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Mathematical billiards is a well-developed subfield of dynamical systems in which one
attempts to understand how a pointmass traverses some region (possibly) subject to collisions
in a sufficiently smooth boundary or obstruction.

Classical examples of mathematical billiard tables include the unit square, ellipse, horse-
shoe, mushroom and so on. In this talk, we will initially focus on the behavior of a pointmass
as it traverses the equilateral triangle billiard Ω(∆) and the unit square billiard Ω(Q). In
general, the billiard dynamics on what is called a rational polgyonal billiard table are very
well understood. We examine the billiard dynamics on a prefractal billiard table Ω(Fn),
where {Fn}∞n=0 is a suitable sequence of prefractal billiards converging in the Hausdorff met-
ric to a fractal F , where F is either the Koch snowflake KS, a Sierpinski carpet Sa or the
T -fractal T . We draw upon an established literature when constructing what we are calling
a sequence of compatible orbits. We then examine the behavior of a sequence of compatible
periodic orbits of prefractal billiard tables Fn, where, for every n ≥ 0, Fn = KSn, Sa,n or
Tn. In so doing, we determine periodic orbits of Ω(KS, Ω(Sa) and Ω(T ). In addition to
this, in the case of Ω(KS), we determine a sequence of line segments constituting what we
are calling a nontrivial path. Such a path connects two elusive points of the Koch snowflake.
We then indicate how such paths should also exist in Ω(T ).

The eventual goal of this research is to determine a well-defined phase space for the billiard
dynamics on a fractal billiard table. Doing so may require an alternate approach than that
presented here. We briefly outline other possible approaches and end our talk by indicating
directions for future research.
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