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Abstract

We describe an algorithm for calculating finitely generated structural
clones, defined by [Davey Pitkethly Willard: The lattice of alter egos, IJAC
22, 2012] as partial clones that are closed under equalizers and restriction
to domain.

The algorithm has been implemented in Python and JavaScript and is
used to calculate all 1693 structural clones on a two-element set generated
by a set of partial binary operations (excluding the trivial operation with
empty domain).

These results are related to the dualizability of partial algebras since if two
partial algebras generate the same structural clone then the partial
algebras are either both dualizable or both non-dualizable.
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Partial algebras
A partial n-ary operation on A is a map f : Df → A where Df ⊆ An

〈A,F 〉 is a partial algebra if F is a set of partial operations

If A = {a1, . . . ,an}, then a partial algebra can be defined by a list of
partially filled out operation tables

f
a1 b1
...

...
an −

g a1 · · · an
a1 c1 . . . −
...

...
...

an − . . . dn

h a1 · · · an · · · a1 · · · an
a1 e1 · · · − · · · − · · · ln
...

...
...

...
...

...
an en · · · − · · · kn · · · −

Convention: every (total) algebra is a partial algebra
Also, every relational structure is a partial algebra
E.g. a relation R ⊆ An is given by a restricted projection pR : DpR → A

pR(x1, . . . ,xn) =

{
xn if R(x1, . . . ,xn)

undefined otherwise
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The category of partial algebras of fixed type
The type of a partial algebra is a set F of (partial) function symbols,
each with an associated finite arity

h : A→ B is a homomorphism if h(f A(x1, . . . ,xn)) = f B(h(x1), . . . ,h(xn))
for all (x1, . . . ,xn) ∈ Df A and all f ∈F

Note: h(pAR (x1, . . . ,xn)) = pBR (h(x1), . . . ,h(xn))

iff RA(x1, . . . ,xn) =⇒ RB(h(x1), . . . ,h(xn)

so homomorphisms agree for relational structures and their corresponding
partial algebras

The ith n-ary projection is pi ,n(x1, . . . ,xn) = xi (a total operation)

Π is the set of all projections of finite arity
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Partial clones
Let f be n-ary and g1, . . . ,gn m-ary partial operations

The composition f ◦ [g1, . . . ,gn] is the m-ary partial operation h defined by

h(x1, . . . ,xm) = f (g1(x1, . . . ,xm), . . . ,gn(x1, . . . ,xm))

PA is the set of all partial operations on A

A partial clone is a subset of PA that contains all projections and is
closed under composition

PClo(F ) is the partial clone generated by a set F of partial functions

= the smallest set that contains F ∪Π and is closed under composition

PClon(F ) = {the n-ary partial operations in PClo(F )}

Clo(F ) = {total operations in PClo(F )}
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The lattice of partial clones

L(PA) is the algebraic lattice of partial clones on a finite set A

L(TA) is the algebraic lattice of total clones on A (TA = all total ops)

L(TA) is a complete sublattice of L(PA) since any composition of total
operations is total

Every partial algebra can be extended to a total algebra Ã by adding one
element ∞ /∈ A

f̃ (x1, . . . ,xn) =

{
f (x1, . . . ,xn) if f (x1, . . . ,xn)is defined (i.e., exists)
∞ otherwise

Therefore L(PA) is embedded in L(TA∪{∞})
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Post lattice of all total clones on {0,1}

L(T{0,1}) is countable (picture from Schölzel 2010)

L(P{0,1}) is uncountable (true even for strong partial clones = partial
clones closed under restriction to any subset of the domain)
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Computing partial clones

Ln(PA) = lattice of partial clones generated by n-ary partial operations

There are (|A|+1)|A|
n n-ary partial operations

hence |Ln(PA)|< 2(|A|+1)|A|n

E. g. |L1(P{0,1})|< 232
1

= 29 = 512 and |L2(P{0,1})|< 232
2

= 281 ≈ 1024

Clon(F ) = Free〈A,F 〉(n), and the same result holds for finite partial algebras

So can use Birkhoff’s subpower algorithm to calculate PClon(A) as a
subalgebra of (A∪{∞})|An|

