Using properties of f, f^{\prime}, and $f^{\prime \prime}$ to sketch f on the interval $[-1,1]$.

$f(t)$ is positive $f(t)$ is increasing $f(t)$ is concave up	$f(t)$ is positive $f(t)$ is increasing $f(t)$ is concave down	$f(t)$ is negative $f(t)$ is decreasing $f(t)$ is concave up	$f(t)$ is positive $f(t)$ is decreasing $f(t)$ is concave down
$\begin{aligned} f(t) & >0 \\ f^{\prime}(t) & <0 \end{aligned}$ (so $f(t)$ is \qquad) $f^{\prime \prime}(t)>0$ (so $f(t)$ is) \qquad	$\begin{aligned} f(t) & <0 \\ f^{\prime}(t) & >0 \end{aligned}$ (so $f(t)$ is \qquad) $f^{\prime \prime}(t)<0$ (so $f(t)$ is \qquad	$\begin{aligned} f(t) & <0 \\ f^{\prime}(t) & >0 \end{aligned}$ (so $f(t)$ is \qquad $f^{\prime}(t)$ is increasing (so $f^{\prime \prime}(t)$ \qquad)	$f(t)<0$ $f(t)$ is decreasing (so $f^{\prime}(t)$ \qquad) $f^{\prime}(t)$ is decreasing (so $f^{\prime \prime}(t) _$and $f(t)$ is \qquad
 $f(t)$ is negative $f(t)$ is increasing (so $f^{\prime}(t)$ $f^{\prime}(t)$ is decreasing (so $f^{\prime \prime}(t) _$and $f(t)$ is \qquad	 $f(t)$ is positive $f(t)$ is decreasing (so $f^{\prime}(t)$ \qquad) $f^{\prime}(t)$ is increasing (so $f(t)$ is \qquad	$\begin{aligned} f(t) & >0 \\ f^{\prime}(t) & <0 \\ f^{\prime \prime}(t) & <0 \end{aligned}$	$\begin{aligned} f(t) & <0 \\ f^{\prime}(t) & >0 \\ f^{\prime \prime}(t) & >0 \end{aligned}$
$f(t)<0$ $f(t)$ is decreasing $f^{\prime}(t)$ is decreasing	$f^{\prime}(t)>0$ $f(t)$ is positive $f^{\prime}(t)$ is increasing	$\begin{gathered} f^{\prime}(t)>0 \\ f(t)>0 \\ f^{\prime \prime}(t)<0 \end{gathered}$	 $f(t)$ is decreasing $f^{\prime}(t)$ is increasing $f(t)$ is negative

