1. Let
$$F(x) = \int_{3}^{x} e^{5t} dt$$

- (a) Find a formula for F(x) by anti-differentiating and substituting.
- (b) Differentiate to find F'(x).
- (c) Explain your result.

- (d) Why does the lower limit of integration not affect the derivative?
- (e) Using what you noticed and learned above, find $\frac{d}{dx} \left[\int_{-5}^{x} \arctan t \, dt \right]$.

In summary:

The Fundamental theorem of Calculus, Part 1: If f is continuous on [a, b], then $\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = \underline{\qquad}$ (for a < x < b). Worded differently, if $F(x) = \int_{a}^{x} f(t) dt$, then $F'(x) = \underline{\qquad}$.

2. Let $F(x) = \int_{4}^{x^2} \cos t \, dt$

- (a) Find a formula for F(x) by anti-differentiating.
- (b) Differentiate to find F'(x). Look at your answer and notice how it relates to the definition of F(x).

(c) Using what you noticed and learned above, find $\frac{d}{dx} \left[\int_{2}^{\sin x} \ln t \, dt \right]$.

In summary:

If
$$F(x) = \int_0^{g(x)} f(t) dt$$
, then $F'(x) =$ _____.

3. If
$$F(x) = \int_x^0 f(t) dt$$
, what is $F'(x)$? Hint: notice that $F(x) = -\int_0^x f(t) dt$.

4. If
$$F(x) = \int_{3x}^{x^2} \sin t \, dt$$
, what is $F'(x)$? Hint: the integral can be broken into two parts, so $F(x) = \int_{3x}^{0} \sin t \, dt + \int_{0}^{x^2} \sin t \, dt$.

In summary:

If
$$F(x) = \int_{a(x)}^{b(x)} f(t) dt$$
, then $F'(x) =$ ______

5. Use the above result to answer the following: if $F(x) = \int_{x^3}^{1-x} \frac{t+1}{t-1} dt$, what is F'(x)?