QUARTIC SURFACES AS LINEAR PFAFFIANS

Emre Coskun（Tata Institute）
Rajesh Kulkarni（Michigan State University）
Yusuf Mustopa（University of Michigan）

Question 1

Let $X \subseteq \mathbb{P}^{3}$ be a smooth surface of degree $d \geq 2$. Does there exist a $d \times d$ matrix M of linear forms such that

$$
X=\{\operatorname{det} M=0\} ?
$$

- $d=2$ or $d=3$: YES. (The matrix M is induced by a ruling line on X for $d=2$ and by a twisted cubic on X for $d=3$.)
- $d \geq 4$: ALMOST NEVER. While the determinant of a sufficiently general $d \times d$ matrix M of linear forms in 4 variable cuts out a smooth surface $X \subseteq \mathbb{P}^{3}$ of degree d, the degeneracy locus of a $(d-1) \times d$ submatrix of M is a curve on X that is not a hypersurface section.

But the Noether-Lefschetz Theorem implies that a very general hypersurface of degree d cannot admit such a curve.

In light of this, we consider a different question for surfaces of degree 4 or greater. Recall that if M is a $2 d \times 2 d$ skew-symmetric matrix, the Pfaffian of M is $\operatorname{Pf}(M):=\sqrt{\operatorname{det} M}$.

Question 2

Let $X \subseteq \mathbb{P}^{3}$ be a smooth surface of degree $d \geq 4$. Does there exist a $2 d \times 2 d$ skew-symmetric matrix M of linear forms such that

$$
X=\{\operatorname{Pf}(M)=0\} ?
$$

(Beauville-Schreyer,'00) The answer is YES if X is a general surface of degree $d \leq 15$ and NO for $d \geq 16$. The proof relies on a Macaulay 2 calculation which shows that the Pfaffian map from the space of $2 d \times 2 d$ skew-symmetric matrices of linear forms to $\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|$ is dominant for $4 \leq d \leq 15$.

Theorem 1 (CKM)

For every smooth quartic surface $X \subseteq \mathbb{P}^{3}$, there exists an 8×8 skew-symmetric matrix M of linear forms such that

$$
X=\{\operatorname{Pf}(M)=0\}
$$

It is important for our proof that every smooth quartic X is a K 3 surface, i.e. satisfies

$$
\omega_{X} \cong \mathcal{O}_{X}, \quad H^{1}\left(\mathcal{O}_{X}\right)=0
$$

The strategy is to construct a rank- 2 vector bundle \mathcal{E} on X which must be the cokernel of an 8×8 skew-symmetric matrix of linear forms.

Proposition (Beauville '00)

Let $X \subseteq \mathbb{P}^{3}$ be a smooth surface of degree $d \geq 2$. Then the following are equivalent:
(i) There exists a $2 d \times 2 d$ skew-symmetric matrix M of linear forms such that $X=\{\operatorname{Pf}(M)=0\}$.
(ii) There exists a rank-2 vector bundle \mathcal{E} on X with $\wedge^{2} \mathcal{E} \cong \mathcal{O}_{X}(d-1)$ and $c_{2}(\mathcal{E})=\frac{d(d-1)(2 d-1)}{6}$ which is ACM, i.e. satisfies the vanishings

$$
H^{1}(X, \mathcal{E}(m))=0 \quad \forall m \in \mathbb{Z}
$$

One can try to produce such a bundle \mathcal{E} by taking a smooth curve $C \in\left|\mathcal{O}_{X}(d-1)\right|$ and a globally generated line bundle \mathcal{L} of degree $\frac{d(d-1)(2 d-1)}{6}$ with $h^{0}(\mathcal{L})=2$ (if it exists!) and defining \mathcal{E} by the exact sequence

$$
0 \rightarrow \mathcal{E}^{\vee} \rightarrow H^{0}(\mathcal{L}) \otimes \mathcal{O}_{X} \rightarrow \mathcal{L} \rightarrow 0
$$

We are concerned with the case $d=4$, so we want a smooth curve C in the linear system $\left|\mathcal{O}_{X}(3)\right|$ (which is a smooth complete intersection of type $(3,4)$ in \mathbb{P}^{3}) and a globally generated line bundle \mathcal{L} of degree 14 satisfying $h^{0}(\mathcal{L})=2$ such that the vector bundle \mathcal{E} in the exact sequence

$$
0 \rightarrow \mathcal{E}^{\vee} \rightarrow H^{0}(\mathcal{L}) \otimes \mathcal{O}_{X} \rightarrow \mathcal{L} \rightarrow 0
$$

is ACM. The following issues must be addressed:

- While standard Brill-Noether theory guarantees plenty of line bundles \mathcal{L} of degree 14 on C with $h^{0}(\mathcal{L})=2$, it does not guarantee that any of them are globally generated.
- Even if we can find a globally generated \mathcal{L}, the resulting vector bundle \mathcal{E} might not be ACM.

Recall that for a smooth projective curve C and positive integers r, d,

$$
W_{d}^{r}(C):=\left\{\mathcal{L} \in \operatorname{Pic}^{d}(C): h^{0}(\mathcal{L}) \geq r+1\right\}
$$

If C is a smooth complete intersection curve of type $(3,4)$, the dimension of $W_{14}^{1}(C)$ is at least 7 , and the general member \mathcal{L} of $W_{14}^{1}(C)$ satisfies $h^{0}(\mathcal{L})=2$.

