The game of SET and its geometric generalizations Celebration of the Mind

Jonathan Wise
University of Colorado, Boulder

October 21, 2015

Each card has four characteristics:

Each card has four characteristics:

number

Each card has four characteristics:

number
shading

Each card has four characteristics:

number
shading
color

Each card has four characteristics:

number
shading
color
shape

Each card has four characteristics:

number
shading
color
shape

Three possibilities for each of four characteristics gives a total of $3 \times 3 \times 3 \times 3=81$ cards.

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

A SET:

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

A SET:

The cards have different numbers, the same shading, different colors, and different shapes.

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

Not a SET:

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

Not a SET:

The cards have different numbers, different colors, and the same shape. But the first two cards have the same shading while the third is different.

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

Is this a SET?

A SET is a collection of 3 cards such that in each characteristic all 3 cards are either the same or different.

Is this a SET?

Yes! The cards have different numbers, different shading, different colors, and different shapes.

How many SETs are there?

How many SETs are there?

There are 81 possibilities for the first card...

81

How many SETs are there?

There are 81 possibilities for the first card... There are 80 possibilities for the second card...

$$
81 \times 80
$$

The last card in a SET is determined by the others

Suppose we start with any two cards:

The last card in a SET is determined by the others

Suppose we start with any two cards:

To make a SET, the third card must have:
number 2

The last card in a SET is determined by the others

Suppose we start with any two cards:

To make a SET, the third card must have:
number 2
color green

The last card in a SET is determined by the others

Suppose we start with any two cards:

To make a SET, the third card must have:
number 2
color green
shading solid

The last card in a SET is determined by the others

Suppose we start with any two cards:

To make a SET, the third card must have:
number 2
color green
shading solid
shape squiggle

The last card in a SET is determined by the others

Suppose we start with any two cards:

To make a SET, the third card must have:
number 2
color green
shading solid
shape squiggle

The last card in a SET is determined by the others

Suppose we start with any two cards:

If the first two cards are the same in some characteristic, then the third card is also the same in that characteristic.

The last card in a SET is determined by the others

Suppose we start with any two cards:

If the first two cards are the same in some characteristic, then the third card is also the same in that characteristic.

If the first two cards are different in some characteristic, then the third card will have the only remaining possibility for that characteristic.

How many SETs are there?

There are 81 possibilities for the first card... There are 80 possibilities for the second card... The third card is determined by the first two.

$$
81 \times 80 \times 1
$$

How many SETs are there?

There are 81 possibilities for the first card...
There are 80 possibilities for the second card...
The third card is determined by the first two.
But there are 6 different ways we could have chosen to order the cards.

$$
\frac{81 \times 80}{6}
$$

How many SETs are there?

There are 81 possibilities for the first card...
There are 80 possibilities for the second card...
The third card is determined by the first two.
But there are 6 different ways we could have chosen to order the cards.

$$
\frac{81 \times 80}{6}=1080
$$

An unusual coincidence...

SET
For every 2 distinct cards there is a unique SET containing them

An unusual coincidence...

SET
For every 2 distinct cards there is a unique SET containing them

Geometry
For every 2 distinct points there is a unique line containing them

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have

3 cards—ordinary sets

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have
1 card-the degenerate case
3 cards—ordinary sets

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have
1 card-the degenerate case
3 cards—ordinary sets

81 cards-the whole deck!

Building a superset:

Start with an ordinary SET:

Building a superset:

Add one more card:

Building a superset:

Then we'll need to complete some SETs:

Building a superset:

Then we'll need to complete some SETs:

Building a superset:

Then we'll need to complete some SETs:

Building a superset:

Then we'll need to complete some SETs:

Building a superset:

But we still don't have a supersET:

Building a superset:

At last!

Building a superset:

But there is still a lot of checking to make sure...

Building a superset:

But there is still a lot of checking to make sure...

Building a superset:

But there is still a lot of checking to make sure...

Building a superset:

But there is still a lot of checking to make sure...

Building a superset:

But there is still a lot of checking to make sure...

Building a superset:

But there is still a lot of checking to make sure...

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have
1 card-the degenerate case
3 cards—ordinary sets
9 cards

81 cards-the whole deck!