Most efficient implementation is in UACalc
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An algorithm for computing Ln(PA)

1. Let C = {PClon({f }) : f ∈PA with arity n}

2. Let D and L be copies of C

Repeat

3. Let E = {PClon(F ∪G) : F ∈ C and G ∈D}

4. Let D = E \D

5. Let L = L ∪D

Until D = /0

6. L contains all n-ary partial clones, each one determined by a
generating set of minimal size
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A Galois connection for partial operations
[DPW12] Davey, Pitkethly and Willard: The lattice of alter egos, Intl. J.
of Algebra and Comp., 2012

For a matrix [aij ] ∈ Am×n denote the rows by ai∗ and the columns by a∗j

Let f ,g be partial operations on A with arity m,n respectively and define

f ∼ g iff for all [aij ] ∈ Am×n (ai∗ ∈ Dg and a∗j ∈ Df for all i ≤m, j ≤ n

=⇒ ∃b ∈ A s.t. f (g(a1∗), . . . ,g(am∗)) = b = g(f (a∗1), . . . , f (a∗n)))

 a11 · · · a1n
...

...
am1 · · · amn

 →

→

g(a1∗)

g(am∗)
f ,g are compatible

↓ ↓ ⇓
f (a∗1) · · · f (a∗n) ⇒ f (g(a1∗), . . . ,g(am∗)) = g(f (a∗1), . . . , f (a∗n))
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Characterizing the Galois closed sets
Note: f ∼ pR is equivalent to the standard notion f preserves R

For F ⊆PA let F♦ = {g ∈PA : f ∼ g for all f ∈ F}

A conjunct-atomic formula is of the form ψ1(v)& · · ·&ψn(v) with ψi
atomic

A k-ary relation R is conjunct-atomic definable if
R = {a ∈ Ak : ψ1(a)& · · ·&ψn(a)} for some atomic formulas ψi

Defca(F ) = {conjunct-atomic relations definable from F}

Theorem [DPW12]: (i) g ∈ F♦♦ if and only if

Dg ∈ Defca(F ) and g = f � E for some f ∈ PClo(F ) and E ⊆ A
(ii) F = F♦♦ if and only if F is a partial clone on A closed under restriction
of domain to relations in Defca(F )
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Structural clones

The Galois closed sets of the closure operator ♦♦ are called structural
clones

Notation: SClo(F ) = F♦♦ and SClon(F ) = n-ary members

The lattice of structural clones is denoted S(PA)

Since ∼ is a symmetric relation, S(PA) is a self-dual algebraic lattice

Partial algebras A1,A2 on the same set A are structurally equivalent if
SClo(A1) = SClo(A2)

For algebras, this agrees with clone equivalence
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Natural duality (briefly)

Duality theory aims to find categorical (dual) equivalences between
two categories
Natural dualities provide a framework using homomorphisms into a
generating object
E.g. Stone duality D : BA→ Stone, E : Stone→ BA given by

D(A) = Hom(A,2) with product topology from 2A, D(h)(x) = x ◦h
E (X) = Hom(X,2) with operations inherited from 2X , E (k)(a) = a ◦k

Or Priestley duality D : BDL→ Pri, E : Pri→ BDL given by
D(A) = Hom(A,C2) with product topology from CA

2 , D(h)(x) = x ◦h
E (X) = Hom(X,C2) with operations inherited from CX

2 , E (k)(a) = a ◦k
Then E (D(A))∼= A and D(E (X))∼= X via the natural evaluation
embeddings
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Natural duality for partial algebras

Davey [2006] extends natural dualities to categories of partial
algebras and relational structures
Davey, Pitkethly and Willard [2012] give the symmetric formulation
f ∼ g
Two partial algebras P,P on the same finite set P are compatible if
SClo(P) = P♦

