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Codes, Non-associative Division Algebras, and Arithmetic Geometry

Space Time Codes
Suppose we want to send an encoded message from

nt transmit antennas to nr receiver antennas. Because
of errors in transmission, to do so reliably we need to
add redundancy to our message. However, we would
like to do so using as little redundancy as possible to
guarantee correct decoding of the message. At each of
T points in time, each transmit antenna sends a sym-
bol(a complex number) so we can view the message
as a matrix in Mnt×T(C). In fact, the codes of most in-
terest will be linear subspaces C ⊂ Mnt×T(K), with
K a number field. To minimize redundancy, the best
codes will have the property that rank A− B is maxi-
mal ∀A 6= B ∈ C, which we’ll call the rank condition.
Lastly, we are most interested in codes of maximal di-
mension satisfying the rank condition. As we will hap-
pily see in Lemma 1, when nt = T, that the max di-
mension is T, and the study of classifying such space
time codes corresponds to classifying non-associative
division algebras over K.

Non-Associative Division Algebras,
NADAs
• Let V be an n-dimensional K vector space with a

bilinear operation ∗ : V × V → V that is not as-
sumed to be associative. We call A = (V, ∗) a non-
associative algebra.

• For all x, y ∈ A, if the maps Lx, Ry : A → A with
Lx(a) = x ∗ a and Ry(a) = a ∗ y are injective, then we
say that A is a division algebra.

• Let β be a basis for V. If a ∗ b = c, then we can define

[c]β = (
n

∑
i=1

aiMi)[b]β

for some matrices Mi when ai is the ith entry of
[a]β. Now let xi be indeterminants and form M =
∑n

i=1 xiMi. We call M the left representation of A with
respect to β.

• Some examples of NADAs are jordan algebras,
power associative algebras, and alternative algebras.
One such class are the twisted fields introduced by Al-
bert, generalizing the work of Dickson, in turn gen-
eralized by Menichetti, and most recently general-
ized by Deajim. Let L/K be a galois extension with
α ∈ L and NL/K(α) 6= 1. Let a, b ∈ L and define ∗

for twisted fields to be a ∗ b = ab− αaσbτ with fixed
σ, τ ∈ Gal(L/K).

Main Lemmas
A form F over K is K-anisotropic is there are no non-
trivial K-solutions to F.
Lemma 1. Let k be a field and z1, . . . , zn be indeterminants.

(1) If V is an n−dimensional subspace of Mn×n(k) with ba-
sis Pi, 1 ≤ i ≤ n, then V is a maximal non-singular
space if and only if the determinant of the linear matrix
P = ∑n

i=1 ziPiis k−anisotropic.
(2) Let Pi ∈ Mn×n(k), 1 ≤ i ≤ n, be such that the determi-

nant of the linear matrix P = ∑n
i=1 ziPi is k−anisotropic.

Then P is the left-representation of an n−dimensional
non-associative division algebra over k.

Thus, we see the central connection between space
time codes, non-associative division algebras, and
anisotropic forms of a certain degree.
Lemma 2. (Room/Beauville) Let K be a field and X = V(F)
be a degree 4 surface in P3(K). Then X is determinantal if
and only if X contains a degree 6 arithmetic genus 3 curve
which is defined over K.

Main Question
Question. Given a number field K. What are all 4-
dimensional non-associative division algebras over K?

Elliptic Curves and Divisors
• An elliptic curve E is an irreducible curve of genus one

with a fixed base point O. If both are defined over a
field K, then we write E/K. Throughout we will as-
sume K is perfect.

• Suppose F ∈ K[x, y, z, w] is a form of degree 4 and
F factors into 2 absolutely irreducible quadrics over
L = K(

√
d). Let σd :

√
d → −

√
d generate Gal(L/K)

so we have F = aQQσd with a ∈ K. Let H =
V(Q, Qσd) ⊂ P3. Note, H is defined over K. We can
calculate the Hilbert polynomial of I(H) = (Q, Qσd)
and we see that deg H = 4 and the arithmetic genus
of the curve H = 1.

• Thus, if H if geometrically irreducible, it has a jaco-
bian E = Jac(H) which is an elliptic curve defined
over K.

• Recall, a Weil divisor on a curve H is a formal sum
D = ∑P∈H nPP over geometric points of H, where

nP ∈ Z and nP = 0 for all but finitely many P. The
degree of D = ∑ nP. We write D1 ∼ D2 if D1 and D2
are linearly equivalent.

