Area accumulation functions and the FTC: an analytical perspective

1. Let $F(x)=\int_{3}^{x} e^{5 t} d t$
(a) Find a formula for $F(x)$ by anti-differentiating and substituting.
(b) Differentiate to find $F^{\prime}(x)$.
(c) Explain your result.
(d) Why does the lower limit of integration not affect the derivative?
(e) Using what you noticed and learned above, find $\frac{d}{d x}\left[\int_{-5}^{x} \arctan t d t\right]$.

In summary:

The Fundamental theorem of Calculus, Part 1: If f is continuous on $[a, b]$, then
$\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=\quad($ for $a<x<b)$.
Worded differently, if $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=$ \qquad
2. Let $F(x)=\int_{4}^{x^{2}} \cos t d t$
(a) Find a formula for $F(x)$ by anti-differentiating.
(b) Differentiate to find $F^{\prime}(x)$. Look at your answer and notice how it relates to the definition of $F(x)$.
(c) Using what you noticed and learned above, find $\frac{d}{d x}\left[\int_{2}^{\sin x} \ln t d t\right]$.

In summary:

If $F(x)=\int_{0}^{g(x)} f(t) d t$, then $F^{\prime}(x)=$ \qquad .
3. If $F(x)=\int_{x}^{0} f(t) d t$, what is $F^{\prime}(x)$? Hint: notice that $F(x)=-\int_{0}^{x} f(t) d t$.
4. If $F(x)=\int_{3 x}^{x^{2}} \sin t d t$, what is $F^{\prime}(x)$? Hint: the integral can be broken into two parts, so $F(x)=\int_{3 x}^{0} \sin t d t+\int_{0}^{x^{2}} \sin t d t$.

In summary:

$$
\text { If } F(x)=\int_{a(x)}^{b(x)} f(t) d t, \text { then } F^{\prime}(x)=
$$

\qquad
5. Use the above result to answer the following: if $F(x)=\int_{x^{3}}^{1-x} \frac{t+1}{t-1} d t$, what is $F^{\prime}(x)$?

