
LECTURE 4: SURFACES IN EUCLIDEAN AND AFFINE
SPACES

1. Introduction

In the previous section, we saw that a curve x : I → E3 parametrized by arc
length s is completely determined up to rigid motions of E3 by its curvature
κ(s) and torsion τ(s). We may express this by saying that the curvature
and torsion form a complete set of invariants for curves in E3. In general,
Important Lemma 1 tells us when we have found a complete set of invariants
for a “nice” submanifold f : Σ → G/H: assuming that there is a canonical,
invariant way of choosing a lifting f̃ : Σ → G (this is what “nice” means),
a complete set of invariants is contained in f̃∗ω, the pullback via f̃ of the
Maurer-Cartan form ω of G.

One question we didn’t address was whether the functions κ and τ could be
prescribed arbitrarily. In other words, given arbitrary functions κ(s), τ(s),
does there necessarily exist a curve x : I → E3 which is parametrized by arc
length and has curvature κ(s) and torsion τ(s)? The answer is yes, but this
result is particular to one-dimensional submanifolds of homogenous spaces
G/H. It follows from the following lemma:

Important Lemma 2: Let G be a Lie group with Lie algebra g, and
suppose that ϕ is a g-valued 1-form on a connected and simply connected
manifold Σ. Then there exists a smooth map f̃ : Σ → G with f̃∗ω = ϕ if
and only if ϕ satisfies the equation

dϕ = −ϕ ∧ ϕ.

When Σ is a curve, this condition is automatically satisfied since any 2-form
vanishes on Σ. But when Σ is a surface it will give compatibility conditions
that must be satisfied in order for a surface with given invariants to exist.

2. Surfaces in E3

Consider a smooth, embedded surface x : Σ → E3, where Σ is an open set in
R2. (For ease of notation, we will not distinguish between Σ and its image
x(Σ).) We want to choose, for each point x ∈ Σ, an orthonormal frame
{e1(x), e2(x), e3(x)} for the tangent space TxE3.

Since x is an embedding, there is a well-defined tangent plane TxΣ for each
point x ∈ Σ, so we can make our first adaptation by requiring that e3(x) be
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orthogonal to TxΣ. This choice is clearly invariant under the action of E(3).
e1(x) and e2(x) will then form a basis for TxΣ; for now we allow e1(x), e2(x)
to be an arbitrary orthonormal basis of TxΣ.

Now consider the Maurer-Cartan forms of E(3) restricted to this frame.
Since the tangent plane of TxΣ is spanned by e1(x), e2(x), the vector-valued
1-form dx must be a linear combination of e1 and e2. From the structure
equation

dx =
3∑

i=1

ei ω
i

we see that we must have ω3 = 0 on this frame, and the linearly independent
1-forms ω1, ω2 form a basis for the space of 1-forms on Σ. In fact, the first
fundamental form of Σ is given by

I = 〈dx, dx〉 = (ω1)2 + (ω2)2.

Now since ω3 = 0, we must also have dω3 = 0. Therefore

0 = dω3 = −ω3
1 ∧ ω1 − ω3

2 ∧ ω2.

Since ω1, ω2 are linearly independent 1-forms, Cartan’s Lemma states that
there exist functions h11, h12, h22 such that[

ω3
1

ω3
2

]
=

[
h11 h12

h12 h22

] [
ω1

ω2

]
.

The second fundamental form of Σ is given by

II = ω3
1 ω1 + ω3

2 ω2 = h11(ω1)2 + 2h12ω
1ω2 + h22(ω2)2.

In order to make our next frame adaptation, we will compute how the matrix
[hij ] varies if we choose a different frame. So suppose that {ẽ1, ẽ2, ẽ3} is any
other orthonormal frame of the form

[
ẽ1 ẽ2 ẽ3

]
=

[
e1 e2 e3

] cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Set B =

[
cos θ − sin θ

sin θ cos θ

]
. Computing the Maurer-Cartan form of the new

frame shows that [
ω̃1

ω̃2

]
= B−1

[
ω1

ω2

]
,

[
ω̃3

1

ω̃3
2

]
= tB

[
ω3

1

ω3
2

]
and therefore, [

h̃11 h̃12

h̃12 h̃22

]
= tB

[
h11 h12

h12 h22

]
B.



