Example Combinatorial Proofs

October 28, 2016

Theorem 1. For all $n \ge k \ge 0$,

$$\binom{n}{k} = \binom{n}{n-k}$$

Illustration: Subsets of size 2 from $S = \{a, b, c, d, e\}$. (k = 2, n = 5)

Subset	k elements chosen	n-k elements not chosen
$\{a,b\}$	a,b	c,d,e
${a,c}$	a,c	b,d,e
$\{a,d\}$	a,d	b,c,e
$\{a,e\}$	a,e	b,c,d
${b,c}$	$^{\mathrm{b,c}}$	a,d,e
${b,d}$	$^{\mathrm{b,d}}$	a,c,e
${b,e}$	b,e	a,c,d
$\{c,d\}$	$^{\rm c,d}$	a,b,e
$\{c,e\}$	c,e	a,b,d
$\{d,e\}$	d,e	$^{\mathrm{a,b,c}}$

Proof. We will show that both sides of the equation count the number of ways to choose a subset of size k from a set of size n.

The left hand side of the equation counts this by definition.

Now we consider the right hand side. To choose a subset of size k, we can instead choose the n - k elements to exclude from the subset. There are $\binom{n}{n-k}$ ways to do this. Therefore the right hand side also counts the desired quantity.

Theorem 2. For all $n \ge k \ge 1$,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Illustration: Subsets of size 3 from $S = \{a, b, c, d, e\}$ (k = 3, n = 5).

Subsets	Subsets containing a	Subsets not containing a
a,b,c	${a,b,c}$	
a,b,d	a,b,d	
${a,b,e}$	a,b,e	
$\{a,c,d\}$	$\{a,c,d\}$	
${a,c,e}$	$\{a,c,e\}$	
$\{a,d,e\}$	${a,d,e}$	
${b,c,d}$		$\{b,c,d\}$
${b,c,e}$		${b,c,e}$
${b,d,e}$		${b,d,e}$
${c,d,e}$		$\{c,d,e\}$
$10 = \begin{pmatrix} 5\\3 \end{pmatrix}$	$6 = \binom{4}{2}$	$4 = \binom{4}{3}$

Proof. I have broken the proof under three headings to highlight its structure.

- 1. QUESTION: We will show that both sides of the equation count the number of ways to choose a subset of size k from a set S of size n.
- 2. LEFT: The left hand side of the equation counts this by definition.
- 3. **RIGHT:** Let $s \in S$ be a fixed element. We will show that the right hand side counts the desired quantity by conditioning on whether s is in the subset.

First, we will count how many subsets of size k include s. Since such a subset includes s, there are k - 1 other elements in the subset, which must be chosen from the remaining n - 1 elements of S. Therefore there are $\binom{n-1}{k-1}$ such subsets.

Second, we will count how many subsets of size k do not include s. Since the subset does not include s, all of its k elements are chosen from the remaining n-1 elements of S. Therefore there are $\binom{n-1}{k}$ such subsets.

Since any subset of size k either includes s or does not (but not both), the total number of subsets is the sum of the counts in the two cases.