1. In the graph of $f(x)$ below, number lines are used to mark where $f(x)$ is zero/positive/negative/undefined, where $f^{\prime}(x)$ is zero/positive/negative/undefined, and where $f^{\prime \prime}(x)$ is zero/positive/negative/undefined. Closed circles on the number lines indicate a zero-value, and open-circles indicate an undefined value.

(a) What do the closed circles on the number line for $f(x)$ correspond to on the graph of $f(x)$?
(b) How does each + or $-\operatorname{sign}$ on the number line for $f(x)$ relate to the graph?
(c) What does the closed circle at $x=-1$ on the number line for $f^{\prime}(x)$ correspond to on the graph of $f(x)$?
(d) What does the open circle at $x=2$ on the number line for $f^{\prime}(x)$ correspond to on the graph of $f(x)$?
(e) How does each + or - sign on the number line for $f^{\prime}(x)$ relate to the graph?
(f) What does the open circle at $x=2$ on the number line for $f^{\prime \prime}(x)$ correspond to on the graph of $f(x)$?
(g) How does each + or - sign on the number line for $f^{\prime \prime}(x)$ relate to the graph?
2. For the graph of $f(x)$ shown below, fill in the number lines for $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$, marking closed circles where there is a zero, marking open circles for undefined points, and marking + and - signs on each interval to show positive/negativeness.

3. Draw a graph of $f(x)$ that fits the information shown in the number lines.

4. The middle graph drawn below shows $f^{\prime}(x)$. Using the principles you learned in the previous problem, draw a possible graph of $f(x)$ above it, and a graph of $f^{\prime \prime}(x)$ below it. (If you are stuck try drawing the graph of $f^{\prime \prime}(x)$ first.)
$f(x)$:

$f^{\prime}(x):$

$f^{\prime \prime}(x)$:

5. This problem investigates the derivative of the absolute value function. Recall that we define the absolute value as:

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

(a) In the space provided, draw a graph of the function $f(x)=|x|$.

(b) Using your graph from part (a), and your understanding of the derivative as the rate of change/slope of the tangent line, find the derivative function $f^{\prime}(x)$ of the above function $f(x)=|x|$, for x not equal to 0 (fill in the blanks):

$$
f^{\prime}(x)= \begin{cases} & \text { if } x>0 \\ & \text { if } x<0\end{cases}
$$

(c) But what about $f^{\prime}(0)$? It is not so clear from the picture even how to draw a tangent line to the function at the origin. So let's try to compute $f^{\prime}(0)$ by first looking at the corresponding lefthand and righthand limits of the difference quotient.
i. Compute $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$. Hint: use the piecewise definition of $f(x)$ given above.
ii. Compute $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$.
iii. What do your answers to parts (i) and (ii) tell you about $f^{\prime}(0)$? Please explain.
6. Using what you've learned above, sketch the graph of a continuous function $g(x)$ such that $g(x)$ is not differentiable at $x=-1, x=2$, nor $x=3$.

7. Create a piecewise function where one piece is a quadratic function and the other piece is a linear function which is continuous everywhere but not differentiable at $x=0$.

$$
f(x)= \begin{cases}\quad & \text { if } x \geq 0 \\ & \text { if } x<0\end{cases}
$$

8. Create a piecewise function where one piece is a quadratic function and the other piece is a linear function which is continuous and differentiable everywhere.

$$
f(x)= \begin{cases} & \text { if } x>0, \\ & \text { if } x \leq 0 .\end{cases}
$$