LIE GROUPS AND THE METHOD OF THE MOVING FRAME 25

Since any symmetric matrix can be transformed to a diagonal matrix by
such a change of basis, we can choose e1(x), e2(x) so that[

h11 h12

h12 h22

]
=

[
κ1 0
0 κ2

]
.

We will assume that κ1 6= κ2 at every point of Σ. This is equivalent to as-
suming that Σ has no umbilic points, and in this case the condition that [hij ]
be diagonal determines e1(x), e2(x) essentially uniquely. This condition is
also invariant under the action of E(3). In this basis the second fundamental
form of Σ is

II = κ1(ω1)2 + κ2(ω2)2.

κ1 and κ2 are called the principal curvatures of Σ at x.

We will now show that any surface without umbilic points is determined up
to rigid motions by its first and second fundamental forms. (This is actually
true even if Σ has umbilic points, but the proof is slightly more involved.)
Suppose that x, x̄ : Σ → E3 have the same first and second fundamental
forms. Then it is clear that

ω1 = ω̄1, ω2 = ω̄2,

and ω3 = ω̄3 = 0. Therefore

dω1 = dω̄1

which implies that

(ω1
2 − ω̄1

2) ∧ ω2 = 0.

By Cartan’s lemma, ω1
2 − ω̄1

2 must be a multiple of ω2. But by the same
reasoning, the fact that dω2 = dω̄2 implies that ω1

2 − ω̄1
2 must also be a

multiple of ω1. Since ω1 and ω2 are linearly independent, we must have
ω1

2 = ω̄1
2. The fact that II = ĪI implies that ω3

1 = ω̄3
1 and ω3

2 = ω̄3
2. Now

Important Lemma 1 yields the desired result:

Theorem: Two embedded surfaces x1, x2 : Σ → E3 without umbilic points
differ by a rigid motion if and only if they have the same first and second
fundamental forms.

Now we consider the question discussed in the introduction, namely, can
the first and second fundamental forms be prescribed arbitrarily? In other
words, given 1-forms ω1, ω2, ω3

1, ω
3
2 on a surface Σ, what conditions must

these forms satisfy in order that there exist an embedding x : Σ → E3

whose first and second fundamental forms are

I = (ω1)2 + (ω2)2

II = ω3
1 ω1 + ω3

2 ω2?
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Important Lemma 2 gives the answer: the forms must satisfy the structure
equations of the Maurer-Cartan forms on E(3). The first three of these
equations are

dω1 = −ω1
2 ∧ ω2

dω2 = ω1
2 ∧ ω1

dω3 = 0 = −ω3
1 ∧ ω1 − ω3

2 ∧ ω2.

The first two equations uniquely determine the form ω1
2, called the Levi-

Civita connection form of the metric given by the first fundamental form I =
(ω1)2 + (ω2)2. The third equation says that ω3

1 and ω3
2 must be symmetric

linear combinations of ω1 and ω2.

The remaining structure equations are

dω1
2 = ω3

1 ∧ ω3
2

dω3
1 = ω3

2 ∧ ω1
2

dω3
2 = −ω3

1 ∧ ω1
2.

The first of these equations is called the Gauss equation, and the last two are
called the Codazzi equations. By Important Lemma 2, we have the following
theorem:

Theorem: Suppose that the forms ω1, ω2, ω3
1, ω

3
2 on Σ together with the

Levi-Civita connection form ω1
2 determined by ω1 and ω2 satisfy the Gauss

and Codazzi equations. Then there exists an immersed surface x : Σ → E3,
unique up to rigid motion, whose first and second fundamental forms are

I = (ω1)2 + (ω2)2

II = ω3
1 ω1 + ω3

2 ω2.

