Area accumulation functions and the FTC, graphical perspective

1. Example:

(a) $F(x)=\int_{0}^{x} f(t) d t \cdot F^{\prime}(x)=$ \qquad
(b) Evaluate the following:
$F(0)=$
$F(2)=$
$F^{\prime}(0)=$
$F^{\prime \prime}(0)=$
$F^{\prime}(2)=$
$F^{\prime \prime}(2)=$
$F(5)=$
$F^{\prime}(5)=$
$F^{\prime \prime}(5)=$
(c) Find a formula for $F^{\prime}(x)$ between $x=1$ and $x=2$.
(d) Find a formula for $F(x)$ between $x=1$ and $x=2$
(e) Sketch $F(x)$.

(f) Sketch $F^{\prime}(x)$.

2. Example:

(a) $H_{1}(x)=\int_{0}^{x} h(t) d t . H_{1}^{\prime}(x)=$ \qquad
At what x values does $H_{1}(x)$ have:
critical points \qquad
local minima \qquad
local maxima \qquad
inflection pts \qquad
(b) Now $H_{2}(x)=\int_{-1}^{x} h(t) d t$.

At what x values does $H_{2}(x)$ have:
critical points \qquad
local minima \qquad
local maxima \qquad
inflection pts \qquad
(c) What is the difference between $H_{1}(x)$ and $H_{2}(x)$?

