
LECTURE 9: MOVING FRAMES IN THE
NONHOMOGENOUS CASE: FRAME BUNDLES

1. Introduction

Until now we have been considering homogenous spaces G/H where G is a
Lie group and H is a closed subgroup. The natural projection map

π : G → G/H

leads to a description of G as the frame bundle of G/H, and the set of frames
over a given point x ∈ G/H is isomorphic to H. The fundamental property
of homogenous spaces is that for any two points x, y ∈ G/H and any frames
Fx, Fy based at x and y respectively, there is a symmetry of G/H that takes
x to y and Fx to Fy.

However, there are many interesting spaces that are not homogenous. In this
lecture we will consider the case of a Riemannian manifold M . In general
M is not a homogenous space, but the method of moving frames can still
be applied to the study of submanifolds of M .

2. Frames and connections on Riemannian manifolds

Let M be an n-dimensional Riemannian manifold. Then M is a differentiable
manifold with a smoothly varying inner product 〈, 〉x on each tangent space
TxM . An orthonormal frame at the point x ∈ M is an orthonormal basis
{e1, . . . , en} of the tangent space TxM . The set of orthonormal frames at
each point is isomorphic to the Lie group O(n), and the set of orthonormal
frames on M forms a principal bundle over M with fiber O(n), called the
frame bundle of M and denoted F(M). An orthonormal frame on the open
set U ⊂ M is a choice of an orthonormal frame {e1(x), . . . , en(x)} at each
point x ∈ U such that each ei is a smooth local section of the tangent bundle
TM ; any such frame is a smooth section of the frame bundle F(M).

What changes when M is not a homogenous space? First of all, while each
fiber of the frame bundle is isomorphic to O(n) and so has a group structure,
there is no group structure on the entire frame bundle F(M). Moreover,
given an orthonormal frame {e1(x), . . . , en(x)} on an open set U ⊂ M , there
is no natural way of thinking of the frame vectors ei(x) as functions from
M to a fixed vector space. Each ei(x) takes values in the vector space TxM ,
and while this space is isomorphic to En, there is no canonical isomorphism
TxM ∼= En and hence no natural way of regarding the ei(x) as En-valued
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functions. Instead we must regard them as sections of the vector bundle
TM .

This raises the question of how to differentiate the ei(x). The exterior
derivative d is defined for functions and differential forms that take values
in a fixed vector space, but not for sections of vector bundles. In order to
differentiate sections of vector bundles we need the notion of a connection
on the vector bundle TM .

Definition: Let Γ(TM) denote the space of smooth local sections of TM .
An affine connection ∇ on TM is a map

∇ : Γ(TM)× Γ(TM) → Γ(TM),

with ∇(w, v) denoted ∇wv, that satisfies

1. ∇fw1+gw2v = f∇w1v + g∇w2v
2. ∇w(v1 + v2) = ∇wv1 +∇wv2

3. ∇w(fv) = w(f)v + f∇wv

for v, vi, w, wi ∈ Γ(TM) and f, g smooth real-valued functions on M .

By the linearity properties, a connection ∇ is completely determined by
its action on any given frame {e1, . . . , en} on M . Associated to ∇ and
to the frame are scalar-valued 1-forms ωi

j , 1 ≤ i, j ≤ n on M , called the
connection forms, which are uniquely determined by the condition that for
any w ∈ TxM ,

∇wei =
n∑

j=1

ej ωj
i (w).

We can think of the connection ∇ as defining a map from vector fields
v ∈ Γ(TM) to TM -valued 1-forms by letting ∇v be the 1-form defined by

(∇v)(w) = ∇wv.

Then we have

∇ei =
n∑

j=1

ej ωj
i

and by the linearity properties, if v =
∑

viei, then

∇v =
n∑

i=1

(ei dvi + vi
n∑

j=1

ej ωj
i )

=
n∑

i=1

ei(dvi +
n∑

j=1

vjωi
j).

∇ is the analog of the exterior derivative d.
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A connection ∇ is called symmetric if for any vector fields v, w ∈ Γ(TM),

∇vw −∇wv = [v, w]

where [v, w] denotes the usual Lie bracket of vector fields. A connection
∇ is said to be compatible with the metric on M if for any vector fields
v, w ∈ Γ(TM),

d〈v, w〉 = 〈∇v, w〉+ 〈v,∇w〉.

Theorem: (Levi-Civita) Given a Riemannian manifold M , there exists a
unique connection ∇ on TM which is both symmetric and compatible with
the metric. This connection is called the Levi-Civita connection on TM .

