{I}$  has a non-simple potato, apply Reduction 2 ( $\mathcal{I} \leftarrow \mathcal{I}^*$ ). Go to
- Solution Get to a situation where  $R_{xy}$  is a bijection or direct product for each  $x, y \in X$ . Choose a solution on each "bijection"-class to find a global solution.

22

# **Bulatov Solutions**

A Bulatov solution to a standard (2,3)-instance is any solution obtained from the proof on the previous slide.

A Bulatov solution to a standard (2,3)-instance is any solution obtained from the proof on the previous slide.

## Remark

Recall that  $\operatorname{Sol}(\mathcal{I}) \leq \mathbf{D}^{|X|}$ . This means  $\operatorname{Sol}(\mathcal{I})$  is in S, so it has a digraph structure.

A Bulatov solution to a standard (2,3)-instance is any solution obtained from the proof on the previous slide.

## Remark

Recall that  $Sol(\mathcal{I}) \leq \mathbf{D}^{|X|}$ . This means  $Sol(\mathcal{I})$  is in S, so it has a digraph structure.

# Lemma (Bulatov Solution Walk Lemma)

Let  $\mathfrak{I}$  be a standard (2,3)-instance of  $CSP(\mathbf{D},2)$  for some  $\mathbf{D} \in S$ . Suppose  $\varphi$  is a solution to  $\mathfrak{I}$ , and  $\psi$  is a Bulatov solution to  $\mathfrak{I}$ . Then there is a directed walk from  $\varphi$  to  $\psi$ .

- "Prove the Lemma" for each reduction type.
- Notice that if no reduction is possible, the solution space is strongly connected.
- Concatenate the walks.

# Results

#### Theorem

Let W be an idempotent variety so that for every finite  $\mathbf{A} \in W$ ,  $CSP(\mathbf{A}, 2)$  has a polynomial time algorithm. Let  $\mathbf{D}$  be finite, idempotent, and similar to W. Suppose  $\mathbf{D}$  has a binary term,  $\cdot$ , and a congruence,  $\theta$  such that  $\cdot$  is a 2-semilattice operation on  $\mathbf{D}/\theta$ , and each  $\theta$ -class as a subalgebra of  $\mathbf{D}$  is in W. Also suppose the following hold:

- **2**  $\mathbf{D} \vDash x \cdot (y \cdot z) \approx x \cdot (z \cdot y).$

The  $CSP(\mathbf{D}, 2)$  has a polynomial time algorithm.

• Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .

- Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .
- Construct a "quotient instance" by taking the quotient in each potato by its "special" congruence. The binary relations are constructed in the natural way.

- Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .
- Construct a "quotient instance" by taking the quotient in each potato by its "special" congruence. The binary relations are constructed in the natural way.
- This quotient instance is a standard (2,3)-instance, and (modulo some isomorphism trickery) it is an instance of CSP(E, 2) for some E with a 2-semilattice operation.

May 20, 2016

17 / 22

- Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .
- Construct a "quotient instance" by taking the quotient in each potato by its "special" congruence. The binary relations are constructed in the natural way.
- This quotient instance is a standard (2,3)-instance, and (modulo some isomorphism trickery) it is an instance of CSP(E, 2) for some E with a 2-semilattice operation.
- Replace every potato and relation by the reduct to this operation; find a Bulatov solution.

- Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .
- Construct a "quotient instance" by taking the quotient in each potato by its "special" congruence. The binary relations are constructed in the natural way.
- This quotient instance is a standard (2,3)-instance, and (modulo some isomorphism trickery) it is an instance of CSP(E, 2) for some E with a 2-semilattice operation.
- Replace every potato and relation by the reduct to this operation; find a Bulatov solution.
- Check this Bulatov solution, as a subinstance of  $\mathcal{I}$ , for a solution using the algorithm from  $\mathcal{W}$ .

17 / 22

- Let **D** be as in the statement of the Theorem, and fix  $\mathcal{I}$ , a standard (2,3)-instance of  $\mathrm{CSP}(\mathbf{D},2)$ .
- Construct a "quotient instance" by taking the quotient in each potato by its "special" congruence. The binary relations are constructed in the natural way.
- This quotient instance is a standard (2,3)-instance, and (modulo some isomorphism trickery) it is an instance of CSP(E, 2) for some E with a 2-semilattice operation.
- Replace every potato and relation by the reduct to this operation; find a Bulatov solution.
- Check this Bulatov solution, as a subinstance of  $\mathcal{I}$ , for a solution using the algorithm from  $\mathcal{W}$ .
- The original instance has a solution if and only if this subinstance does.

