LECTURE 6: PSEUDOSPHERICAL SURFACES AND
BACKLUND’S THEOREM

1. LINE CONGRUENCES

Let G1(E?) denote the Grassmanian of lines in E3. A line congruence in E3
is an immersed surface L : U — G1(E?), where U C R? is open. The points
of the line L(u,v) are given by

L(u,v) = {y(u,v) + Aw(u,v) : A € R}
for some y(u,v), w(u,v) € E* with |w(u,v)| = 1.
A parametric curve u = u(t), v =v(t) in U defines a ruled surface
X(t,A) = y(u(t), v(t)) + Aw(u(t), v(t) = y(t) + Aw(t)
belonging to the congruence. The surface is called developable if
det [w(t) w'(t) y'(t)] =0.

This is a quadratic equation for «/(¢),v'(t). If it has distinct real roots, then
the solutions of this equation define two distinct families of developable
surfaces X. In the generic case each family consists of the tangent lines to
a surface, and these two surfaces ¥,% are called the focal surfaces of the
congruence. The congruence gives a mapping f : ¥ — % with the property
that the congruence consists of lines which are tangent to both ¥ and ¥ and
join z € ¥ to Z = f(x) € X.

2. BACKLUND’S THEOREM

Definition: let L be a line congruence in E? with focal surfaces ¥, 3, and
let f: X — X be the function defined above. The congruence is called
pseudospherical if

1. The distance r = |z — z| is a constant independent of x.
2. The angle o between the surface normals N(z), N(Z) is a constant
independent of x.

Backlund’s Theorem: Suppose that L is a pseudospherical line congru-

ence in E? with focal surfaces 3,%. Then both ¥ and ¥ have constant

sin? o

r2

negative Gauss curvature K = — . (Such surfaces are called pseudo-

spherical surfaces.)
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This theorem can be proved using local coordinates on the surfaces 2,3,
but it is a computational mess. The proof can be greatly simplified by using
the method of moving frames, because the frames can be adapted to the
geometry of the problem in a way that local coordinates cannot. Whereas
in previous lectures we have adapted our frames according to the geometry
of a single surface, here we have to consider two surfaces and geometrical
conditions relating them. We will use these considerations to choose frames
on the surfaces %, 3.

Proof: Let {e1, e2,e3} be an orthonormal frame of T,E? at x € ¥ such that
e is the unit normal to ¥ at x (and hence e, es span T,%) and e; is the
unit vector in the direction of Z — x. We can then define an orthonormal
frame {é1, e, 3} of TzE? by

€1 =e1

éa = (cosa)es + (sina)es

é3 = (—sina)es + (cos a)es
Note that €3 is the unit normal to ¥ at .

A comment about the domain of definition of these frames may be in order.
Since the line congruence gives a map f : ¥ — X, we can think of the
immersions z : ¥ — E3 and Z = fox : ¥ — E? as being defined on the same
abstract surface ¥. Thus the pullback bundles = (TE?) and z~}(TE?) are
naturally isomorphic as vector bundles over X, and this is the setting where
it makes sense to say e; = ej, etc. We will shortly have similar relations
between the Maurer-Cartan forms restricted to ¥ and . These will make
sense because all the forms in question are really pullbacks via x or Z and

so are forms on the abstract surface X.

With frames chosen as above, the immersions z : ¥ — E3 and z : £ — E3
are related by the equation

Tr=x+re;.
Taking the exterior derivative of this equation yields
dx = dz + rdey
=erw! +erw? + r(eaw? + ezwd)
=ejw! +ea(w? +rwd) +es(rw?).
On the other hand, we also have
dT = &, o' + &9 @?

= e1 @' +eg(cosa @) + es(sina @?).
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Comparing these equations yields
ol = !
(2.1) cosa @ = w? +rwi
sina @2 = rwj.
The last two of these equations imply that

(2.2) w? +rwi =rcota wi.

We will use the fact that the Gauss curvature K of ¥ satisfies the equation
o3 A@3 = Kot A@?
to compute K. Recall that for an adapted frame with es = 0 on a surface
¥ C E? we have
wf = hiyw! 4+ higw?
wg’ = higw! + hog w?

for some functions hi1, hi2, hoo. (We will denote the corresponding functions
for £ by hi1, hia, hoo. ) Since !, w? are linearly independent forms, the first
and third equations of (2.1) imply that hi2 # 0. Using equation (2.2) we
compute that

wl = <d671,673>
= (dey, (—sina)ez + (cos a)es)

= (cos ) w} — (sin ) w?

sin «
w2

r
wy = <Clég, ég>

= ((cos ) dea + (sina) deg, (—sina) ez + (cosa) e3)

= (cos? o) w3 — (sin” a) w3
= w%
Therefore
3 sin «
w:f A wg’ = w? A w2
r
sin o

= — hiso wl A W2,
,
But by the last equation in (2.1) we also have

G3Anws =Kot ne?

_ r
— KWl A 3
w (sinawl)

_ 7
= K- hia wh A w?.
S1n &«
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Since hi9 # 0, comparing coefficients yields

i 2
- sin
K=-

r

sin? a
An analogous argument shows that K = ———— as well. O
r
The map f : ¥ — X given by the line congruence is called a Béicklund
transformation of the surface X.

