
LECTURE 6: PSEUDOSPHERICAL SURFACES AND
BÄCKLUND’S THEOREM

1. Line congruences

Let G1(E3) denote the Grassmanian of lines in E3. A line congruence in E3

is an immersed surface L : U → G1(E3), where U ⊂ R2 is open. The points
of the line L(u, v) are given by

L(u, v) = {y(u, v) + λw(u, v) : λ ∈ R}
for some y(u, v), w(u, v) ∈ E3 with |w(u, v)| = 1.

A parametric curve u = u(t), v = v(t) in U defines a ruled surface

X(t, λ) = y(u(t), v(t)) + λw(u(t), v(t)) = y(t) + λw(t)

belonging to the congruence. The surface is called developable if

det
[
w(t) w′(t) y′(t)

]
= 0.

This is a quadratic equation for u′(t), v′(t). If it has distinct real roots, then
the solutions of this equation define two distinct families of developable
surfaces X. In the generic case each family consists of the tangent lines to
a surface, and these two surfaces Σ, Σ̄ are called the focal surfaces of the
congruence. The congruence gives a mapping f : Σ → Σ̄ with the property
that the congruence consists of lines which are tangent to both Σ and Σ̄ and
join x ∈ Σ to x̄ = f(x) ∈ Σ̄.

2. Bäcklund’s Theorem

Definition: let L be a line congruence in E3 with focal surfaces Σ, Σ̄, and
let f : Σ → Σ̄ be the function defined above. The congruence is called
pseudospherical if

1. The distance r = |x̄− x| is a constant independent of x.
2. The angle α between the surface normals N(x), N(x̄) is a constant

independent of x.

Bäcklund’s Theorem: Suppose that L is a pseudospherical line congru-
ence in E3 with focal surfaces Σ, Σ̄. Then both Σ and Σ̄ have constant

negative Gauss curvature K = −sin2 α

r2
. (Such surfaces are called pseudo-

spherical surfaces.)
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This theorem can be proved using local coordinates on the surfaces Σ, Σ̄,
but it is a computational mess. The proof can be greatly simplified by using
the method of moving frames, because the frames can be adapted to the
geometry of the problem in a way that local coordinates cannot. Whereas
in previous lectures we have adapted our frames according to the geometry
of a single surface, here we have to consider two surfaces and geometrical
conditions relating them. We will use these considerations to choose frames
on the surfaces Σ, Σ̄.

Proof: Let {e1, e2, e3} be an orthonormal frame of TxE3 at x ∈ Σ such that
e3 is the unit normal to Σ at x (and hence e1, e2 span TxΣ) and e1 is the
unit vector in the direction of x̄ − x. We can then define an orthonormal
frame {ē1, ē2, ē3} of Tx̄E3 by

ē1 = e1

ē2 = (cosα)e2 + (sinα)e3
ē3 = (− sinα)e2 + (cosα)e3

Note that ē3 is the unit normal to Σ̄ at x̄.

A comment about the domain of definition of these frames may be in order.
Since the line congruence gives a map f : Σ → Σ̄, we can think of the
immersions x : Σ → E3 and x̄ = f ◦x : Σ → E3 as being defined on the same
abstract surface Σ. Thus the pullback bundles x−1(TE3) and x̄−1(TE3) are
naturally isomorphic as vector bundles over Σ, and this is the setting where
it makes sense to say ē1 = e1, etc. We will shortly have similar relations
between the Maurer-Cartan forms restricted to Σ and Σ̄. These will make
sense because all the forms in question are really pullbacks via x or x̄ and
so are forms on the abstract surface Σ.

With frames chosen as above, the immersions x : Σ → E3 and x̄ : Σ̄ → E3

are related by the equation

x̄ = x+ re1.

Taking the exterior derivative of this equation yields

dx̄ = dx+ r de1

= e1 ω
1 + e2 ω

2 + r(e2 ω2
1 + e3 ω

3
1)

= e1 ω
1 + e2(ω2 + r ω2

1) + e3(r ω3
1).

On the other hand, we also have

dx̄ = ē1 ω̄
1 + ē2 ω̄

2

= e1 ω̄
1 + e2(cosα ω̄2) + e3(sinα ω̄2).
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Comparing these equations yields

ω̄1 = ω1

cosα ω̄2 = ω2 + r ω2
1(2.1)

sinα ω̄2 = r ω3
1.