3. Surfaces in A3

Now consider a smooth, embedded surface x : Σ → A3. In order to compute
invariants for such a surface, we need to use the geometry of the surface
to construct a unimodular frame {e1(x), e2(x), e3(x)} for the tangent space
TxA3 for each x ∈ Σ.

In the Euclidean case we began by choosing e3 to be orthogonal to the
tangent plane TxΣ; it followed that e1, e2 must be a basis for TxΣ. In
affine space there is no notion of orthogonality, so we cannot normalize e3

immediately. However, we can still make our first adaptation by requiring
that e1, e2 span the tangent plane TxΣ. This condition is clearly invariant
under the action of A(3). When we restrict the Maurer-Cartan form to such
a frame, the same reasoning as in the Euclidean case tells us that the linearly
independent 1-forms ω1, ω2 form a basis for the space of 1-forms on Σ and
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that ω3 = dω3 = 0. Therefore there exist functions h11, h12, h22 such that[
ω3

1

ω3
2

]
=

[
h11 h12

h12 h22

] [
ω1

ω2

]
.

In order to make our next frame adaptation, we will compute how the matrix
[hij ] varies if we choose a different frame. So suppose that {ẽ1, ẽ2, ẽ3} is any
other affine frame with the property that ẽ1, ẽ2 span the tangent space TxΣ.
Then {ẽ1, ẽ2, ẽ3} has the form

[
ẽ1 ẽ2 ẽ3

]
=

[
e1 e2 e3

]  B
r1

r2

0 0 (detB)−1


where B ∈ GL(2). Computing the Maurer-Cartan form of the new frame
shows that [

ω̃1

ω̃2

]
= B−1

[
ω1

ω2

]
,

[
ω̃3

1

ω̃3
2

]
= (det B) tB

[
ω3

1

ω3
2

]
and therefore, [

h̃11 h̃12

h̃12 h̃22

]
= (det B) tB

[
h11 h12

h12 h22

]
B.

This transformation has the property that det[h̃ij ] = (det B)4 det[hij ], so
the sign of the determinant is fixed. We will assume that det[hij ] > 0; in
this case the surface is said to be elliptic. Then we can choose the matrix
B so that [hij ] is the identity matrix. This determines the frame up to a
transformation of the form

[
ẽ1 ẽ2 ẽ3

]
=

[
e1 e2 e3

]  B
r1

r2

0 0 1


with B ∈ SO(2).

The quadratic form

I = ω3
1 ω1 + ω3

2 ω2 = (ω1)2 + (ω2)2

is now well-defined. It is called the affine first fundamental form, and it
defines a metric on Σ which is invariant under the action of A(3).

We still don’t have a well-defined normal vector for Σ because we still allow
changes of frame with

ẽ3 = e3 + r1e1 + r2e2.

Now consider the connection form ω3
3. Under a change of frame as above,

we can compute that

ω̃3
3 = ω3

3 + r1ω
1 + r2ω

2.
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Since ω1, ω2 are linearly independent, there is a unique choice of r1, r2 for
which ω3

3 = 0. In particular, imposing this condition yields a unique, affine-
invariant choice of e3, called the affine normal of Σ.

Since we now have ω3
3 = 0, we must have dω3

3 = 0. Therefore

0 = dω3
3

= −ω3
1 ∧ ω1

3 − ω3
2 ∧ ω2

3

= ω1
3 ∧ ω1 + ω2

3 ∧ ω2.

By Cartan’s lemma, there exist functions `11, `12, `22 such that[
ω1

3

ω2
3

]
=

[
`11 `12

`12 `22

] [
ω1

ω2

]
.

It is not difficult to show that the quadratic form

II = ω1
3 ω1 + ω2

3 ω2 = `11(ω1)2 + 2`12 ω1 ω2 + `22(ω2)2

is well-defined; this is the affine second fundamental form. The quantity
L = 1

2(`11 + `22) is called the affine mean curvature of Σ. It is identically
zero if and only if Σ is a critical point of the affine area functional, just as
in the Euclidean case.

