LECTURE 1: DIFFERENTIAL FORMS

1. 1-forms on \mathbb{R}^n

In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz.$$

The expression df is called a 1-form. But what does this really mean?

Definition: A smooth 1-form ϕ on \mathbb{R}^n is a real-valued function on the set of all tangent vectors to \mathbb{R}^n , i.e.,

$$\phi: T\mathbb{R}^n \to \mathbb{R}$$

with the properties that

- 1. ϕ is linear on the tangent space $T_x \mathbb{R}^n$ for each $x \in \mathbb{R}^n$.
- 2. For any smooth vector field v = v(x), the function $\phi(v) : \mathbb{R}^n \to \mathbb{R}$ is smooth.

Given a 1-form ϕ , for each $x \in \mathbb{R}^n$ the map

$$\phi_x:T_x\mathbb{R}^n\to\mathbb{R}$$

is an element of the dual space $(T_x\mathbb{R}^n)^*$. When we extend this notion to all of \mathbb{R}^n , we see that the space of 1-forms on \mathbb{R}^n is dual to the space of vector fields on \mathbb{R}^n .

In particular, the 1-forms dx^1, \ldots, dx^n are defined by the property that for any vector $v = (v^1, \ldots, v^n) \in T_x \mathbb{R}^n$,

$$dx^i(v) = v^i.$$

The dx^i 's form a basis for the 1-forms on \mathbb{R}^n , so any other 1-form ϕ may be expressed in the form

$$\phi = \sum_{i=1}^{n} f_i(x) \, dx^i.$$

If a vector field v on \mathbb{R}^n has the form

$$v(x) = (v1(x), \dots, vn(x)),$$

then at any point $x \in \mathbb{R}^n$,

$$\phi_x(v) = \sum_{i=1}^n f_i(x) v^i(x).$$

2. p-forms on \mathbb{R}^n

The 1-forms on \mathbb{R}^n are part of an algebra, called the *algebra of differential* forms on \mathbb{R}^n . The multiplication in this algebra is called *wedge product*, and it is skew-symmetric:

$$dx^i \wedge dx^j = -dx^j \wedge dx^i.$$

One consequence of this is that $dx^i \wedge dx^i = 0$.

If each summand of a differential form ϕ contains p dx^i 's, the form is called a p-form. Functions are considered to be 0-forms, and any form on \mathbb{R}^n of degree p > n must be zero due to the skew-symmetry.

A basis for the p-forms on \mathbb{R}^n is given by the set

$$\{dx^{i_1} \wedge \cdots \wedge dx^{i_p} : 1 \le i_1 < i_2 < \cdots < i_p \le n\}.$$

Any p-form ϕ may be expressed in the form

$$\phi = \sum_{|I|=p} f_I \, dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

where I ranges over all multi-indices $I = (i_1, \ldots, i_p)$ of length p.

Just as 1-forms act on vector fields to give real-valued functions, so p-forms act on p-tuples of vector fields to give real-valued functions. For instance, if ϕ, ψ are 1-forms and v, w are vector fields, then

$$(\phi \wedge \psi)(v, w) = \phi(v)\psi(w) - \phi(w)\psi(v).$$

In general, if ϕ_1, \ldots, ϕ_p are 1-forms and v_1, \ldots, v_p are vector fields, then

$$(\phi_1 \wedge \cdots \wedge \phi_p)(v_1, \dots, v_p) = \sum_{\sigma \in S_p} \operatorname{sgn}(\sigma) \, \phi_1(v_{\sigma(1)}) \, \phi_2(v_{\sigma(2)}) \cdots \phi_n(v_{\sigma(n)}).$$

3. The exterior derivative

The exterior derivative is an operation that takes p-forms to (p+1)-forms. We will first define it for functions and then extend this definition to higher degree forms.

Definition: If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, then the exterior derivative of f is the 1-form df with the property that for any $x \in \mathbb{R}^n$, $v \in T_x \mathbb{R}^n$,

$$df_x(v) = v(f),$$

i.e., $df_x(v)$ is the directional derivative of f at x in the direction of v.