The last two of these equations imply that

ω2 + rω2
1 = r cotα ω3

1.(2.2)

We will use the fact that the Gauss curvature K̄ of Σ̄ satisfies the equation

ω̄3
1 ∧ ω̄3

2 = K̄ ω̄1 ∧ ω̄2

to compute K̄. Recall that for an adapted frame with e3 = 0 on a surface
Σ ⊂ E3 we have

ω3
1 = h11 ω

1 + h12 ω
2

ω3
2 = h12 ω

1 + h22 ω
2

for some functions h11, h12, h22. (We will denote the corresponding functions
for Σ̄ by h̄11, h̄12, h̄22.) Since ω̄1, ω̄2 are linearly independent forms, the first
and third equations of (2.1) imply that h12 6= 0. Using equation (2.2) we
compute that

ω̄3
1 = 〈dē1, ē3〉

= 〈de1, (− sinα)e2 + (cosα)e3〉
= (cosα)ω3

1 − (sinα)ω2
1

=
sinα
r

ω2

ω̄3
2 = 〈dē2, ē3〉

= 〈(cosα) de2 + (sinα) de3, (− sinα) e2 + (cosα) e3〉
= (cos2 α)ω3

2 − (sin2 α)ω2
3

= ω3
2

Therefore

ω̄3
1 ∧ ω̄3

2 =
sinα
r

ω2 ∧ ω3
2

= −sinα
r

h12 ω
1 ∧ ω2.

But by the last equation in (2.1) we also have

ω̄3
1 ∧ ω̄3

2 = K̄ ω̄1 ∧ ω̄2

= K̄ ω1 ∧ (
r

sinα
ω3

1)

= K̄
r

sinα
h12 ω

1 ∧ ω2.



LIE GROUPS AND THE METHOD OF THE MOVING FRAME 43

Since h12 6= 0, comparing coefficients yields

K̄ = −sin2 α

r2
.

An analogous argument shows that K = −sin2 α

r2
as well. 2

The map f : Σ → Σ̄ given by the line congruence is called a Bäcklund
transformation of the surface Σ.

3. Pseudospherical surfaces and the sine-Gordon equation

Let Σ be a pseudospherical surface, and for simplicity assume that its Gauss
curvature is K = −1. Since the Gauss curvature of Σ is negative, Σ must
have no umbilic points. Therefore every point x ∈ Σ has a neighborhood
on which there exists a local coordinate chart whose coordinate curves are
principal curves in Σ. In such a coordinate system (u1, u2) we can choose
an orthonormal frame {e1, e2} with

e1 =
1
a1

∂

∂u1
e2 =

1
a2

∂

∂u2

for some nonvanishing functions a1, a2 on Σ. Then we have

ω1 = a1 du
1, ω2 = a2 du

2, ω3
1 = κ1a1 du

1, ω3
2 = κ2a2 du

2

where κ1, κ2 are the principal curvatures of Σ. The first and second funda-
mental forms of Σ are

I = (ω1)2 + (ω2)2 = (a1)2 (du1)2 + (a2)2 (du2)2

II = ω3
1 ω

1 + ω3
2 ω

2 = κ1(a1)2 (du1)2 + κ2(a2)2 (du2)2.

The structure equations of the Maurer-Cartan forms imply that

ω1
2 =

1
a2

∂a1

∂u2
du1 − 1

a1

∂a2

∂u1
du2

and the Codazzi equations take the form
1

κ1 − κ2

∂κ1

∂u2
= −∂(ln a1)

∂u2

1
κ2 − κ1

∂κ2

∂u1
= −∂(ln a2)

∂u1
.

Now since K = −1, we have κ1κ2 = −1. Thus the Codazzi equations can
be written as

κ1

κ1(κ1 − κ2)
∂κ1

∂u2
= −∂(ln a1)

∂u2

κ2

κ2(κ2 − κ1)
∂κ2

∂u1
= −∂(ln a2)

∂u1
,
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or
1
2
∂(ln(κ2

1 + 1))
∂u2

= −∂(ln a1)
∂u2

1
2
∂(ln(κ2

2 + 1))
∂u1

= −∂(ln a2)
∂u1

.

Therefore there must exist functions c1(u1), c2(u2) such that

κ2
i + 1 =

ci(ui)
a2

i

, i = 1, 2.

Making a change of coordinates of the form ũ1 = ũ1(u1), ũ2 = ũ2(u2), we
can assume that ci ≡ 1. Then there exists a function ψ such that

κ1 = tanψ, κ2 = − cotψ, a1 = cosψ, a2 = sinψ,

so the first and second fundamental forms of Σ are

I = cos2 ψ (du1)2 + sin2 ψ (du2)2

II = sinψ cosψ ((du1)2 − (du2)2).

