LECTURE 9: MOVING FRAMES IN THE
NONHOMOGENOUS CASE: FRAME BUNDLES

1. INTRODUCTION

Until now we have been considering homogenous spaces G/H where G is a
Lie group and H is a closed subgroup. The natural projection map

m:G— G/H

leads to a description of G as the frame bundle of G/H, and the set of frames
over a given point « € G/H is isomorphic to H. The fundamental property
of homogenous spaces is that for any two points z,y € G/H and any frames
F,, F, based at « and y respectively, there is a symmetry of G/H that takes
z to y and F, to Fy,.

However, there are many interesting spaces that are not homogenous. In this
lecture we will consider the case of a Riemannian manifold M. In general
M is not a homogenous space, but the method of moving frames can still
be applied to the study of submanifolds of M.

2. FRAMES AND CONNECTIONS ON RIEMANNIAN MANIFOLDS

Let M be an n-dimensional Riemannian manifold. Then M is a differentiable
manifold with a smoothly varying inner product (, ), on each tangent space
T.M. An orthonormal frame at the point x € M is an orthonormal basis
{e1,...,en} of the tangent space T, M. The set of orthonormal frames at
each point is isomorphic to the Lie group O(n), and the set of orthonormal
frames on M forms a principal bundle over M with fiber O(n), called the
frame bundle of M and denoted F(M). An orthonormal frame on the open
set U C M is a choice of an orthonormal frame {e;(z),...,en(x)} at each
point & € U such that each e; is a smooth local section of the tangent bundle
T'M; any such frame is a smooth section of the frame bundle F(M).

What changes when M is not a homogenous space? First of all, while each
fiber of the frame bundle is isomorphic to O(n) and so has a group structure,
there is no group structure on the entire frame bundle F(M). Moreover,
given an orthonormal frame {e;(z),... ,e,(x)} on an open set U C M, there
is no natural way of thinking of the frame vectors e;(z) as functions from
M to a fixed vector space. Each e;(z) takes values in the vector space T, M,
and while this space is isomorphic to E", there is no canonical isomorphism
T,M = E" and hence no natural way of regarding the e;(z) as E"-valued
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functions. Instead we must regard them as sections of the vector bundle
TM.

This raises the question of how to differentiate the e;(z). The exterior
derivative d is defined for functions and differential forms that take values
in a fixed vector space, but not for sections of vector bundles. In order to
differentiate sections of vector bundles we need the notion of a connection
on the vector bundle T'M.

Definition: Let I'(T'M) denote the space of smooth local sections of T'M.
An affine connection V on T'M is a map

V : I(TM) x T(TM) — D(TM),
with V(w,v) denoted Vv, that satisfies
L. Viwi4gws? = [V, v + gVi,v

2. Vw(vl + 1)2) = Vuwv1 + Ve
3. Vu(fv) =w(f)v+ fVyv

for v, v;,w,w; € T'(T'M) and f, g smooth real-valued functions on M.

By the linearity properties, a connection V is completely determined by
its action on any given frame {ej,...,e,} on M. Associated to V and
to the frame are scalar-valued 1-forms w}, 1 <i4,5 <non M, called the
connection forms, which are uniquely determined by the condition that for
any w € T, M,

n
Ve = Zej wg (w).
j=1

We can think of the connection V as defining a map from vector fields
v € I(TM) to TM-valued 1-forms by letting Vv be the 1-form defined by
(Vo) (w) = Vyo.

Then we have
n
_ o
Ve; = g ej wy
=1

and by the linearity properties, if v = v'e;, then

n n

Vo = Z(ei dv’ —i—viZej wf)

i=1 j=1
n n
= Z ei(dv’ + Z vjwj-).
i=1 j=1

V is the analog of the exterior derivative d.
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A connection V is called symmetric if for any vector fields v, w € I'(T'M),
Vow — Vv = [v,w]

where [v,w] denotes the usual Lie bracket of vector fields. A connection
V is said to be compatible with the metric on M if for any vector fields
v,we '(TM),

d{v,w) = (Vov,w) + (v, Vw).

Theorem: (Levi-Civita) Given a Riemannian manifold M, there exists a
unique connection V on T'M which is both symmetric and compatible with
the metric. This connection is called the Levi-Civita connection on T'M.

From now on we will assume that V is the Levi-Civita connection on T'M.

Now suppose that {ei,...,e,} is an orthonormal frame on an open set in
M, and let {w;-, 1 <i,7 < n} be the connection forms associated to the
frame. Because the connection is compatible with the metric, we have

0= d(ei, €j>
= (Ve;, ;) + (ei, Vej)

n n
= <Z eszka ej> + (ei7 Zek w?)
k=1 k=1

] i
= w; +wj.

J

Therefore we have w; = —wj, just as in the homogenous case.

In addition to the connection forms wé-,
defined by the equation

n
dr = E e;wh.
i=1

The forms {w?, w;} form a basis for the space of 1-forms on the frame bundle
F(M). In order to compute the structure equations for these forms, we will
first need to differentiate the equation

(2.1) dr = Zeiwi.
i=1

we also have the dual forms W'

This requires some care. Since all the terms in these equations are 1-forms
that take values in T M, we must use the connection V to differentiate
them. First consider the left-hand side of equation (2.1). In terms of any
local coordinate system (x!,... ™) on M we have

dr = Zn; ail. dx’.
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Because V is symmetric and [-2;, 2] = 0 we have

Z
== ZZVa/amg IL‘] /\dl’

=1 j=1
= [Vojoui (32) = Vojow (50 da* A da?