3. PSEUDOSPHERICAL SURFACES AND THE SINE-(GORDON EQUATION

Let X be a pseudospherical surface, and for simplicity assume that its Gauss
curvature is K = —1. Since the Gauss curvature of X is negative, ¥ must
have no umbilic points. Therefore every point x € ¥ has a neighborhood
on which there exists a local coordinate chart whose coordinate curves are
principal curves in ¥. In such a coordinate system (u',u?) we can choose
an orthonormal frame {e;,e,} with

1 0 1 0
1 = ——— €6 = —
LT g 0ur TP ag oul
for some nonvanishing functions a1, as on 3. Then we have

wh=a4 dul, w?=ay du27 g‘rf = K101 dul7 gg = Koay du’

where k1, ko are the principal curvatures of . The first and second funda-
mental forms of 3 are

I= (") +W"? = (ar)” (du')® + (az)* (du?)?
IT = W w' + wi w? = ky(ay)? (du)? + ra(az)? (du?)?.
The structure equations of the Maurer-Cartan forms imply that

1 Oaq 1 Oas
1 1 0,2
2 as Ou? “ ay Oul “

and the Codazzi equations take the form
1 0k d(lnay)

K1 — Ky Ou2 ou?
1 Ory  O(lnay)
K9 — K1 ﬁ - 8u1 '
Now since K = —1, we have xk1k3 = —1. Thus the Codazzi equations can

be written as
K1 Ok1  Od(nay)
I{l(lil — KQ) W - 8u2
Ko Oko d(lnaz)

IQQ(IQQ — Kl) w - aul ’
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or

19(In(kf+1))  d(nay)

2 ou? T ou?

19(In(k3+1))  O(Inay)

2 oul T oul
Therefore there must exist functions ¢ (u'), c2(u?) such that

K2+ 1= C"(;‘Z), i=1,2.
Q-

1
Making a change of coordinates of the form @' = @' (u'), @2 = @?(u?), we
can assume that ¢; = 1. Then there exists a function v such that

K1 = tant, Ko = — cot 1, a] = cosy, as = sin,
so the first and second fundamental forms of 3 are
I = cos? ¢ (du')? + sin? ¢ (du?)?
IT = sinv cos ) ((dul)? — (du?)?).

From this we can compute that the angle between the asymptotic directions
at any point is 2¢. The connection form is

oY o
1_ 1 2
= g T g
and the Gauss equation is equivalent to

62w 62w

Bl 2 — a2 = siny cos .

In other words, the angle ¢ = 2¢ between the asymptotic directions satisfies
the sine-Gordon equation
0? 0?

(3.1) o _ ¢ = sin ¢.

A2 O(u?)?
In fact, there is a one-to-one correspondence between local solutions ¢ of the
sine-Gordon equation with 0 < ¢ < m and local surfaces of constant Gauss
curvature K = —1 in E3 up to rigid motion.

Exercises

1. Consider the change of coordinates

1 1
p= ), y= gl —d)
1 2

where u*, u® are the coordinates for which
I = cos? v (du')? + sin? ¢ (du?)?
IT = sinv cos ) ((dut)? — (du?)?)
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on the surface ¥ with K = —1.

a) Show that x,y are asymptotic coordinates on ¥ (this is equivalent to the
statement that I = fdxdy for some function f on ¥) and that the first
and second fundamental forms on ¥ are

I = dz? + 2 cos(2¢) dx dy + dy?
IT = 2sin(2¢) dz dy

b) Show that the Maurer-Cartan forms corresponding to the principal frame
{e1, €0, €3} are

w! = cosy(dx + dy)

Wi = sinv(dz + dy)
w} = — cos y(da — dy)
O O
1
= —dy— —d
2"y Y o
c¢) Show that in these coordinates, the sine-Gordon equation takes the form
0%¢ _
oxdy sin ¢

2. Suppose that we have a Bécklund transformation between two pseudo-
spherical surfaces ¥, ¥ with K = —1. Let {e1, e2, e3} be the frame adapted
to the transformation as in the lecture, and let 1 denote the angle between
e; and e;. Then we have

cosn —sinn
o o] =[x }[ ]
sinp  cosn

a) Show that

w cosn sinn| |w

w? —sinn cosn| |w?
w} cosn sinp| |w}
wg —sinn cosn gg’

1_ 1
wy = wy — d1).
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b) Show that the Bécklund equation (2.2) is equivalent to the first-order
system of partial differential equations

% + N = A Sin(w - 77)
1 .
Yy — 1y = Y sin(vy +n)
where A = cot o — csc «v is constant.

3. Suppose that ¥ (x,y), n(z,y) are any two solutions of the PDE system

(3.2) ¢x + Nz = A Sin(¢ - 77)
1
Yy — 1y = 3 sin(¢ + 1)

where A\ # 0 is constant.

a) Show that the functions 21, 2n must both be solutions of the sine-Gordon
equation

b) If 24 is any known solution of the sine-Gordon equation, then the system
(3.2) is a compatible, overdetermined system for the unknown function 7.
Therefore it can be solved using only techniques of ordinary differential
equations. The system (3.2) is called a Bdcklund transformation for the
sine-Gordon solution. Suppose that 1 is the trivial solution ¥ (z,y) = 0.
Show that the corresponding solutions 7 are

n(w,y) = 2tan~" (Ce~P+3v))

where C' # 0 is constant. (Hint: you may find the trig identity csc n+cotn =
cot(3n) useful.) The functions

2n = 4tan™! (Ce_(’\ﬁ%y))

are called the I-soliton solutions of the sine-Gordon equation. Iterating
this procedure gives the 2-solitons, etc. The trivial solution @ = 0 corre-
sponds to the degenerate “surface” consisting of a straight line in E3, while
the family of surfaces corresponding to the 1-solitons includes the classical
pseudosphere.