Fix  $\mathcal{I}$ , and let  $\mathcal{I}/\theta$  be the "quotient instance" from the previous slide.

• Every solution,  $\varphi$ , to  $\mathfrak{I}$  naturally gives rise to a solution,  $\Phi$  to  $\mathfrak{I}/\theta$ . We say that  $\varphi$  passes through  $\Phi$  in this situation. Fix  $\mathcal{I}$ , and let  $\mathcal{I}/\theta$  be the "quotient instance" from the previous slide.

• Every solution,  $\varphi$ , to  $\Im$  naturally gives rise to a solution,  $\Phi$  to  $\Im/\theta$ . We say that  $\varphi$  passes through  $\Phi$  in this situation.

#### Lemma

If  $\varphi$  passes through  $\Phi$ , and  $\Psi$  is a solution to  $\mathfrak{I}/\theta$  so that  $\Phi \longrightarrow \Psi$ , then  $\mathfrak{I}$  has a solution which passes through  $\Psi$ .

• This Lemma with the Bulatov Solution Walk Lemma implies that if J has a solution, then it has a solution passing through **every** Bulatov solution.

# Corollary

Suppose W and T are similar idempotent varieties. If W has an edge term and T is term equivalent to the variety of 2-semilattices, then  $CSP(\mathbf{D}, 2)$  has a polynomial time algorithm for every finite  $\mathbf{D} \in W \vee T$ .

# Corollary

Suppose W and T are similar idempotent varieties. If W has an edge term and T is term equivalent to the variety of 2-semilattices, then  $CSP(\mathbf{D}, 2)$  has a polynomial time algorithm for every finite  $\mathbf{D} \in W \vee T$ .

- Let  $\mathcal{W}^{(2)}$  be the variety axiomatized by all at most 2-variable identities which hold in  $\mathcal{W}$ .
- Since W ≤ W<sup>(2)</sup> and W<sup>(2)</sup> retains the edge term, it suffices to prove the Corollary for W<sup>(2)</sup> ∨ T.

May 20, 2016 19 / 22

#### Fact

I know how to construct a binary term,  $\cdot$ , which is the first projection in  $\mathcal{W}^{(2)}$ , and a 2-semilattice operation in  $\mathfrak{T}$ .

#### Fact

Suppose A and B are similar idempotent varieties. Further suppose there is a binary term, \*, in their signature which is the first projection in A and commutative in B. If A exhibits an axiomatization of at most two variable identities, then  $A \circ B$  is a variety. Apply the Theorem.

- We already have  $\cdot$  in the signature of  $\mathcal{W}^{(2)}$  and  $\mathcal{T}$  which has the desired properties with respect to those varieties.
- The Theorem, therefore, will apply to any (idempotent) **D** in  $\mathcal{W}^{(2)} \circ \mathcal{T}$  satisfying  $x \cdot (y \cdot z) \approx x \cdot (z \cdot y)$ .
- The result then follows from compiling the following facts:
  - $\mathcal{U} := (\mathcal{W}^{(2)} \circ \mathcal{T}) \cap [x \cdot (y \cdot z) \approx x \cdot (z \cdot y)]$  is a variety
  - $\mathcal{W}^{(2)}, \mathcal{T} \leq \mathcal{W}^{(2)} \circ \mathcal{T},$
  - $\mathcal{W}^{(2)}, \mathcal{T} \vDash x \cdot (y \cdot z) \approx x \cdot (z \cdot y)$
  - $\Rightarrow \mathcal{W}^{(2)} \lor \mathcal{T} \leq \mathcal{U}.$ 
    - $CSP(\mathbf{D}, 2)$  has a polynomial time algorithm for every  $\mathbf{D} \in \mathcal{U}$ ,
  - $\Rightarrow$  CSP(**D**, 2) has a polynomial time algorithm for every **D**  $\in W^{(2)} \lor \mathfrak{T}$ .

# Thank You!