
Algorithms For Integral Matrix 
Groups

Alexander Hulpke 
Department of Mathematics 
Colorado State University 

Fort Collins, CO, 80523, USA 
www.hulpke.com

http://www.hulpke.com


Matrix Group Calculations
Matrix groups over commutative ring, given by (finite 
number) of generating matrices. 

What can we say about such groups? 

Over finite fields: matrix group recognition 

Uses: Divide-and-conquer approach. Data structure 
composition tree. Reduction to simple groups. 

Effective Homomorphisms, recursion to kernel, image.

Computers crave finiteness !



Instead of working (globally) over ℤ, work (locally) 
modulo different coprime numbers, combine 
(Paradigm: Chinese Remainder Theorem) 

The purpose of this talk is to show this principle 
applies to a certain class of integral matrix groups. 

Hasse Principle



First consider m=p2. (m=pa ditto.) 

Reduction mod p gives hom. φ: SLn(ℤm)→SLn(ℤp). 

Kernel {I+pA|A∈ℤpn×n}. Note: det(I+pA)=1+p·Tr(A). 

Multiplication: 

 (I+pA)(I+pB)=I+p(A+B)+p2…≡I+p(A+B) mod m 

is by addition of the the A-parts modulo p. 

(Under map A↦I+pA, kerφ is adjoint module in LIE-
sense.)
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Working With G ≤ GLn(ℤm)
If m=pa, first consider image H of G modulo p. 

Matrix group recognition on H. Get comp. tree. 
Split in radical factor and solvable radical. 

Presentation gives (module) generators of 
kernel. Consider  p/p2 layer as Fp-vector space. 
Basis with Spinning Algorithm. 

Combine to presentation of G mod p2  

Iterate on p2/p3 kernel etc.
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Multiple Primes
If m is product or multiple primes, G is a subdirect product of 
its images modulo prime powers. 
To get standard solvable radical data structure: 

Consider images Hp modulo each prime. 
Combine radical factor homomorphisms ρp for different 

primes to direct product of images. 
Combine the PCGS for the radicals for different primes. 
Extend PCGS through the extra layers if there are higher 

prime powers in m. (Take new kernel generators each time, 
linear algebra on 1/p(I-x ).) 

Result: Data structure, in particular order, for G ≤ GLn(ℤm).
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solvable group that combines bases for different 
vector space layers into object that can get 
coefficients.
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gap> LoadPackage(“matgrp”); # available for GAP 4.8.3
   […]
gap> g:=SL(3,Integers mod 1040);
SL(3,Z/1040Z)
gap> ff:=FittingFreeLiftSetup(g);;
gap> Size(g);
849852961151281790976000
gap> Collected(RelativeOrders(ff.pcgs));
[ [ 2, 24 ], [ 3, 1 ] ]
gap> m:=MaximalSubgroupClassReps(g);;time;
24631 #24 seconds
gap> List(m,x->Size(g)/Size(x));
[ 256, 7, 7, 8, 183, 183, 938119, 1476384, 3752476,
  123708, 123708, 123708, 31, 31, 3100, 3875, 4000 ]



Arithmetic Groups
Roughly: Discrete subgroup of Lie Group, defined by 
arithmetic properties on matrix entries(e.g. det=1, preserve 
form). 
Definition: G linear algebraic group, over number field K. An 
arithmetic group is Γ<G, such that for integers O< K the 
intersection Γ∩G(O) has finite index in both intersectants. 

Prototype: Subgroups of SLn(ℤ), Sp2n(ℤ) of finite index. 
Applications: Number Theory (Automorphic Forms), 
Topology, Expander Graphs, String theory, ... 
Theoretical algorithms for problems, such as conjugacy, 
known, but infeasible in practice.
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Subgroups Of SLn(ℤ), Sp2n(ℤ)
Take subgroup G < SLn(ℤ) (or Sp2n) given by finite 
set of generators. G is arithmetic if it has finite index. 

Can we determine whether G has finite index? 

If G has finite index, can we determine it? 

Here: Only SL case. 

Joint work with ALLA DETINKO,                        
DANE FLANNERY                                                
(St. Andrews / NUI Galway).
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Proving Finite Index
Consider SLn(ℤ) as finitely presented group. 

Generators: Elementary matrices. 

Relators (obvious ones: orders of products, 
commutators of generators) are known. 

Write generators of G as words in these generators 
(Gaussian Elimination. Often better: Words in images 
mod m for sufficiently large m). 

Enumerate cosets (Todd-Coxeter). If the index is finite 
this process will terminate, and give the correct index.
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not an algorithm: run-time cannot be 
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does not terminate.