In that case P is called an alter ego of P
P is fully dualizable if E (D(A))∼= A and D(E (X))∼= X via the
evaluation embeddings for all A ∈ ISP+(P) and X ∈ IScP+(P)
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Dualizability of 2-element algebras

Theorem
[Clark, Davey 1998] All 2-element (total) algebras are dualizable, except
for the 8 that are limits of descending chains
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An algorithm for computing SClo(F ) = F♦♦

Let A = 〈A,F 〉 be a finite partial algebra with F finite

To compute all n-ary partial functions in F♦♦, compute the n-ary partial
clone C = PClon(F ) = subalgebra of (A∪∞)An generated by
F ∪{π1, . . . ,πn} the k-ary projections
Next, close under equalizers of partial functions, i.e., f ,g ∈ C implies

E (f ,g) ∈ C where E (f ,g)(a) =

{
f (a) if f (a) = g(a)

undef. otherwise
Finally, close under R(f ,g) = f �g = the restriction of f to the domain
of g , for all f ,g ∈ C

Theorem
SClon(F ) = R(E(PClon(F ))) where E(C) = closure under E , same for R

Programs for computing all unary and binary (structural) clones on {0,1}
in a web browser are at http://mathv.chapman.edu/~jipsen/uajs
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Computing structural clones

Note: DPW’12 exclude operations with empty domain

There are 17 unary and 1693 binary structural clones on {0,1}
compared to 6 unary and 26 binary (total) clones on {0,1}

Let P1 = 〈{0,1},+,0〉 where
+ 0 1
0 0 1
1 1 −

P1 is halfway between the 2-element semilattice and the 2-element group

x y 0 x+y 2x 2y 2x+y x+2y 2x+2y E (x ,y) x�x+y y�x+y 0�x+y 0�E(x ,y)
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 − 1 − − − 0 1 0 −
1 0 0 1 − 0 − 1 − − 1 0 0 −
1 1 0 − − − − − − 1 − − − 0
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P1 is dualizable at the finite level

Theorem

(Joint with M. A. Moshier) P1 =

+ 0 1
0 0 1
1 1 −

is dualizable at the finite level

Let P1 = 〈{0,1},G〉 where G = {+,0}♦, so g ∈ G if g(0, . . . ,0) = 0 and
if g(x1, . . . ,xk),g(y1, . . . ,yk), and xi + yi defined for i = 1, . . . ,k
then g(x1 + y1, . . . ,xk + yk) = g(x1, . . . ,xk) +g(y1, . . . ,yk) (both defined)

Show for all finite A ∈ ISP(P1) we have E (D(A))∼= A

Problem: Is P1 dualizable in general?
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Subalgebras, products, homomorphisms

B⊆ A is a (partial) subalgebra if B is closed under the partial
operations of A
∏i∈I Ai is the product; operations are defined pointwise; exist iff they
exist in all coords
Note that Ã× B̃ 6= Ã×B (since e.g. 9 6= 5)
h : A→ B is a homomorphism if
h(f A(x1, . . . ,xn)) = f B(h(x1), . . . ,h(xn)) for all (x1, . . . ,xn) ∈ Df

HSP is defined using these operations
Not much is known about HSP(P1)
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Identities and quasiidentities
The signature of a partial algebra is a set F of (partial) function
symbols, each with an associated finite arity

The interpretation of f in a partial algebra A is denoted f A

Terms and formulas are defined as usual

A term t(a1, . . . ,an) is defined iff all subterms are defined

An identity s(x1, . . . ,xn) = t(x1, . . . ,xn) holds in a partial algebra A if for all
x1, . . . ,xn ∈ A either both sides are undefined, or they are defined and
equal

A quasiidentity s1 = t1& · · ·&sn = tn =⇒ s = t holds in A if for all
assignments that make the premises defined and equal, s, t are defined
and equal
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Properties that hold in ISP(P1)

x + y = y + x (commutative)
(x + y) + z = x + (y + z) (associative)
x +0 = x (0 is the identity)
x + z = y + z =⇒ x = y (cancellative)
x + x = x + x =⇒ x = 0 (othogonal)
P1 is coherent, i.e., if x + y , x + z and y + z are defined, so is
(x + y) + z
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Examples of algebras in ISP(P1)