• We say that a divisor D is defined over K and write
D ∈ DivK(H) if Dτ = D for all τ ∈ Gal(K̄/K). Let
Divn

K(H) be the set of degree n divisors defined over
K on H.

• There are two groups we need to consider re-
lated to the arithmetic of E/K. The Weil-Chatelet
group WC(E/K) consists of homogeneous spaces
H of E(curves defined over K, isomorphic to E
over K̄) modulo a relations that comes from iden-
tifying H with a cocylce class in H1(Gal(K̄/K), E).
The Tate-Shafarevich group X(E/K) is the subgroup
of WC(E/K) which consists of curves which have
points in every completion of K.

• We are interested in curves H ∈ WC(E/K) with no
K-points, so either there is a completion Kp of K with
H(Kp) = ∅(including K∞ = R), or H is a non-trivial
element of X(E/K).

• With H as above, we will find Q, Qσd such that
I(H) = (Q, Qσd) and there is a K-rational point on
Q ∪ Qσd ⇐⇒ H(K) 6= ∅. If H has solutions in every
completion of K, then theory says that such a Q, Qσ

exist if and only if H is of order 2 or 4 in X(E/K).

Main Theorem
Theorem. Let F ∈ K[x, y, z, w] be a K-irreducible form
of degree 4, and suppose that F = QQσd over K(

√
d) for

some d ∈ K, σd the non-trivial element in Gal(K(
√

d)/K)
and that Q, Qσd are absolutely irreducible. Furthermore,
let H = V(Q, Qσd), and suppose H is geometrically irre-
ducible. Then F is determinantal if and only if there exists
a divisor D ∈ Div4

K(H) with D = D1 + Dσ
1 , D1, Dσ

1 ∈
Div2

K(
√

d)
(H), D1 6∼ Dσ

1 , and D is not a hyperplane section
of H.

Building Examples of New Determinan-
tal Anisotropic Quartics
One way to find H with the properties called for in

the theorem is to start with an elliptic curve E/K with
a K-rational 4-torsion point P. We let E′′ = E/ < 2P >
and E′ = E/ < P > . Note this means that the bot-
tom rows of the diagrams are isogenies. We then seek
H ∈ X(E/K) of order 2 or 4(so H(K) = ∅). If H has

order 2 in X it is isomorphic to E over some K(
√

d)
call it Cd, and then we proceed as follows(see diagram
on left):

Cd
�� !!CC

CC
CC

CC

E // E′′ // E′
H //

��

Cd,τ
�� ""EE

EE
EE

EE
E

E // E′′ // E′

(1) Find D ∈ Div4
K(Cd) such that D is not a hyper-

plane section, D = D1 + Dσ
1 and D1 6∼ Dσ

1 . We
do so by pulling back conjugate points on E′. Note
such points exist when E′(K(

√
d) contains a non- K-

rational point.
(2) Let L be the line through the two points in Supp D1.

Let C = Cd ∪ L ∪ Lσ. This is our degree 6 genus 3
curve defined over K.

(3) We want to find a basis for H0(V(F), I(C) ⊗ O(3)).
Note, this will be 4 quaternary cubic forms. We then
do a free resolution on the ideal generated by these 4
forms. This gives us a 3× 4 matrix M̃, whose entries
are quaternary linear forms defined over K.

(4) The general theory tells us that we can adjoin a vari-
able fourth row of linear forms to M̃ to form M,
where det M = G, and G is any quartic surface con-
taining C. Thus we can solve for a fourth row such
that we have det M = QQσ, and M will be a NADA.

(5) We are currently working on the above algorithm for
H ∈ X(E/K) of order 4 which, can be studied via
the diagram on the right.

Example
With the setup above we have

E : y2 = x3 + 102x2 + x
which has 4-torsion (−1, 10). We then find Cd ∈
X(E/K)− 0 with
C2 : w2 = 2− 51Z2 + 325Z4 = (−1 + 13Z2)(−2 + 25Z2).
Note, it is non-trivial to show that C2 is a non-trivial el-
ement of X. From this homogeneous space we build
a new NADA

M =


−y x + 103/4y

1/2w− z −1/2w
−2w 52w− z

16
56843125x + ( 416

56843125 −
1

26)y ( −416
56843125 + 1

26)x + ( −10716
56843125 + 103

104)y

2574w− 103/2z 26w
x −10613/16x− 103/16y
y −103/4x− 1/4y

( 21432
56843125 −

103
52 )z + (−416

22075 + 99)w −2
56843125z + w
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