Second Caveat
The obstacles of coset enumeration are inherent to 
the problem. 

SLn(ℤ) contains free subgroups if n≥3, and it is thus 
impossible to have an decision algorithm that is 
guaranteed to answer whether elements generate a 
subgroup of finite index. 

Thus assume an oracle promises finite index (or 
hope to be lucky).
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Entscheidungsproblem



Let SL3(ℤ) ≧βT = 

⟨(    ), (   ),(   )⟩, 

then [SL3(ℤ): β-2]=3670016.

LONG, 
REID 
2011

Easy Example

But [SL3(ℤ): β7]=24193282798937316960 
=25345·71019 · 347821 ~ 264.       Hopeless.

−1+T 3 -T T 2

0 -1 2T
-T 0 1

-1 0 0
-T 2 1 -T
T 0 -1

0 0 1
1 0 T 2

0 1 0

(Barely) doable.



Congruence Subgroups
The m-th congruence subgroup Γm ≤SLn(ℤ) is the 

kernel of the reduction φm modulo m. Image is SLn(ℤm). 

If G ≤ SLn(ℤ) has finite index, there exists integer l such 
that Γl ≤ G. The smallest such l is called the level of G. 

Then [SLn(ℤ):G ]=[SLn(ℤl ) : φl (G )]. 

Calculate this second index from generators                
of G modulo l. 

Thus sufficient to find level to get index.

MENNICKE 
1965



Strategy

Consider congruence images φm(G)<SLn(ℤm) for 
increasing values of m to find level l of G. 

 Find the primes dividing l 

 Find the prime powers dividing l 

 Criterion on whether Im=[SLn(ℤm) : φm (G )] 
increases.



SLn(ℤ)

C(m)

C(mp)

⟨1⟩

G

C(mp2)

Same Index

Let G ≤ SLn(ℤ) and C(m)=ker φm.  

If for a given m and prime p we have that  
Im=Imp but Imp≠Imp2, then (modulo mp2) G 
contains a supplement to C(mp). 

We show such supplements do not exist, 
thus a stable index remains stable.



Kernel Supplements
Let p be prime, a ≥ 2, m=pa and H=SL(n,ℤm) for n ≥ 2 
(or H=Sp(2n, ℤm

 ) for n ≥ 1). Let C(k)⊲H kernel mod k. 

Theorem: (D-F-H.)C(pa+1) has no proper supplement in 
C(pa ). 
Theorem: (Beisiegel 1977, Weigel 1995, …,D-F-H.) 
Let a=2. C(p) has a supplement in H if and only if 
(a) H=SL(2,ℤ4), SL(2,ℤ9), SL(3,ℤ4), or SL(4,ℤ4).  

(b) H=Sp(2,ℤ4), Sp(2,ℤ9).  

Proof: Small cases/counterexample by explicit calculation. 
Use nice elements to show supplement contains kernel.



Index Algorithm
Assume that G has (unknown) finite index and level 
l. Assume we know the set P of primes dividing l. 

1. Set m=lcm(4,∏ P ). 

2. While for any p ∈ P we have 

[SLn(ℤm):φm(G)]<[SLn(ℤpm):φpm(G)], set m:=pm. 

3. Repeat until index is stable, level divides m. 

Show also that one can work prime-by-prime.
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A group projecting onto PSLn(p) has 
only trivial subdirect products with 

subgroups of PSLn(q)



Theorem: Let G ≤ SLn(ℤ). If there is a prime p > 2 
such that G mod p=SLn(p), then this holds for 
almost all primes. Such a group is called Zariski - 

dense (which agrees with the usual definition). 

Caveat: There are dense subgroups of SLn(ℤ) that 
do not have finite index. (They are called thin.) This 
goes back to the impossibility of an algorithm that 
determines whether G has finite index.

Strong Approximation

WEIGEL 
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Finding The Set Of Primes
Theorem: Let n≥3 and suppose G has finite index. 
The set P of primes dividing the level l consists of 

those primes p for which 

1. p>2 and G mod p ≠SLn(p),  or 

2. p=2 and G mod 4 ≠SLn(ℤ4) 

Proof: If other primes divided the level, there would 
be a supplement modulo p2 (or 8).



Representations

G group, F field. 

A representation ρ:G→GLn(F ) is irreducible if no 
proper subspace of F n is invariant under Gρ. 

It is absolutely irreducible if the same holds for 
subspaces of Kn for any algebraic extension K of F. 

Theorem: ρ is absolutely irreducible, iff the matrices 
Gρ span F n×n.



