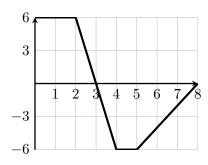
1. Review and Warm-up: The graph of f is shown below. Calculate exactly each of the definite integrals that follow.



(a)
$$\int_0^2 f(x) \, dx =$$

(d)
$$\int_{5}^{8} f(x) dx =$$

(e) $\int_{2}^{4} f(x) dx =$
(f) $\int_{0}^{8} f(x) dx =$

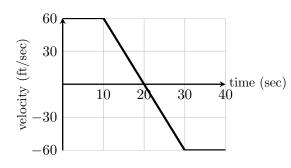
(b)
$$\int_0^3 f(x) \, dx =$$

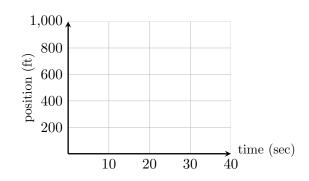
(e)
$$\int_{2}^{4} f(x) dx =$$

(c)
$$\int_{4}^{5} f(x) dx =$$

(f)
$$\int_0^8 f(x) \, dx =$$

2. Let s(t) be the position, in feet, of a car along a straight east/west highway at time t seconds. Positive values of s indicate eastward displacement of the car from home, and negative values indicate westward displacement. At t=0 the car is at home. Let v(t) represent the velocity of this same car, in feet per second, at time t seconds (see graph below).





(a) Write a definite integral representing each of the following:

$$s(10) =$$

$$s(30) =$$

$$s(t) =$$

Now use these integrals and the velocity graph to help you fill in the chart below:

t	0	10	20	30	40
s(t)	0				

(b) Use these values to help you plot the position function.

(c) Fill in the chart below:

Definite integral of velocity	Change in position		
$\int_0^{10} v(t)dt =$	s(10) - s(0) =		
$\int_{10}^{20} v(t)dt =$	s(20) - s(10) =		
$\int_0^{40} v(t)dt =$	s(40) - s(0) =		

- (d) Why do these two columns give the same answers?
- 3. The following data is from the U.S. Bureau of Economic Analysis. It shows the rate of change r(t) (in dollars per month) of per capita personal income, where t is the number of months after January 1, 2012.

t (months)	0	2	4	6	8	10	12
r(t) (dollars per month)	154	17	10	79	278	-432	290

Use left-hand Riemann sums to estimate the total change in personal income during 2012.

4. A can of soda is put into a refrigerator to cool. The temperature of the soda is given by F(t). The **rate** at which the temperature of the soda is changing is given by

$$F'(t) = f(t) = -25e^{-2t}$$
 (in degrees Fahrenheit per hour)

(a) Find the rate at which the soda is cooling after 0, 1, and 2 hours. Then use this information to estimate the temperature of the soda after 3 hours if the soda was $60^{\circ}F$ when it was placed in the refrigerator.

- (b) Now we will find the exact temperature of the soda after three hours have passed.
 - i. Find an antiderivative of f(t), that is, find a function G(t) such that $F'(t) = f(t) = -25e^{-2t}$.

(Hint: take a couple of derivatives of f(t) and try to find a pattern.)

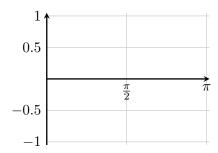
ii. The Fundamental Theorem of Calculus (the Evaluation Theorem) tells us that $\int_a^b f(t)\,dt = F(b) - F(a).$ Use this theorem and the function you found in the last step to find the temperature of the soda after 3 hours have passed.

(c) Why do you think your estimate in part (a) is so far off?

- 5. (a) Write an integral which represents the area between $f(x) = x^4$ and the x-axis, between x = 0 and x = 2.
 - (b) Evaluate this integral using the Fundamental Theorem of Calculus (the Evaluation Theorem).

6. (a) Using the Fundamental Theorem of Calculus (as in the last problem), evaluate $\int_0^\pi \cos(x) dx$.

(b) Show the area represented by the integral in part (a) on the graph.



7. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ without using technology.