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have
1 card-the degenerate case
3 cards—ordinary sets
9 cards
27 cards
81 cards-the whole deck!

Supersets

A (nonempty) collection of cards \mathcal{S} is called a supersET if, for every pair of distinct cards P and Q in \mathcal{S}, the unique set containing P and Q is also in \mathcal{S}.

Supersets can have

$$
\begin{aligned}
& 1=3^{0} \\
& 3=3^{1} \\
& 9=3^{2} \\
& 27=3^{3} \\
& 81=3^{4}
\end{aligned}
$$

called 0-sETs
called 1-SETs
called 2-SETs
called 3-SETs
called 4-SETs

An unusual coincidence...

SET
For every 2 distinct cards there is a unique SET containing them

Geometry
For every 2 distinct points there is a unique line containing them

An unusual coincidence...

SET
For every 2 distinct cards there is a unique 1 -SET containing them

Geometry
For every 2 distinct points there is a unique line containing them

An unusualer coincidence...

SET
For every 2 distinct cards there is a unique 1 -SET containing them

For every 3 cards not contained in a 1-SET there is a unique 2-SET containing them

Geometry
For every 2 distinct points there is a unique line containing them

For every 3 points not contained in a line there is a unique plane containing them

An unusualer coincidence...

SET
For every 2 distinct cards there is a unique 1 -SET containing them

For every 3 cards not contained in a 1-SET there is a unique 2-SET containing them

For every 4 cards not contained in a 2-SET there is a unique 3-SET containing them

Geometry
For every 2 distinct points there is a unique line containing them

For every 3 points not contained in a line there is a unique plane containing them

For every 4 points not contained in a plane there is a unique 3 -plane containing them

An unusualer coincidence...

SET
For every 2 cards not contained in a 0 -SET there is a unique 1 -SET containing them

For every 3 cards not contained in a 1 -SET there is a unique 2 -SET containing them

For every 4 cards not contained in a 2-SET there is a unique 3-SET containing them

Geometry
For every 2 points not contained in a 0 -plane there is a unique line containing them

For every 3 points not contained in a 1-plane there is a unique 2-plane containing them

For every 4 points not contained in a 2 -plane there is a unique 3 -plane containing them

An unusualer coincidence...

SET
For every 2 cards not contained in a 0 -SET there is a unique 1 -SET containing them

For every 3 cards not contained in a 1 -SET there is a unique 2 -SET containing them

For every 4 cards not contained in a 2-SET there is a unique 3-SET containing them

Geometry
For every 2 points not contained in a 0 -plane there is a unique line containing them

For every 3 points not contained in a 1-plane there is a unique 2-plane containing them

For every 4 points not contained in a 2 -plane there is a unique 3 -plane containing them
and so on...

An unusualer coincidence...

SET
For every $n+1$ cards not contained in an $(n-1)$-SET there is a unique n-SET containing them

Geometry
Fr every $n+1$ points not contained in an $(n-1)$-plane there is a unique n-plane containing them

The game of CAP

Can you find 4 cards that lie in the same 2-SET?

The game of CAP

Can you find 4 cards that lie in the same 2-SET?

One way is to find a 1 -SET and then add any card to it.

The game of CAP

Can you find 4 cards that lie in the same 2-SET?

One way is to find a 1 -SET and then add any card to it. But that would be too easy...

The game of CAP
Can you find 4 cards in the same 2 -SET that don't contain a 1 -SET?

The game of CAP

Can you find 4 cards in the same 2 -SET that don't contain a 1 -SET?

Here is one.

The game of CAP

Can you find 4 cards in the same 2 -SET that don't contain a 1 -SET?

And here is another.

Finding CAPs

How did I find these?

Finding CAPs

How did I find these? I had help from ghosts:

Finding CAPs

How did I find these? I had help from ghosts:

Finding CAPs

How did I find these? I had help from ghosts:

Finding CAPs

How did I find these? I had help from ghosts:

Geometry again

To understand why this works, it is helpful to think about the geometric analogy. One way to produce 4 points that lie on a plane, but no 3 of which lie on a line is to start with two lines that intersect at a point.

Geometry again

To understand why this works, it is helpful to think about the geometric analogy. One way to produce 4 points that lie on a plane, but no 3 of which lie on a line is to start with two lines that intersect at a point.