The locus in $W_{14}^{1}(C)$ parametrizing line bundles that are not globally generated is the image of the map

$$
\sigma: C \times W_{13}^{1}(C) \rightarrow W_{14}^{1}(C), \quad\left(p, \mathcal{L}^{\prime}\right) \mapsto \mathcal{L}^{\prime}(p)
$$

Thus we can deduce the existence of a basepoint-free member of $W_{14}^{1}(C)$ by a dimension count if we can verify that $\operatorname{dim} W_{13}^{1}(C) \leq 5$.

We use a recent result on K 3 surfaces to obtain this upper bound. If C is a smooth projective curve, then the Clifford index of C is defined to be

$$
\operatorname{Cliff}(C):=\min \left\{d-2 r: \exists \text { special } \mathcal{L} \ni c_{1}(\mathcal{L})=d, h^{0}(\mathcal{L})=r+1 \geq 2\right\}
$$

Clifford's Theorem implies that $\operatorname{Cliff}(C)$ is nonnegative, and is zero precisely when C is hyperelliptic.

Theorem (Aprodu-Farkas '11)

Let X be a K3 surface, and let L be a globally generated line bundle on X such that $\operatorname{Cliff}(C)$ is computed by a pencil of degree k for general smooth $C \in|L|$. Assume further that $k \leq \frac{L^{2}}{4}+\frac{3}{2}$. Then for general smooth $C \in|L|$,

$$
\operatorname{dim} W_{n+k}^{1}(C) \leq n \text { for } 0 \leq n \leq \frac{L^{2}}{2}+3-2 k
$$

We would like to apply this result to complete intersection curves of type $(3,4)$. Fortunately, we have the following result on complete intersection curves in \mathbb{P}^{3} :

Theorem (Basili '96)

If $C \subseteq \mathbb{P}^{3}$ is a smooth complete intersection curve of type (m, n) for $(m, n) \neq(3,3)$ and ℓ is the maximum number of collinear points on C, then $\operatorname{Cliff}(C)$ is computed by a pencil of degree $m n-\ell$.

Bézout's Theorem implies that if $X \subseteq \mathbb{P}^{3}$ is a smooth quartic and C is a general smooth member of $\left|\mathcal{O}_{X}(3)\right|$, then $\ell=4$. So for all such C, Basili's theorem implies that $\operatorname{Cliff}(C)$ is computed by a pencil of degree 8 , and we can apply the Aprodu-Farkas theorem to conclude that $\operatorname{dim} W_{13}^{1}(C) \leq 5$ as desired.

After a bit more work, we are able to conclude the following:

Proposition (CKM)

If $X \subseteq \mathbb{P}^{3}$ is a smooth quartic surface, there exists a 14 -dimensional family \mathcal{Y} of simple vector bundles of rank 2 on X such that each $\mathcal{E} \in \mathcal{Y}$ satisfies the following properties:

- $\wedge^{2} \mathcal{E} \cong \mathcal{O}_{X}(3)$ and $c_{2}(\mathcal{E})=14$.
- $H^{1}(\mathcal{E}(m))=0$ for all $m \leq-3$ and all $m \geq 0$.

Note that the members of \mathcal{Y} are not necessarily ACM. However, Serre duality combined with the isomorphism $\mathcal{E} \cong \mathcal{E}^{\vee}(3)$ yields the following

Observation

A vector bundle $\mathcal{E} \in \mathcal{Y}$ is ACM if and only if $H^{1}\left(\mathcal{E}^{\vee}(-1)\right)=0$.

Our final task is to show that the general member of \mathcal{Y} is ACM. To clarify the obstruction to $\mathcal{E} \in \mathcal{Y}$ being ACM, we look to length- 14 subschemes Z of X which represent $c_{2}(\mathcal{E})$. Since \mathcal{E} might not be globally generated, the existence of such Z is not immediate.

Proposition (CKM)

For all $\mathcal{E} \in \mathcal{Y}$, there exists an I.c.i. subscheme Z of X and an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z \mid X}(3) \rightarrow 0
$$

Moreover, if $\mathcal{E} \in \mathcal{Y}$ fits into such a sequence, then \mathcal{E} is ACM if and only if Z does not lie on a quadric.

The proof of our theorem is concluded by using the fact that any Z in such a sequence satisfies the Cayley-Bacharach property with respect to $\mathcal{O}_{X}(3)$, and showing by way of a dimension count that the length-14 subschemes of X which are Cayley-Bacharach with respect to $\mathcal{O}_{X}(3)$ and lie on a quadric form a locus "too small" to come from the general member of \mathcal{Y}.

The fact that the members of \mathcal{Y} are all simple vector bundles is important, as it guarantees that \mathcal{Y} has the "correct" dimension. For many quartic surfaces, our bundles satisfy a stronger indecomposability property:

Proposition (CKM)

If $X \subseteq \mathbb{P}^{3}$ is a smooth quartic surface with Picard number not equal to 2 , and X contains only finitely many smooth rational curves, then the general member $\mathcal{E} \in \mathcal{Y}$ is μ-stable with respect to $\mathcal{O}_{X}(1)$.

It is likely that a different approach is required for surfaces of degree 5 through 15, since our method depends heavily on the K3 aspect of smooth quartic surfaces. However, it seems reasonable to ask

Question 3

Can our method be applied to produce other types of indecomposable ACM bundles on K3 surfaces, possibly of higher rank?

Smooth curves on K3 surfaces whose Clifford index is not computed by a pencil are relatively rare and have been completely classified by Knutsen '07, so it is quite possible that we can use the Aprodu-Farkas theorem to construct other ACM bundles.

THANKS FOR STOPPING BY!!!