There are still more invariants; differentiating the equations

ω3
1 = ω1, ω3

2 = ω2

and using Cartan’s Lemma shows that there exist functions h111, h112, h122,
h222 such that  2ω1

1

ω1
2 + ω2

1

2ω2
2

 =

h111 h112

h112 h122

h122 h222

[
ω1

ω2

]
.

Furthermore, since we now have ω1
1 + ω2

2 = 0 (Exercise: why?), it follows
that

h122 = −h111, h112 = −h222.

The cubic form

P =
2∑

i,j,k=1

hijkω
iωjωk

is called the Fubini-Pick form of Σ. Together with the first and second affine
fundamental forms, it forms a complete set of invariants for elliptic affine
surfaces.
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Exercises

1. Any invariant of a surface Σ ⊂ E3 that can be expressed purely in terms
of the first fundamental form

I = (ω1)2 + (ω2)2

is called an intrinsic invariant of the surface. For instance, arc length and
area are intrinsic quantities on Σ. The principal curvatures κ1, κ2, however,
are not; they depend not only on the metric, but also on how the surface is
embedded.

The function K = κ1κ2 on Σ is called the Gauss curvature of Σ. Even
though κ1, κ2 are not intrinsic quantities, Gauss’ Theorem Egregium states
that their product K is in fact intrinsic. We will prove this in several steps.

The 1-forms ω1, ω2 are determined by the first fundamental form up to a
transformation of the form[

ω̃1

ω̃2

]
=

[
cos θ − sin θ

sin θ cos θ

] [
ω1

ω2

]
.

a) Show that the area form

dA = ω1 ∧ ω2

is an intrinsic quantity.

b) Show that if ω1
2 is the Levi-Civita connection form corresponding to

{ω1, ω2}, then

ω̃1
2 = ω1

2 + dθ.

Conclude that dω1
2 is an intrinsic quantity.

c) Show that dω1
2 = ω3

1 ∧ ω3
2 = K ω1 ∧ ω2. Conclude that K must be an

intrinsic quantity.

2. In terms of local coordinates (u, v) on a surface x : Σ → E3, the first and
second fundamental forms are usually written

I = E du2 + 2F du dv + G dv2

II = e du2 + 2f du dv + g dv2

It is always possible to parametrize a surface locally so that the coordinate
curves are principal curves on the surface, and for any such parametrization
F = f = 0.

a) For a parametrization with F = f = 0, show that the frame

e1 =
1√
E

xu, e2 =
1√
G

xv, e3 = e1 × e2
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is orthonormal, and that its dual forms are

ω1 =
√

E du, ω2 =
√

G dv, ω3 = 0.

b) Use the structure equations for dω1, dω2 to show that

ω1
2 =

1
2
√

EG
(Ev du−Gu dv).

c) Use the second fundamental form to show that

ω3
1 =

e

E
ω1 =

e√
E

du

ω3
2 =

g

G
ω1 =

g√
G

dv

d) Show that the Gauss equation is equivalent to

eg

EG
= − 1

2
√

EG

[(
Ev√
EG

)
v

+
(

Gu√
EG

)
u

]
.

The left-hand side is, by definition, the Gauss curvature K, and this equation
shows that K is in fact completely determined by the coefficients of the first
fundamental form.

e) Show that the Codazzi equations are equivalent to

ev =
1
2
Ev

( e

E
+

g

G

)
gu =

1
2
Gu

( e

E
+

g

G

)
.

3. Let x : Σ → A3 be an elliptic affine surface, and suppose that the affine
second fundamental form is a multiple of the affine first fundamental form,
so that

ω1
3 = λ ω1, ω2

3 = λ ω2

for some function λ.

a) Prove that λ is constant. (Hint: use the structure equations to differen-
tiate the equations above and use Cartan’s lemma.)

b) Show that if λ = 0, then de3 = 0, and therefore the affine normals of Σ
are all parallel. Such surfaces are called improper affine spheres.

c) Show that if λ 6= 0, then d(x− 1
λe3) = 0. Therefore, all the affine normals

intersect at the point x0 = x − 1
λe3. Such surfaces are called proper affine

spheres.