Geometry again

To understand why this works, it is helpful to think about the geometric analogy. One way to produce 4 points that lie on a plane, but no 3 of which lie on a line is to start with two lines that intersect at a point.

Then pick a pair of points on each line, making sure not to pick the intersection point.

Geometry again

To understand why this works, it is helpful to think about the geometric analogy. One way to produce 4 points that lie on a plane, but no 3 of which lie on a line is to start with two lines that intersect at a point.

Now forget about the lines and you have 4 coplanar points, no 3 of which lie on a line!

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

We could draw lines connecting them in pairs.

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

One of those pairs of lines might be parallel.

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

One of those pairs of lines might be parallel. Or even two.

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

But not all three!

But does every CAP arise this way?

Geometry suggests the answer is yes. Suppose we had four points on a plane:

But not all three! There is always at least one pair of non-parallel lines in the plane that contains all four points.

Is this just an analogy?

Or is something deeper going on?

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3.

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3.
one $=1$, two $=2$, three $=3$

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3.
one $=1$, two $=2$, three $=3$
empty $=1$, hatched $=2$, solid $=3$

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3.

$$
\begin{aligned}
& \text { one }=1 \text {, two }=2 \text {, three }=3 \\
& \text { empty }=1 \text {, hatched }=2 \text {, solid }=3 \\
& \text { red }=1 \text {, green }=2 \text {, purple }=3
\end{aligned}
$$

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3.
one $=1$, two $=2$, three $=3$
empty $=1$, hatched $=2$, solid $=3$
red $=1$, green $=2$, purple $=3$
oval $=1$, diamond $=2$, squiggle $=3$

Cards as vectors

Represent characteristics using numbers instead of pictures. Each card can be represented as a quadruple whose entries are 1, 2, and 3. three $=3$, empty $=1$, green $=2$, squiggle $=3$

How to spot SETs numerically

$A=(1,2,3,1) \quad B=(2,2,1,1)$
$C=(3,2,2,1)$

How to spot SETs numerically

$$
A=(1,2,3,1) \quad B=(2,2,1,1) \quad C=(3,2,2,1)
$$

How to spot SETs numerically

$$
\begin{gathered}
A=(1,2,3,1) \quad B=(2,2,1,1) \quad C=(3,2 \\
B-A=(1,0,-2,0) \equiv(1,0,1,0) \bmod 3 \\
C-B=(1,0,1,0)
\end{gathered}
$$

The points A, B, and C form a sET if and only if $C-B \equiv B-A \bmod 3$.

How to spot points on a line

$$
A=(-2,-1) \quad B=(0,1) \quad C=(1,2)
$$

How to spot points on a line

$$
A=(-2,-1) \quad B=(0,1) \quad C=(1,2)
$$

$$
\begin{aligned}
& B-A=(2,2) \\
& C-B=(1,1)
\end{aligned}
$$

How to spot points on a line

$$
A=(-2,-1) \quad B=(0,1) \quad C=(1,2)
$$

$$
\begin{aligned}
& B-A=(2,2)=2(1,1) \\
& C-B=(1,1)
\end{aligned}
$$

How to spot points on a line

$$
A=(-2,-1) \quad B=(0,1) \quad C=(1,2)
$$

$$
\begin{aligned}
& B-A=(2,2)=2(1,1) \\
& C-B=(1,1)
\end{aligned}
$$

The points A, B, and C lie on the same line if and only if $C-B=t(B-A)$ for some multiple t.

Fields

A field is a setting where one can add, subtract, multiply, and divide by nonzero elements. The rational numbers (\mathbf{Q}), the real numbers (\mathbf{R}), and the complex numbers (\mathbf{C}) are all fields. But there are many more examples...

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

Addition, subtraction, and multiplication all work by performing the corresponding operations with ordinary numbers, and then taking the remainder by 3 .