From now on we will assume that ∇ is the Levi-Civita connection on TM .

Now suppose that {e1, . . . , en} is an orthonormal frame on an open set in
M , and let {ωi

j , 1 ≤ i, j ≤ n} be the connection forms associated to the
frame. Because the connection is compatible with the metric, we have

0 = d〈ei, ej〉
= 〈∇ei, ej〉+ 〈ei, ∇ej〉

= 〈
n∑

k=1

ek ωk
i , ej〉+ 〈ei,

n∑
k=1

ek ωk
j 〉

= ωj
i + ωi

j .

Therefore we have ωj
i = −ωi

j , just as in the homogenous case.

In addition to the connection forms ωi
j , we also have the dual forms ωi

defined by the equation

dx =
n∑

i=1

ei ω
i.

The forms {ωi, ωi
j} form a basis for the space of 1-forms on the frame bundle

F(M). In order to compute the structure equations for these forms, we will
first need to differentiate the equation

dx =
n∑

i=1

ei ω
i.(2.1)

This requires some care. Since all the terms in these equations are 1-forms
that take values in TM , we must use the connection ∇ to differentiate
them. First consider the left-hand side of equation (2.1). In terms of any
local coordinate system (x1, . . . , xn) on M we have

dx =
n∑

i=1

∂

∂xi
dxi.
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Because ∇ is symmetric and [ ∂
∂xi ,

∂
∂xj ] = 0 we have

∇(dx) =
n∑

i=1

∇( ∂
∂xi ) ∧ dxi

=
n∑

i=1

n∑
j=1

∇∂/∂xj ( ∂
∂xi ) dxj ∧ dxi

=
∑
i<j

[∇∂/∂xi( ∂
∂xj )−∇∂/∂xj ( ∂

∂xi )] dxi ∧ dxj

= 0.

Thus differentiating equation (2.1) yields

0 =
n∑

i=1

[∇ei ∧ ωi + ei dωi]

=
n∑

i=1

[
n∑

j=1

ej ωj
i ∧ ωi + ei dωi]

=
n∑

i=1

ei

(
dωi +

n∑
j=1

ωi
j ∧ ωj

)
.

Therefore,

dωi = −
n∑

j=1

ωi
j ∧ ωj .(2.2)

Next we want to compute the exterior derivatives of the ωi
j . Differentiating

equation (2.2) yields

0 = −
n∑

j=1

(dωi
j ∧ ωj +

n∑
k=1

ωi
j ∧ ωj

k ∧ ωk)

= −
n∑

j=1

(dωi
j +

n∑
k=1

ωi
k ∧ ωk

j ) ∧ ωj .(2.3)

By a higher-degree version of Cartan’s lemma, there must exist 1-forms αi
jk

such that

dωi
j +

n∑
k=1

ωi
k ∧ ωk

j =
n∑

k=1

αi
jk ∧ ωk.

Furthermore, I claim that we can choose the αi
jk so that αi

jk = −αj
ik. It

follows from the skew-symmetry of the ωi
j that

n∑
k=1

(αi
jk + αj

ik) ∧ ωk = 0.
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By Cartan’s lemma, this implies that

αi
jk + αj

ik =
n∑

`=1

T i
jk`ω

`

where T i
jk` = T i

j`k. Moreover, T i
jk` = T j

ik`. Now the αi
jk’s are only deter-

mined up to transformations of the form

α̃i
jk = αi

jk +
n∑

`=1

U i
jk`ω

`

with U i
jk` = U i

j`k. So by changing the αi
jk if necessary, we can assume that

T i
jk` ≡ 0, and so αi

jk = −αj
ik.

Now since the forms {ωi, ωi
j} form a basis for the 1-forms on the frame

bundle F(M), there must exist functions Ri
jkl, Si`

jkm = −Sim
jk` such that

αi
jk = −

n∑
`=1

Ri
jkl ω

` +
n∑

`,m=1

Si`
jkm ωm

` .

Substituting these equations into (2.3) yields
n∑

j,k,`=1

Ri
jk` ωk ∧ ω` ∧ ωj +

n∑
j,k,`,m=1

Si`
jkm ωm

` ∧ ωk ∧ ωj = 0.

