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We call an input, J = (X, D, €) to CSP(D, 2) a standard (2, 3)-instance
if € takes the form

{(£E7P33) PT € X}U{((Cﬁ,y),ny) P TLY € X}

(P1) For each x € X, R, , = 0p,,

(P2) For z,y,z € X and any (a,b) € Ry, there is a ¢ € P, such that
(a,c) € Ry, and (b,c) € R, -,

(P3) For each z,y € X, Ryy <sa P, x P, if P, and P, are both
non-empty.

(P4) Ry, = Ry, for each z,y € X.
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We call an input, J = (X, D, €) to CSP(D, 2) a standard (2, 3)-instance
if € takes the form

{(xvpﬂf) PT € X}U{((Cﬁ,y),ny) P TLY € X}

(P1) For each x € X, R, , = 0p,,

or r,y,z € X and any (a,b) € Ry, there 1s a ¢ € I, such that

(P2) F X and (a,b) € Ryy, there i P h th
(a,c) € Ry, and (b,c) € R, -,

(P3) For each z,y € X, Ryy <sa P, x P, if P, and P, are both
non-empty.

(P4) Ry, = Ry, for each z,y € X.

Proposition (Folklore)

There is a polynomial time algorithm which transforms an input, J of
CSP(D, 2), into a standard (2, 3)-instance with exactly the same set of

solutions as J.
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Bulatov’s Result on 2-semilattices

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti May 20, 2016 5/ 22



A 2-semilattice operation, -, is a binary operation satisfying
e Tr-rxXx
T YXRY-x

o x-y~ - (r-y)

A 2-semilattice is an algebra (A, -) where - is a 2-semilattice operation.

The variety of 2-semilattices will be denoted by 8.
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A 2-semilattice operation, -, is a binary operation satisfying

QT - TrT=X

@ - YRY-x

o x-y~ - (r-y)

A 2-semilattice is an algebra (A, -) where - is a 2-semilattice operation.

The variety of 2-semilattices will be denoted by 8.

Theorem (Bulatov ’06)

If D has a “2-semalattice” operation, then every “nonempty” standard
(2, 3)-instance of CSP(D,2) has a solution.
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For a finite 2-semilattice, A. Define a digraph relation on A by a — b
iff a-b=0>0.
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For a finite 2-semilattice, A. Define a digraph relation on A by a — b
iff a-b=0.

Lemma

Q@a—a-bandb— a-b foralla,be A.
@ If A is strongly connected, so are all of its quotients.

@ If we quasi-order the strongly connected components by U >V if
u — v for some u € U,v € V, there is a unique minimal
component, called A’.

@ A’ is a minimal absorbing subuniverse of A.

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti May 20, 2016 7/ 22



Reduction 1

Fix a standard (2, 3)-instance, J of CSP(D, 2) for some finite D € 8.
Reduce J to I’ as follows:
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Reduction 1

Fix a standard (2, 3)-instance, J of CSP(D, 2) for some finite D € 8.
Reduce J to I’ as follows:

e For each = € X, replace P, by P., its smallest strongly connected
component.
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Reduction 1

Fix a standard (2, 3)-instance, J of CSP(D, 2) for some finite D € 8.
Reduce J to I’ as follows:

e For each = € X, replace P, by P., its smallest strongly connected
component.
o For each (x,y) € X?, replace Ry, by R,,,.

More precisely, the constraint (x, P,) gets replaced by (x, P.), and
((377 y)? ny) by ((LU, y)a Rguy)
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Reduction 1

Fix a standard (2, 3)-instance, J of CSP(D, 2) for some finite D € 8.
Reduce J to I’ as follows:

e For each = € X, replace P, by P., its smallest strongly connected
component.
o For each (x,y) € X?, replace Ry, by R,,,.

More precisely, the constraint (x, P,) gets replaced by (x, P.), and
((337 y)? ny) by ((LU, y)a Rguy)

Lemma (Reduction 1 Lemma)

If J is a nonempty standard (2,3)-instance, so is J'.
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A Picture of Reduction 2

In the situation where J = J’ and some potato, P,, is not simple, there
is another way to shrink.

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti May 20, 2016 9/ 22



A Picture of Reduction 2

In the situation where J = J’ and some potato, P,, is not simple, there
is another way to shrink.

By

r

N
P,

P.’L’l P’u) P.CCQ
Py, P Py,

w

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti May 20, 2016 9/ 22



Lemma (Reduction 2 Lemma)

If 3 is a standard (2, 3)-instance, so is J*, where J* is the result of
applying reduction 2 to J.
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Let A, B € 8 be simple and strongly connected. If R <,q A x B, then
Either R is the graph of a bijection, or it is A X B.
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Let A, B € 8 be simple and strongly connected. If R <,q A x B, then
Either R is the graph of a bijection, or it is A X B.

Proof/ “Algorithm” for Bulatov’s Theorem.

Let J be a standard (2, 3)-instance of CSP(D, 2) for some D € 8.
@ Apply Reduction 1 (J+ 7).
@ If J has a non-simple potato, apply Reduction 2 (J < J*). Go to @

@ Get to a situation where R, is a bijection or direct product for
each z,y € X. Choose a solution on each “bijection”-class to find
a global solution.

[

v
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Bulatov Solutions
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What is a Bulatov Solution?

A Bulatov solution to a standard (2, 3)-instance is any solution
obtained from the proof on the previous slide.
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What is a Bulatov Solution?

