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Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Some History

Smith developed a general commutator theory for congruence
permutable varieties (1976).

Hagemann and Hermann extend this theory to congruence
modular varieties (1979).

Gumm presented this material from a geometric perspective
(1983).

Freese and McKenzie write Commutator theory for
Congruence Modular Varieties. In it they define the
commutator with a term condition and prove its equivalence
to other definitions (1987).

Bulatov generalizes the term condition and defines higher
commutators of arbitrary arity to distinguish polynomially
inequivalent Mal’cev algebras (2000)

Aichinger and Mudrinski develop the basic properties of the
higher commutator for congruence permutable varieties (2010)



Centralization

Definition

Let A be an algebra, k ∈ N≥2, and choose
α0, . . . , αk−1, δ ∈ Con(A). We say that α0, . . . , αk−2 centralize
αk−1 modulo δ if for all f ∈ Pol(A) and tuples
a0,b0, . . . , ak−1,bk−1 from A such that

1. ai ≡αi bi for each 0 ≤ i ≤ k − 1

2. If f (z0, . . . , zk−2, ak−1) ≡δ f (z0, . . . , zk−2,bk−1) for all
(z0, . . . , zk−2) ∈
{a0,b0} × · · · × {ak−2,bk−2} \ {(b0, . . . ,bk−2)}

we have that

f (b0, . . . ,bk−2, ak−1) ≡δ f (b0, . . . ,bk−2,bk−1)

This condition is abbreviated as C (α0, . . . , αk−1; δ).
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Matrices

Let’s look at the binary case. Let V be a congruence modular
variety, and take A ∈ V. For α, β ∈ Con(A) set

M(α, β) =

{[
t(a0, a1) t(a0,b1)
t(b0, a1) t(b0,b1)

]
: t ∈ Pol(A), a0 ≡α b0, a1 ≡β b1

}

This is the algebra of (α, β)-matrices.
M(α, β) is a subalgebra of A4 with generators

{[
x x
y y

]
: x ≡α y

}⋃{[
x y
x y

]
: x ≡β y

}
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Matrices

For δ ∈ Con(A) we have that α centralizes β modulo δ if the
implication

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

α

β

δ

→

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

α

β

δ

δ

holds for all (α, β)-matrices. This condition is abbreviated
C (α, β; δ).



Similarly, we have that β centralizes α modulo δ if the
implication

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

α

β

δ →

t(a0,a1) t(a0,b1)

t(b0,a1) t(b0,b1)

α

β

δ δ

holds for all (α, β)-matrices. This condition is abbreviated
C (β, α; δ).



Matrices

The binary commutator is defined to be

[α, β] =
∧
{δ : C (α, β; δ)}

We do the same thing for the higher commutator. For congruences
θ0, θ1, θ2 of A set M(θ0, θ1, θ2) to be the collection of cubes

t(a0,a1,a2) t(a0,b1,a2)

t(a0,b1,b2)

t(b0,a1,a2) t(b0,b1,a2)

t(b0,a1,b2) t(b0,b1,b2)

t(a0,a1,b2)

θ1

θ0

θ2

for t ∈ Pol(A)
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M(θ0, θ1, θ2) is the subalgebra of A8 generated by cubes of the
form
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Matrices

For δ ∈ Con(A), we say that θ0, θ1 centralize θ2 modulo δ if
the following implication holds for all (θ0, θ1, θ2)-matrices:

This condition is abbreviated C (θ0, θ1, θ2; δ).
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Matrices

Here is a picture of C (θ1, θ2, θ0; δ):

t(a0,a1,a2) t(a0,b1,a2)

t(a0,b1,b2)

t(b0,a1,a2) t(b0,b1,a2)

t(b0,a1,b2) t(b0,b1,b2)

t(a0,a1,b2)

θ1

θ0

θ2

δ



Matrices

For congruences θ0, θ1, θ2 we set

[θ0, θ1, θ2] =
∧
{δ : C (θ0, θ1, θ2; δ)}

For a sequence of congruences (θ0, . . . , θk−1) we analogously
define M(θ0, . . . , θk−1). The condition C (θ0, . . . , θk−1, δ) can be
defined in terms of these matrices.
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Definition of Commutator

Definition
Let A be an algebra, and let α0, ..., αk−1 ∈ Con(A) for k ≥ 2. The
k-ary commutator of α1, ...., αk is defined to be

[α0, ...., αk−1] =
∧
{δ : C (α0, ..., αk−1; δ)}



Properties

The following properties are consequences of the definition:

(1) [α0, ..., αk−1] ≤ ∧0≤i≤k−1 αi

(2) For α0 ≤ β0, ..., αk−1 ≤ βk−1 in Con(A), we have
[α0, ..., αk−1] ≤ [β0, ..., βk−1] (Monotonicity)

(3) [α0, ..., αk−1] ≤ [α1, ..., αk−1]
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Properties Continued

The following additional properties hold for the higher commutator
in a congruence modular variety V, which are developed for the
binary commutator in Freese-McKenzie.

(4) [α0, ..., αk−1] = [ασ(0), ..., ασ(k−1)] for any permutation of σ
of the congruences α0, ..., αk−1 (Symmetry)

(5) [
∨

i∈I γi , α1, ..., αk−1] =
∨

i∈I [γi , α1, ..., αk−1] (Additivity)

(6) [α0, ..., αk−1] ∨ π = f −1([f (α0 ∨ π), ..., f (αk−1 ∨ π))]), where
f : A→ B is a surjective homomorphism with kernel π.
(Homomorphism property)

(7) If CV : Con(A)k → Con(A) is defined for all A ∈ V such that
(1) and (6) hold, then CV(α0, . . . , αk−1) ≤ [α0, . . . , αk−1] for
all A ∈ V and α0, . . . αk−1 ∈ Con(A). (Greatest global
operation)
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Set X(α, β) to be the collection of these pairs.

X(α, β) ⊆ δ ⇐⇒ C(α, β; δ) ⇐⇒ C(β, α; δ)

Therefore [α, β] = Cg(X(α, β))
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For any i, j ∈ k a matrix decomposes into cross-section squares
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Follows from additivity and generators.
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