From this we can compute that the angle between the asymptotic directions
at any point is 2ψ. The connection form is

ω1
2 = − ∂ψ

∂u2
du1 − ∂ψ

∂u1
du2

and the Gauss equation is equivalent to

∂2ψ

∂(u1)2
− ∂2ψ

∂(u2)2
= sinψ cosψ.

In other words, the angle φ = 2ψ between the asymptotic directions satisfies
the sine-Gordon equation

∂2φ

∂(u1)2
− ∂2φ

∂(u2)2
= sinφ.(3.1)

In fact, there is a one-to-one correspondence between local solutions φ of the
sine-Gordon equation with 0 < φ < π and local surfaces of constant Gauss
curvature K = −1 in E3 up to rigid motion.

Exercises

1. Consider the change of coordinates

x =
1
2
(u1 + u2), y =

1
2
(u1 − u2)

where u1, u2 are the coordinates for which

I = cos2 ψ (du1)2 + sin2 ψ (du2)2

II = sinψ cosψ ((du1)2 − (du2)2)



LIE GROUPS AND THE METHOD OF THE MOVING FRAME 45

on the surface Σ with K = −1.

a) Show that x, y are asymptotic coordinates on Σ (this is equivalent to the
statement that II = f dx dy for some function f on Σ) and that the first
and second fundamental forms on Σ are

I = dx2 + 2 cos(2ψ) dx dy + dy2

II = 2 sin(2ψ) dx dy

b) Show that the Maurer-Cartan forms corresponding to the principal frame
{e1, e2, e3} are

ω1 = cosψ(dx+ dy)

ω2 = sinψ(dx− dy)

ω3
1 = sinψ(dx+ dy)

ω3
2 = − cosψ(dx− dy)

ω1
2 =

∂ψ

∂y
dy − ∂ψ

∂x
dx.

c) Show that in these coordinates, the sine-Gordon equation takes the form

∂2φ

∂x∂y
= sinφ.

2. Suppose that we have a Bäcklund transformation between two pseudo-
spherical surfaces Σ, Σ̄ with K = −1. Let {e1, e2, e3} be the frame adapted
to the transformation as in the lecture, and let η denote the angle between
e1 and e1. Then we have[

e1 e2
]

=
[
e1 e2

] [
cos η − sin η
sin η cos η

]
.

a) Show that [
ω1

ω2

]
=

[
cos η sin η
− sin η cos η

] [
ω1

ω2

]
[
ω3

1

ω3
2

]
=

[
cos η sin η
− sin η cos η

] [
ω3

1

ω3
2

]

ω1
2 = ω1

2 − dη.
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b) Show that the Bäcklund equation (2.2) is equivalent to the first-order
system of partial differential equations

ψx + ηx = λ sin(ψ − η)

ψy − ηy =
1
λ

sin(ψ + η)

where λ = cotα− cscα is constant.

3. Suppose that ψ(x, y), η(x, y) are any two solutions of the PDE system

ψx + ηx = λ sin(ψ − η)(3.2)

ψy − ηy =
1
λ

sin(ψ + η)

where λ 6= 0 is constant.

a) Show that the functions 2ψ, 2η must both be solutions of the sine-Gordon
equation

∂2φ

∂x∂y
= sinφ.

b) If 2ψ is any known solution of the sine-Gordon equation, then the system
(3.2) is a compatible, overdetermined system for the unknown function η.
Therefore it can be solved using only techniques of ordinary differential
equations. The system (3.2) is called a Bäcklund transformation for the
sine-Gordon solution. Suppose that ψ is the trivial solution ψ(x, y) ≡ 0.
Show that the corresponding solutions η are

η(x, y) = 2 tan−1(Ce−(λx+ 1
λ

y))

where C 6= 0 is constant. (Hint: you may find the trig identity csc η+cot η =
cot(1

2η) useful.) The functions

2η = 4 tan−1(Ce−(λx+ 1
λ

y))

are called the 1-soliton solutions of the sine-Gordon equation. Iterating
this procedure gives the 2-solitons, etc. The trivial solution ψ = 0 corre-
sponds to the degenerate “surface” consisting of a straight line in E3, while
the family of surfaces corresponding to the 1-solitons includes the classical
pseudosphere.