A Bulatov solution to a standard (2, 3)-instance is any solution
obtained from the proof on the previous slide.

Recall that Sol(J) < DIXI. This means Sol(J) is in 8, so it has a
digraph structure.
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What is a Bulatov Solution?

A Bulatov solution to a standard (2, 3)-instance is any solution
obtained from the proof on the previous slide.

Recall that Sol(J) < DIXI. This means Sol(J) is in 8, so it has a
digraph structure.

Lemma (Bulatov Solution Walk Lemma)

Let J be a standard (2, 3)-instance of CSP(D,2) for some D € 8.
Suppose ¢ is a solution to J, and v is a Bulatov solution to J. Then
there is a directed walk from ¢ to .
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Proot Sketch

@ “Prove the Lemma” for each reduction type.
@ Notice that if no reduction is possible, the solution space is
strongly connected.

e Concatenate the walks.

May 20, 2016 14 / 22

Ian Payne (University of Waterloo) A CSP Algorithm for some Subvarieti



Results
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Theorem

Let W be an idempotent variety so that for every finite A € W,
CSP(A,2) has a polynomial time algorithm. Let D be finite,
idempotent, and similar to W. Suppose D has a binary term, -, and a
congruence, 0 such that - is a 2-semilattice operation on D /0, and each
0-class as a subalgebra of D is in W. Also suppose the following hold:
QO Wk - y=zx
@DFzx-(y-2)=zx-(2-y).
The CSP(D, 2) has a polynomial time algorithm.
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The Algorithm (roughly)

@ Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).
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The Algorithm (roughly)

@ Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).

e Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.
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The Algorithm (roughly)

@ Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).

e Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.

e This quotient instance is a standard (2, 3)-instance, and (modulo
some isomorphism trickery) it is an instance of CSP(E, 2) for some
E with a 2-semilattice operation.
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The Algorithm (roughly)

@ Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).

e Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.

e This quotient instance is a standard (2, 3)-instance, and (modulo
some isomorphism trickery) it is an instance of CSP(E, 2) for some
E with a 2-semilattice operation.

@ Replace every potato and relation by the reduct to this operation;
find a Bulatov solution.
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The Algorithm (roughly)

@ Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).

e Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.

e This quotient instance is a standard (2, 3)-instance, and (modulo
some isomorphism trickery) it is an instance of CSP(E, 2) for some
E with a 2-semilattice operation.

@ Replace every potato and relation by the reduct to this operation;
find a Bulatov solution.

@ Check this Bulatov solution, as a subinstance of J, for a solution
using the algorithm from W.
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The Algorithm (roughly)

Let D be as in the statement of the Theorem, and fix J, a
standard (2, 3)-instance of CSP(D, 2).

Construct a “quotient instance” by taking the quotient in each
potato by its “special” congruence. The binary relations are
constructed in the natural way.

This quotient instance is a standard (2, 3)-instance, and (modulo
some isomorphism trickery) it is an instance of CSP(E, 2) for some
E with a 2-semilattice operation.

Replace every potato and relation by the reduct to this operation;
find a Bulatov solution.

Check this Bulatov solution, as a subinstance of J, for a solution
using the algorithm from W.

The original instance has a solution if and only if this subinstance
does.
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Why the Algorithm Works

Fix J, and let J/0 be the “quotient instance” from the previous slide.

e Every solution, ¢, to J naturally gives rise to a solution, ® to /6.
We say that ¢ passes through ® in this situation.
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Why the Algorithm Works

Fix J, and let J/0 be the “quotient instance” from the previous slide.

e Every solution, ¢, to J naturally gives rise to a solution, ® to /6.
We say that ¢ passes through ® in this situation.

If ¢ passes through ®, and ¥ is a solution to /0 so that ® — ¥, then
J has a solution which passes through W.

@ This Lemma with the Bulatov Solution Walk Lemma implies that
if J has a solution, then it has a solution passing through every
Bulatov solution.
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Suppose W and T are similar idempotent varieties. If W has an edge
term and T 1s term equivalent to the variety of 2-semilattices, then
CSP(D,2) has a polynomial time algorithm for every finite D € WV 7.
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Suppose W and T are similar idempotent varieties. If W has an edge
term and T 1s term equivalent to the variety of 2-semilattices, then
CSP(D,2) has a polynomial time algorithm for every finite D € WV 7.

o Let W) be the variety axiomatized by all at most 2-variable
identities which hold in 'W.

o Since W < W2 and W@ retains the edge term, it suffices to
prove the Corollary for W2 v/ T.
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“Proot” of Corollary

I know how to construct a binary term, -, which is the first projection
in WP and a 2-semilattice operation in 7.

Suppose A and B are similar idempotent varieties. Further suppose
there 1s a binary term, *, in their signature which s the first projection
mn A and commutative in B. If A exhibits an axiomatization of at most
two variable identities, then A o B is a variety.

v
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“Proot” of Corollary

Apply the Theorem.

o We already have - in the signature of W) and T which has the
desired properties with respect to those varieties.

@ The Theorem, therefore, will apply to any (idempotent) D in
W o T satistying = - (y- 2) =z - (2 - ).
@ The result then follows from compiling the following facts:
o UW:i=WEoT)N[z-(y-2) ~x- (2 y)] is a variety
o W2 T<W®2 o7,
o WO Tz . (y-2)~x-(2-9)
= W2 vT<U.
o CSP(D,2) has a polynomial time algorithm for every D € U,
= CSP(D,2) has a polynomial time algorithm for every D € W(?) v T.
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Thank You!
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