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

Addition, subtraction, and multiplication all work by performing the corresponding operations with ordinary numbers, and then taking the remainder by 3 .

$$
\overline{1}+\overline{2}=\overline{3}=\overline{0}
$$

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

Addition, subtraction, and multiplication all work by performing the corresponding operations with ordinary numbers, and then taking the remainder by 3 .

$$
\begin{aligned}
& \overline{1}+\overline{2}=\overline{3}=\overline{0} \\
& \overline{2}+\overline{2}=\overline{4}=\overline{1}
\end{aligned}
$$

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

Addition, subtraction, and multiplication all work by performing the corresponding operations with ordinary numbers, and then taking the remainder by 3 .

$$
\begin{aligned}
& \overline{1}+\overline{2}=\overline{3}=\overline{0} \\
& \overline{2}+\overline{2}=\overline{4}=\overline{1} \\
& \overline{2} \times \overline{2}=\overline{4}=\overline{1}
\end{aligned}
$$

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

It works just like adding times on a clock.

The field with 3 elements

F_{3} consists of 3 elements: $\overline{0}, \overline{1}$, and $\overline{2}$.

It works just like adding times on a clock. Or it would, if there were 6 hours in a day.

SETs are lines!

Here is the equation for a line:

$$
C-B=t(B-A)
$$

SETs are lines!

Here is the equation for a line in \mathbf{F}_{3} :

$$
C-B= \pm(B-A)
$$

The only nonzero elements of \mathbf{F}_{3} are $\overline{1}$ and $\overline{2}=-\overline{1}$ so $t= \pm 1$.

SEts are lines!

Here is the equation for a line in \mathbf{F}_{3} :

$$
C-B=B-A
$$

The only nonzero elements of \mathbf{F}_{3} are $\overline{1}$ and $\overline{2}=-\overline{1}$ so $t= \pm 1$.
But t can't be -1 since if it were then $C=A$.

SETs are lines!

Here is the equation for a line in \mathbf{F}_{3} :

$$
C-B \equiv B-A \bmod 3
$$

The only nonzero elements of \mathbf{F}_{3} are $\overline{1}$ and $\overline{2}=-\overline{1}$ so $t= \pm 1$.
But t can't be -1 since if it were then $C=A$.
And equality in \mathbf{F}_{3} is the same thing as congruence modulo 3.

SETs are lines!

Here is the equation for a line in \mathbf{F}_{3} :

$$
C-B \equiv B-A \bmod 3
$$

The only nonzero elements of \mathbf{F}_{3} are $\overline{1}$ and $\overline{2}=-\overline{1}$ so $t= \pm 1$.
But t can't be -1 since if it were then $C=A$.
And equality in \mathbf{F}_{3} is the same thing as congruence modulo 3.
The equation of a line is the same as the equation of a SET!

The game of SET geometrically

Find 3 distinct collinear points in $\mathbf{F}_{3}{ }^{4}$.

The game of CAP geometrically

Find 4 coplanar points in $\mathbf{F}_{3}{ }^{4}$ that are not collinear.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5 ?

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5 ?

Because it is impossible.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5 ?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$(0,2)$	$(1,2)$	$(2,2)$
$(0,1)$	$(1,1)$	$(2,1)$
$(0,0)$	$(1,0)$	$(2,0)$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:

$$
\begin{array}{lll}
(0,2) & (1,2) & (2,2) \\
(0,1) & (1,1) & (2,1) \\
(0,0) & (1,0) & (2,0)
\end{array}
$$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

Could we make CAP harder? Instead of looking for 4 coplanar cards that don't contain a line, why not look for 5?

Because it is impossible. Up to a change of coordinates, any CAP looks like this:
$(0,2) \quad(1,2) \quad(2,2)$
$(0,1) \quad(1,1) \quad(2,1)$
$(0,0) \quad(1,0) \quad(2,0)$

Try adding a fifth card to this. Any way you try will produce a line.

Affine caps

An affine cap is a subset of $\mathbf{F}_{3}{ }^{n}$ that does not contain any lines. We just proved that the largest affine cap in $\mathbf{F}_{3}{ }^{2}$ has size 4.

Affine caps

An affine cap is a subset of $\mathbf{F}_{3}{ }^{n}$ that does not contain any lines. We just proved that the largest affine cap in $\mathbf{F}_{3}{ }^{2}$ has size 4.

The size a_{n} of the largest affine cap in $\mathbf{F}^{n}{ }^{n}$ (from Davis and Maclagan):

n	a_{n}
1	2
2	4
3	9
4	20
5	45
6	$112 \leq a_{6} \leq 114$
7	$?$
\vdots	\vdots

