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Definition

We call an input, I = (X,D,C) to CSP(D, 2) a standard (2, 3)-instance
if C takes the form

{(x, Px) : x ∈ X} ∪ {((x, y), Rxy) : x, y ∈ X}

(P1) For each x ∈ X, Rx,x = 0Px ,

(P2) For x, y, z ∈ X and any (a, b) ∈ Rxy, there is a c ∈ Pz such that
(a, c) ∈ Rx,z and (b, c) ∈ Ry,z,

(P3) For each x, y ∈ X, Rxy ≤sd Px ×Py if Px and Py are both
non-empty.

(P4) Ry,x = R−1xy for each x, y ∈ X.

Proposition (Folklore)

There is a polynomial time algorithm which transforms an input, I of
CSP(D, 2), into a standard (2, 3)-instance with exactly the same set of
solutions as I.
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Bulatov’s Result on 2-semilattices
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Definition

A 2-semilattice operation, ·, is a binary operation satisfying

x · x ≈ x
x · y ≈ y · x
x · y ≈ x · (x · y)

Definition

A 2-semilattice is an algebra (A, ·) where · is a 2-semilattice operation.

Definition

The variety of 2-semilattices will be denoted by S.

Theorem (Bulatov ’06)

If D has a “2-semilattice” operation, then every “nonempty” standard
(2, 3)-instance of CSP(D, 2) has a solution.
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Definition

For a finite 2-semilattice, A. Define a digraph relation on A by a −→ b
iff a · b = b.

Lemma

1 a −→ a · b and b −→ a · b for all a, b ∈ A.

2 If A is strongly connected, so are all of its quotients.

3 If we quasi-order the strongly connected components by U ≥ V if
u −→ v for some u ∈ U, v ∈ V , there is a unique minimal
component, called A′.

4 A′ is a minimal absorbing subuniverse of A.
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Reduction 1

Fix a standard (2, 3)-instance, I of CSP(D, 2) for some finite D ∈ S.
Reduce I to I′ as follows:

For each x ∈ X, replace Px by P ′x, its smallest strongly connected
component.

For each (x, y) ∈ X2, replace Rxy by R′xy.

More precisely, the constraint (x, Px) gets replaced by (x, P ′x), and
((x, y), Rxy) by ((x, y), R′xy).

Lemma (Reduction 1 Lemma)

If I is a nonempty standard (2, 3)-instance, so is I′.
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A Picture of Reduction 2

In the situation where I = I′ and some potato, Pw is not simple, there
is another way to shrink.

PwPx1 Px2Py Pz

P ∗wP ∗x1
P ∗x2
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Lemma (Reduction 2 Lemma)

If J is a standard (2, 3)-instance, so is I∗, where I∗ is the result of
applying reduction 2 to I.
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Lemma

Let A,B ∈ S be simple and strongly connected. If R ≤sd A×B, then
Either R is the graph of a bijection, or it is A×B.

Proof/“Algorithm” for Bulatov’s Theorem.

Let I be a standard (2, 3)-instance of CSP(D, 2) for some D ∈ S.

1 Apply Reduction 1 (I← I′).

2 If I has a non-simple potato, apply Reduction 2 (I← I∗). Go to 1

.

3 Get to a situation where Rxy is a bijection or direct product for
each x, y ∈ X. Choose a solution on each “bijection”-class to find
a global solution.
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Bulatov Solutions
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What is a Bulatov Solution?

Definition

A Bulatov solution to a standard (2, 3)-instance is any solution
obtained from the proof on the previous slide.

Remark

Recall that Sol(I) ≤ D|X|. This means Sol(I) is in S, so it has a
digraph structure.

Lemma (Bulatov Solution Walk Lemma)

Let I be a standard (2, 3)-instance of CSP(D, 2) for some D ∈ S.
Suppose ϕ is a solution to I, and ψ is a Bulatov solution to I. Then
there is a directed walk from ϕ to ψ.
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Proof Sketch

“Prove the Lemma” for each reduction type.

Notice that if no reduction is possible, the solution space is
strongly connected.

Concatenate the walks.
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Results

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieties of Maltsev ProductsMay 20, 2016 15 / 22



Theorem

Let W be an idempotent variety so that for every finite A ∈W,
CSP(A, 2) has a polynomial time algorithm. Let D be finite,
idempotent, and similar to W. Suppose D has a binary term, ·, and a
congruence, θ such that · is a 2-semilattice operation on D/θ, and each
θ-class as a subalgebra of D is in W. Also suppose the following hold:

1 W � x · y ≈ x
2 D � x · (y · z) ≈ x · (z · y).

The CSP(D, 2) has a polynomial time algorithm.
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The Algorithm (roughly)

Let D be as in the statement of the Theorem, and fix I, a
standard (2, 3)-instance of CSP(D, 2).

Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.

This quotient instance is a standard (2, 3)-instance, and (modulo
some isomorphism trickery) it is an instance of CSP(E, 2) for some
E with a 2-semilattice operation.

Replace every potato and relation by the reduct to this operation;
find a Bulatov solution.

Check this Bulatov solution, as a subinstance of I, for a solution
using the algorithm from W.

The original instance has a solution if and only if this subinstance
does.
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Why the Algorithm Works

Fix I, and let I/θ be the “quotient instance” from the previous slide.

Every solution, ϕ, to I naturally gives rise to a solution, Φ to I/θ.
We say that ϕ passes through Φ in this situation.

Lemma

If ϕ passes through Φ, and Ψ is a solution to I/θ so that Φ −→ Ψ, then
I has a solution which passes through Ψ.

This Lemma with the Bulatov Solution Walk Lemma implies that
if I has a solution, then it has a solution passing through every
Bulatov solution.
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Corollary

Corollary

Suppose W and T are similar idempotent varieties. If W has an edge
term and T is term equivalent to the variety of 2-semilattices, then
CSP(D, 2) has a polynomial time algorithm for every finite D ∈W ∨ T.

Let W(2) be the variety axiomatized by all at most 2-variable
identities which hold in W.

Since W ≤W(2) and W(2) retains the edge term, it suffices to
prove the Corollary for W(2) ∨ T.
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“Proof” of Corollary

Fact

I know how to construct a binary term, ·, which is the first projection
in W(2), and a 2-semilattice operation in T.

Fact

Suppose A and B are similar idempotent varieties. Further suppose
there is a binary term, ∗, in their signature which is the first projection
in A and commutative in B. If A exhibits an axiomatization of at most
two variable identities, then A ◦B is a variety.
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“Proof” of Corollary

Apply the Theorem.

We already have · in the signature of W(2) and T which has the
desired properties with respect to those varieties.

The Theorem, therefore, will apply to any (idempotent) D in
W(2) ◦ T satisfying x · (y · z) ≈ x · (z · y).

The result then follows from compiling the following facts:

U := (W(2) ◦ T) ∩
[
x · (y · z) ≈ x · (z · y)

]
is a variety

W(2),T ≤W(2) ◦ T,
W(2),T � x · (y · z) ≈ x · (z · y)

⇒ W(2) ∨ T ≤ U.
CSP(D, 2) has a polynomial time algorithm for every D ∈ U,

⇒ CSP(D, 2) has a polynomial time algorithm for every D ∈W(2) ∨ T.
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Thank You!
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