It is not difficult to show that

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i} dx^i.$$

The exterior derivative also obeys the Leibniz rule

$$d(fg) = g df + f dg$$

and the chain rule

$$d(h(f)) = h'(f) df.$$

We extend this definition to p-forms as follows:

Definition: Given a *p*-form $\phi = \sum_{|I|=p} f_I dx^{i_1} \wedge \cdots \wedge dx^{i_p}$, the exterior deriv-

ative $d\phi$ is the (p+1)-form

$$d\phi = \sum_{|I|=p} df_I \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

If ϕ is a p-form and ψ is a q-form, then the Leibniz rule takes the form

$$d(\phi \wedge \psi) = d\phi \wedge \psi + (-1)^p \phi \wedge d\psi.$$

Very Important Theorem: $d^2 = 0$. i.e., for any differential form ϕ , $d(d\phi) = 0$.

Proof: First suppose that f is a function, i.e., a 0-form. Then

$$d(df) = d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}\right)$$

$$= \sum_{i,j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} dx^{j} \wedge dx^{i}$$

$$= \sum_{i

$$= 0$$$$

because mixed partials commute.

Next, note that dx^i really does mean $d(x^i)$, where x^i is the *i*th coordinate function. So by the argument above, $d(dx^i) = 0$. Now suppose that

$$\phi = \sum_{|I|=p} f_I \, dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

Then by the Leibniz rule,

$$d(d\phi) = d(\sum_{|I|=p} df_I \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p})$$

$$= \sum_{|I|=p} [d(df_I) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p} - df_I \wedge d(dx^{i_1}) \wedge \dots \wedge dx^{i_p} + \dots]$$

$$= 0. \quad \Box$$

Definition: A p-form ϕ is closed if $d\phi = 0$. ϕ is exact if there exists a (p-1)-form η such that $\phi = d\eta$.

By the Very Important Theorem, every exact form is closed. The converse is only partially true: every closed form is *locally* exact. This means that given a closed *p*-form ϕ on an open set $U \subset \mathbb{R}^n$, any point $x \in U$ has a neighborhood on which there exists a (p-1)-form η with $d\eta = \phi$.

4. Differential forms on manifolds

Given a smooth manifold M, a smooth 1-form ϕ on M is a real-valued function on the set of all tangent vectors to M such that

- 1. ϕ is linear on the tangent space T_xM for each $x \in M$.
- 2. For any smooth vector field v on M, the function $\phi(v): M \to \mathbb{R}$ is smooth.

So for each $x \in M$, the map

$$\phi_x: T_xM \to \mathbb{R}$$

is an element of the dual space $(T_xM)^*$.

Wedge products and exterior derivatives are defined similarly as for \mathbb{R}^n . If $f: M \to \mathbb{R}$ is a differentiable function, then we define the exterior derivative of f to be the 1-form df with the property that for any $x \in M$, $v \in T_xM$,

$$df_x(v) = v(f).$$

A local basis for the space of 1-forms on M can be described as before in terms of any local coordinate chart (x^1, \ldots, x^n) on M, and it is possible to show that the coordinate-based notions of wedge product and exterior derivative are in fact independent of the choice of local coordinates and so are well-defined.

More generally, suppose that M_1, M_2 are smooth manifolds and that $F: M_1 \to M_2$ is a differentiable map. For any $x \in M_1$, the differential dF (also denoted F_*): $T_xM_1 \to T_{F(x)}M_2$ may be thought of as a vector-valued 1-form, because it is a linear map from T_xM_1 to the vector space $T_{F(x)}M_2$. There is an analogous map in the opposite direction for differential forms, called the pullback and denoted F^* . It is defined as follows.

