MATH 2300 PROJECT 1: Integration of trigonometric functions

By using trig identities combined with u/du substitution we'd like to evaluate integrals of the form $\int \sin^m x \cos^n x \, dx$ (for integer values of n and m). The goal of this project is for you to work together to discover the techniques that work for these anti-derivatives.

1. Warm-up problem: $\int \cos^4 x \sin x \, dx$

2. $\int \sin^3 x \, dx$ (Hint: Use the identity $\sin^2 x + \cos^2 x = 1$. Then make a substitution.)

3. $\int \sin^5 x \cos^2 x \, dx$ (Hint: Write $\sin^5 x$ as $(\sin^2 x)^2 \sin x$.)

 $4. \int \sin^7 x \cos^5 x \, dx$

(The algebra gets hairy - stop once the substitution is complete, you don't need

to fully evaluate.)

5. In general, how would you go about trying to find $\int \sin^m x \cos^n x \, dx$, where m is odd? (Hint: consider the previous three problems.)

6. Note that the same kind of trick works when the power on $\cos x$ is odd. To check that you understand, what trig identity and what u/du substitution would you use to integrate $\int \cos^3 x \sin^2 x \, dx$?

- 7. Now what if the power on $\cos x$ and $\sin x$ are both even? Find $\int \sin^2 x \, dx$, in each of the following two ways:
- (a) Use the identity $\sin^2 x = \frac{1}{2}(1 \cos(2x))$.

(b) Integrate by parts, with $u = \sin x$ and $dv = \sin x dx$.

- (c) Show that your answers to parts (a) and (b) above are the same. Hint: Use a double angle formula. This problem reminds us of proving trig identities in precalculus!
- (d) How would you evaluate the integral $\int \sin^2 x \cos^2 x \, dx$?

