1. On the axes below is a graph of the function $y=f(x)=\tan x$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

(As x approaches $-\pi / 2$ from the right, the graph of $f(x)$ shoots off towards $-\infty$; as x approaches $\pi / 2$ from the left, the graph of $f(x)$ shoots off towards ∞.)
(a) Explain why this function $f(x)$, when restricted to the given domain, has an inverse function $f^{-1}(x)=\arctan x$. (Pronounced "arctangent of $\left.x . "\right)$
(b) Sketch the graph of $y=f^{-1}(x)=\arctan x$, on the axes below.

2. Note that, because we have defined $\arctan x$ as the inverse of $\tan x$, we have:

$$
\tan (\arctan x)=x
$$

Differentiate both sides of this equation to find a formula for the derivative of arctan x. Express your answer in terms of $\sec ^{2}(\arctan x)$. (You'll need to recall that $\frac{d}{d x}[\tan x]=\sec ^{2} x$.)
3. Referring to the triangle below, explain why $\sec ^{2}(\arctan x)=1+x^{2}$.

4. Use the results of problems 2 and 3 above to show that $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$.