1<j

=0.
Thus differentiating equation (2.1) yields

Ozt Oxd

0= Z[Vei AW+ e; dw']

i=1

n n
= Z[Z ejw! Aw' + e; dw']

i=1 j=1
n n

= Zei (dwi + Zw; /\wj).
i=1 j=1

Therefore,

n
(2.2) dw' = — Zw; Awl.
=1

Next we want to compute the exterior derivatives of the w; Differentiating
equation (2.2) yields

n

n
Oz—Z(dwéij+Zw§AwiAwk)

j=1 k=1
n . n . .
(2.3) = —Z(dw;v—i—Zw}C/\wf)/\w].
j=1 k=1

By a higher-degree version of Cartan’s lemma, there must exist 1-forms 04;'- i
such that

dw +Zwk/\w Zajk/\w
k=1

Furthermore, I claim that we can choose the a;k so that aék = —agk. It
follows from the skew-symmetry of the wi- that

n
Z gk"‘%k AW =0.
k=1
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By Cartan’s lemma, this implies that
oy, + O‘?k Z uw

where T e = T]U€ Moreover, T e = leé Now the aék’s are only deter-
mined up to transformations of the form

k"‘Z kéw

with U;M = U;ék. So by changing the ajk if necessary, we can assume that
T;u =0, and so aék =—aj,.

Now since the forms {w?, wi} form a basis for the 1—f0rms on the frame

bundle F(M), there must exist functions R’ ikl S ikm = — Sk such that
n
a;k:_z k’lw + Z jk’m
=1 £,m=1

Substituting these equations into (2.3) yields

Z Mu} AW AW+ Z kawgn/\wk/\wj:(].
7,k l=1 7,k,l,m=1

But

because S}im is skew-symmetric in ¢ and j, this implies that the 5’ ik, T0USY
all be zero. Thus we have

k=1

The vanishing of the terms involving wy® implies that S;i = Sk]m.

Without loss of generality we can assume that R;M = *R;‘ek; then the

functions R;ﬂ are uniquely determined. They form the components of a
tensor, called the Riemannian curvature tensor of the metric on M. In
addition to the symmetries

Rl = —R},, Rl = —Riy,
equation (2.3) implies that

This is called the Bianchi identity. Together with the other symmetries, it
implies that

i _ pk
R = Ryj.
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3. SURFACES IN 3-DIMENSIONAL RIEMANNIAN MANIFOLDS

Suppose that M is a 3-dimensional Riemannian manifold, and let  : ¥ — M
be an embedded surface in M. How much of the analysis from the case when
M = E? will remain valid in this more general setting?

We can still choose an orthonormal frame {e;(x), e2(z), e3(x)} for T, M at
each point x € ¥ such that ez is orthogonal to the tangent plane T;.>. For
such a frame, e; and ey form a basis for the tangent plane 7,3, and the
same reasoning as before implies that w?® = 0 and that w', w? form a basis
for the 1-forms on . The metric of M naturally induces a metric on X, and
the first fundamental form of this metric is

I = (wh)?+ (w2
As in the Euclidean case, differentiating the equation w® = 0 and applying
Cartan’s Lemma implies that there exist functions hq1, h12, hoo on ¥ such

that
wi” . h11 h12 wl
wg’ h12 h22 w2 )

The second fundamental form of ¥ is given by

IT = w3} w' + Wi w? = hyy(Wh)? + 2h1aw' W? + hga(W?)2.

As in the Euclidean case, the first and second fundamental forms are in-
variants of the surface, so if two surfaces have different first and second
fundamental forms then they cannot be equivalent via a symmetry of M.
However, in general there is no analog of Important Lemmas 1 and 2 that
allows us to decide when we have a complete set of invariants for a surface or
when two surfaces are equivalent via a symmetry of M. In particular, given
arbitrary quadratic forms I and II on an abstract surface X, checking that
the structure equations are satisfied is not sufficient to guarantee that there
exists an immersion x : X — M whose first and second fundamental forms
are I and /1. The best we can do is to arbitrarily specify one quadratic form;
for instance, we have the following isometric embedding theorem which is
due independently to Cartan and Janet.

Theorem: Let M be a 3-dimensional real analytic Riemannian manifold,
and let X be a surface with a prescribed real analytic metric I. Then locally
there exists an embedding x : > — M for which the metric on ¥ induced
from M agrees with 1.
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Exercises

1. Let M be a Riemannian manifold, and let {ej,... ,e,} be a frame on an
open set in M with associated dual forms wh, ... ,w". Show directly that
there exist unique 1-forms wj» = —wf such that

n
dw' = — E w}/\wj.
j=1

(Hint: suppose that there are two such sets of 1-forms wé, JJ; and use Car-

tan’s lemma. Then use the skew-symmetry of the w;'-’s to show that in fact

w§ = @3) These are the connection forms associated to the Levi-Civita

connection on M, and this argument shows that the Levi-Civita connection
is uniquely determined.

2. Let M be the standard 3-sphere S2. From Lecture 2, Exercise 6 it follows
that the structure equations of the dual and connection forms on S® are

dw' = —wiAw? + WP AW

dw? = wi Aw? 4+ w3 AW

dw’ = —wd Aw! — w3 A W?

dwy = W Awd 4+ W' AW?

dw? = W3 Aws 4+ w3 Aw!

dw3 = —wd AN ws 4+ W3 A W2
Let  : ¥ — S2 be an embedding. The induced metric on ¥ has Gauss
curvature K given by the equation

dwt = Kw! AW
Show that
K = hythgy — h3, 4+ 1

where the h;; are the coefficients of the second fundamental form. Why is
this equation different than in the Euclidean case?