The vanishing of the terms involving ωm
` implies that Si`

jkm = Si`
kjm. But

because Si`
jkm is skew-symmetric in i and j, this implies that the Si`

jkm must
all be zero. Thus we have

dωi
j = −

n∑
k=1

ωi
k ∧ ωk

j +
n∑

k,`=1

Ri
jklω

k ∧ ω`.(2.4)

Without loss of generality we can assume that Ri
jk` = −Ri

j`k; then the
functions Ri

jk` are uniquely determined. They form the components of a
tensor, called the Riemannian curvature tensor of the metric on M . In
addition to the symmetries

Ri
jk` = −Rj

ik`, Ri
jk` = −Ri

j`k

equation (2.3) implies that

Ri
jk` + Ri

k`j + Ri
`ji = 0.

This is called the Bianchi identity. Together with the other symmetries, it
implies that

Ri
jk` = Rk

`ij .
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3. Surfaces in 3-dimensional Riemannian manifolds

Suppose that M is a 3-dimensional Riemannian manifold, and let x : Σ → M
be an embedded surface in M . How much of the analysis from the case when
M = E3 will remain valid in this more general setting?

We can still choose an orthonormal frame {e1(x), e2(x), e3(x)} for TxM at
each point x ∈ Σ such that e3 is orthogonal to the tangent plane TxΣ. For
such a frame, e1 and e2 form a basis for the tangent plane TxΣ, and the
same reasoning as before implies that ω3 = 0 and that ω1, ω2 form a basis
for the 1-forms on Σ. The metric of M naturally induces a metric on Σ, and
the first fundamental form of this metric is

I = (ω1)2 + (ω2)2.

As in the Euclidean case, differentiating the equation ω3 = 0 and applying
Cartan’s Lemma implies that there exist functions h11, h12, h22 on Σ such
that [

ω3
1

ω3
2

]
=

[
h11 h12

h12 h22

] [
ω1

ω2

]
.

The second fundamental form of Σ is given by

II = ω3
1 ω1 + ω3

2 ω2 = h11(ω1)2 + 2h12ω
1ω2 + h22(ω2)2.

As in the Euclidean case, the first and second fundamental forms are in-
variants of the surface, so if two surfaces have different first and second
fundamental forms then they cannot be equivalent via a symmetry of M .
However, in general there is no analog of Important Lemmas 1 and 2 that
allows us to decide when we have a complete set of invariants for a surface or
when two surfaces are equivalent via a symmetry of M . In particular, given
arbitrary quadratic forms I and II on an abstract surface Σ, checking that
the structure equations are satisfied is not sufficient to guarantee that there
exists an immersion x : Σ → M whose first and second fundamental forms
are I and II. The best we can do is to arbitrarily specify one quadratic form;
for instance, we have the following isometric embedding theorem which is
due independently to Cartan and Janet.

Theorem: Let M be a 3-dimensional real analytic Riemannian manifold,
and let Σ be a surface with a prescribed real analytic metric I. Then locally
there exists an embedding x : Σ → M for which the metric on Σ induced
from M agrees with I.
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Exercises

1. Let M be a Riemannian manifold, and let {e1, . . . , en} be a frame on an
open set in M with associated dual forms ω1, . . . , ωn. Show directly that
there exist unique 1-forms ωi

j = −ωj
i such that

dωi = −
n∑

j=1

ωi
j ∧ ωj .

(Hint: suppose that there are two such sets of 1-forms ωi
j , ω̄i

j and use Car-
tan’s lemma. Then use the skew-symmetry of the ωi

j ’s to show that in fact
ωi

j = ω̄i
j .) These are the connection forms associated to the Levi-Civita

connection on M , and this argument shows that the Levi-Civita connection
is uniquely determined.

2. Let M be the standard 3-sphere S3. From Lecture 2, Exercise 6 it follows
that the structure equations of the dual and connection forms on S3 are

dω1 = −ω1
2 ∧ ω2 + ω3

1 ∧ ω3

dω2 = ω1
2 ∧ ω2 + ω3

2 ∧ ω3

dω3 = −ω3
1 ∧ ω1 − ω3

2 ∧ ω2

dω1
2 = ω3

1 ∧ ω3
2 + ω1 ∧ ω2

dω3
1 = ω3

2 ∧ ω1
2 + ω3 ∧ ω1

dω3
2 = −ω3

1 ∧ ω3
2 + ω3 ∧ ω2.

Let x : Σ → S3 be an embedding. The induced metric on Σ has Gauss
curvature K given by the equation

dω1
2 = K ω1 ∧ ω2.

Show that

K = h11h22 − h2
12 + 1

where the hij are the coefficients of the second fundamental form. Why is
this equation different than in the Euclidean case?