P2,2 =
+ uu u0 u1 0u 1u 00 01 10 11
uu uu u0 u1 0u 1u 00 01 10 11
u0 u0 00 10
u1 u1 01 11
0u 0u 00 01
1u 1u 10 11
00 00
01 01
10 10
11 11

0u

uu

11

u1

01

0u

00

u0

10

1u

Define x ≤ y if x + z = y for some z (the natural order)
Can you find another (smaller) example? Guess what! P1 = P1,1

P1 =

+ 0 1
0 0 1
1 1

=
0

1
P1,n =

· · ·3 n1

0

2
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ISP(P1) is not finitely axiomatizable

Theorem
ISP(P1) is not finitely axiomatizable.

Proof. Consider the following quasiidentities qn:

&n−1
i=0 (x2i + x2i+1 = x2i+2 + x2i+3) & &n−1

i=0 (x2i+1 + x2i+2 = yi ) =⇒ x0 = x2

where index addition is modulo 2n.

We also define a partial algebra Qn = {0,a0,a1, . . . ,a2n−1,b0,b1, . . . ,bn}

by 0+ x = 0 = x +0, a2i +a2i+1 = bn, and a2i+1 +a2i+2 = bi (index
addition mod 2n)

with all other sums undefined.
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Claim 1. For all n > 1 the formula qn holds in ISP(P1) but fails in Qn.

Proof.
Suppose the premises hold in P1 but x0 6= x2.
If x0 = 0 then x2 = 1, and since x1 + x2 is defined, it follows that x1 = 0.
However, this contradicts x0 + x1 = x2 + x3.
If x0 = 1 then x1 = 0 since x0 + x1 is defined, and x2 = 0 since we are
assuming x0 6= x2.
Now x0 + x1 = x2 + x3 implies x3 = 1, and since x3 + x4 is defined, we have
x4 = 0.
If n = 2 then x4 = x0 since indices are calculated modulo 4, but this
contradicts x0 = 1.
Assume we have shown x2i−1 = 1 and x2i = 0.
Then x2i−2 + x2i−1 = x2i + x2i+1 implies x2i+1 = 1, hence x2i+2 = 0.
By induction we have x2n = 0, which again contradicts x0 = 1.
To see that qn fails in Qn, let xi = ai .
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Claim 2. The ultraproduct (∏n∈ω Qn)/U is in ISP(P1) for any
nonprincipal ultrafilter U on ω, hence ISP(P1) is not finitely
axiomatizable.

Proof.
(outline) In each Qn, the term ai +aj is defined iff j = i±1 (mod 2n), and
the terms a2i +a2i+1 are all equal to bn.
This same structure holds in the ultraproduct, except that the index
addition is now done in Z.
To see that the ultraproduct is in ISP(P1), it suffices to embed this
algebra in the powerset algebra P(ω) with disjoint union as partial
operation and the empty set as identity.
Let a0 = 2ω (= even numbers) and a1 = ω−a0. In general, let ak = 2kω

and ak+1 = ω−ak , and check that this map is an embedding.
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ISP(P1) is not closed under H

(P1,2)2 ∼= 0u

uu

11

u1

01

0u

00

u0

10

1u

and has a homomorphic image

0

w y zx /∈ ISP(P1)
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Algebras in ISP(P1) satisfy no congruence equations

Consider the partial algebra P1,n =

+ 0 1 · · · n
0 0 1 · · · n
1 1 − ·· · −
...

...
...

...
n n − ·· · −

Can identify any two non-zero elements without collapsing any others
Can identify any non-zero element with 0 without collapsing any
others
Therefore Con(P1,n) = Eq(n) = the lattice of equivalence relations on
an n element set
Any lattice equation fails in Eq(n) for some n
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