Irreducible modulo Prime

Let ρ:G→GLn(ℤ) a representation that is absolutely 
irreducible modulo one prime. 

The ℤ-lattice L ≤ ℤn×n spanned by Gρ has rank n2. 

Gρ is absolutely irreducible modulo each prime that 
does not divide discriminant of L (i.e. almost all). 

To find these primes: Approximate L with (random) 
elements of Gρ until full rank.



Transvections
Arithmeticity implies the existence of transvections, 
elements t ∈G with rk (t−1)=1. 

For such an element let N= t G be the normal 
closure. 
Let ρ be reduction modulo prime p with Gρ=SLn(p).   If 
t ρ−1 ≠ 0, then t ρ is transvection and Nρ is absolutely 
irreducible. For odd n this implies it is SL. 

Let L be the ℤ-lattice spanned by (elements of) N. 

Then P  (primes with G mod p ≠ SLn(p) ) consists of 
primes dividing lcm(disc.L, gcd of entries of t−1).



gap> g:=BetaT(7);
<matrix group with 3 generators>
gap> t:=b1beta(g); # transvection from Long/Reid paper
[ [-685,14,-98], [-16807,344,-2401], [2401,-49,344] ]
gap> RankMat(t-t^0);
1
gap> PrimesForDense(g,t,1);time;
[ 7, 1021 ]
60
gap> MaxPCSPrimes(g,[7,1021]);time;
Try 7 7
Try 49 7
Try 343 7
Try 343 1021
Try 350203 1021
[350203, 24193282798937316960 ] #Proven Index in SL
291395 # about 5 minutes



General Case

If we have no transvections but know index is finite: 

Use other representations to identify primes. 

Note: Representations of SLn(p) are given by 
polynomials on matrix entries, come from SLn(ℤ)



Identify Subgroups
Take a set R of polynomial representations of 
SLn(ℤ), such that: 

1. For every α∈R the reduction αp: SLn(p)➝ℤpm x m 
modulo p is a well-defined representation. 

2. For prime p sufficiently large (i.e. p>const(n) ), 
αp is absolutely irreducible. 

3. For every maximal M< SLn(p), there exists α∈R, 
such that αp is not abs. irreducible on M. 

Existence: Steinberg representation.
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Small n

Let R be 

1. Actions on homogeneous poly.s of degree ≤4 
2. Antisymmetric square of natural representation. 
3. For n=3 (for 3.A6) a 15-dimensional constituent 

of the symmetric square of polynomials deg.2. 
Then the conjecture holds for n≦11 if p>4. 

Proof by inspection of lists of maximals.

BRAY, 
HOLT, 

RONEY-
DOUGAL 
2013



Algorithm For Primes

For each polynomial representation ρ∈R : 

• Form (random) elements of Gρ, span lattice L of 
full rank deg(ρ)2. 

• Find primes dividing disc(L).



gap> g:=Group([[778,2679,665],[323,797,665], 
>      [6674504920,-1557328,34062304949]], 
>  [[-274290687,140904793,1960070592 ],[853,4560,294], 
>      [151,930,209]]);;
gap> InterestingPrimes(g);  # about 12 hours
irrelevant prime 11
i=1 Pol1
i=2 Pol2 ->[ 53 ]
i=3 Pol3
i=4 rep15 ->[ 19 ]
[ 2, 3, 5, 19, 53 ]

gap> MaxPCSPrimes(g,[2,3,5,19,53]);
Try 1 2, Try 2 2, Try 2 3, Try 6 3, Try 6 5, Try 30 5
Try 30 19, Try 570 19, Try 570 53, Try 30210 53
Index is 5860826241898530299904=[ [ 2,13 ], [ 3,4 ],
 [ 13,3 ], [ 19,3 ], [ 31,1 ], [ 53,3 ], [ 127,1 ] ]
[ 30210, 5860826241898530299904 ]



Stronger Approximation, Again

As a corollary we easily get a proof of strong 
approximation, using our definition of Zariski dense: 

Theorem: A subgroup of SLn(ℤ) is dense if and only 
if it surjects onto SLn(p) for at least one prime p≥3. 
Proof: If G surjects onto SLn(p) for a prime, the 
lattice spanned by the Steinberg representation has 
full rank modulo p, thus full rank over ℤ.



Open Questions, Directions
Good set R of representations (small degree, easy 

construction)? 

Analog result for Sp or other classical groups? 
(are there polynomial representations)? 

Better arithmetic for matrices over ℤm. 

Algorithm finds arithmetic closure for dense 
subgroups. Use this to prove finite index in certain 
cases more efficiently than coset enumeration?




