LATEX tutorial

Your name here

August 30, 2016
(a) Use summation notation, i.e. $\sum_{i=1}^{n}$, to rewrite the following expression without ellipses:

$$
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=
$$

Do you know what the value of this sum is?
(b) The quadratic formula gives an explicit expression for the solutions to an equation $a x^{2}+b x+c=0$. Typeset the quadratic formula below.
(c) For each of the following sets (their names are A, B and C), correct the poorly-formed set builder notation:

$$
\begin{aligned}
& A=\{x i n \mathbb{Z}: x\} \\
& B=x \in: x>1 \\
& C=\{\mathbb{Z}: x<=1
\end{aligned}
$$

Can you also correct the weird alignment so it looks better? Notice the align environment and the \& symbols in the code.
Hint: detexify [http://detexify.kirelabs.org/] could help you find the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ code for any particular symbols you may want, like 'less-than-or-equals'.
(d) Here's a definition of an odd number:

Definition 1. An integer n is odd if it has the form $n=2 k+1$ for some integer k.
Notice how I have typset the word we are defining ('odd') to emphasize it.
Use the theorem environment to typeset a nicely stated theorem which says what the parity of a sum of two odd numbers will be. Hint: check your statement with me.
(e) Use the proof environment to typeset a proof of your theorem. Hint: check your proof with me.
(f) Fill in the third column of this truth table for $P \wedge Q$ (this is the symbolic way to write ' P and Q '):

P	Q	$P \wedge Q$
T	T	
T	F	
F	T	
F	F	

In other words, for the first row, if P is true, and Q is true, is it true or false that ' P and Q '?
(g) Compute a few of the sums in the following sequence:

$$
1,1+3,1+3+5,1+3+5+7,1+3+5+7+9, \ldots
$$

Do you see a pattern? Write a formula expressing the pattern you found.
(h) Thinking back to the first-day activity, can you typset a conjecture you made about the edges, vertices and faces of polyhedra?