Definition: If $F: M_1 \to M_2$ is a differentiable map, then

1. If $f: M_2 \to \mathbb{R}$ is a differentiable function, then $F^*f: M_1 \to \mathbb{R}$ is the function

$$(F^*f)(x) = (f \circ F)(x).$$

2. If ϕ is a *p*-form on M_2 , then $F^*\phi$ is the *p*-form on M_1 defined as follows: if $v_1, \ldots, v_p \in T_x M_1$, then

$$(F^*\phi)(v_1,\ldots,v_p) = \phi(F_*(v_1),\ldots,F_*(v_p)).$$

In terms of local coordinates (x^1, \ldots, x^n) on M_1 and (y^1, \ldots, y^m) on M_2 , suppose that the map F is described by

$$y^{i} = y^{i}(x^{1}, \dots, x^{n}), \quad 1 \le i \le m.$$

Then the differential dF at each point $x \in M_1$ may be represented in this coordinate system by the matrix

$$\left[\frac{\partial y^i}{\partial x^j}\right].$$

The dx^j 's are forms on M_1 , the dy^i 's are forms on M_2 , and the pullback map F^* acts on the dy^i 's by

$$F^*(dy^i) = \sum_{j=1}^n \frac{\partial y^i}{\partial x^j} dx^j.$$

The pullback map behaves as nicely as one could hope with respect to the various operations on differential forms, as described in the following theorem.

Theorem: Let $F: M_1 \to M_2$ be a differentiable map, and let ϕ, η be differential forms on M_2 . Then

- 1. $F^*(\phi + \eta) = F^*\phi + F^*\eta$.
- 2. $F^*(\phi \wedge \eta) = F^*\phi \wedge F^*\eta$.
- 3. $F^*(d\phi) = d(F^*\phi)$.

5. The Lie derivative

The final operation that we will define on differential forms is the Lie derivative. This is a generalization of the notion of directional derivative of a function.

Suppose that v(x) is a vector field on a manifold M, and let $\varphi: M \times (-\varepsilon, \varepsilon) \to M$ be the *flow* of v. This is the unique map that satisfies the conditions

$$\frac{\partial \varphi}{\partial t}(x,t) = v(\varphi(x,t))$$
$$\varphi(x,0) = x.$$

In other words, $\varphi_t(x) = \varphi(x,t)$ is the point reached at time t by flowing along the vector field v(x) starting from the point x at time 0.

Recall that if $f: M \to \mathbb{R}$ is a smooth function, then the directional derivative of f at x in the direction of v is

$$v(f) = \lim_{t \to 0} \frac{f(\varphi_t(x)) - f(x)}{t}$$
$$= \lim_{t \to 0} \frac{(\varphi_t^*(f) - f)(x)}{t}.$$

Similarly, given a differential form ϕ we define the *Lie derivative* of ϕ along the vector field v(x) to be

$$\mathcal{L}_v \phi = \lim_{t \to 0} \frac{\varphi_t^* \phi - \phi}{t}.$$

Fortunately there is a practical way to compute the Lie derivative. First we need the notion of the left-hook of a differential form with a vector field. Given a p-form ϕ and a vector field v, the left-hook $v \, \bot \, \phi$ of ϕ with v (also called the interior product of ϕ with v) is the (p-1)-form defined by the property that for any $w_1, \ldots, w_{p-1} \in T_x \mathbb{R}^n$,

$$(v \, \lrcorner \, \phi)(w_1, \ldots, w_{p-1}) = \phi(v, w_1, \ldots, w_{p-1}).$$

For instance,

$$\frac{\partial}{\partial x} \, \lrcorner \, (dx \wedge dy + dz \wedge dx) = dy - dz.$$

Now according to Cartan's formula, the Lie derivative of ϕ along the vector field v is

$$\mathcal{L}_v \phi = v \, \lrcorner \, d\phi + d(v \, \lrcorner \, \phi).$$

Exercises

1. Classical vector analysis avoids the use of differential forms on \mathbb{R}^3 by converting 1-forms and 2-forms into vector fields by means of the following one-to-one correspondences. $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ will denote the standard basis $\varepsilon_1 = [1, 0, 0]$, $\varepsilon_2 = [0, 1, 0]$, $\varepsilon_3 = [0, 0, 1]$.)

$$f_1 dx^1 + f_2 dx^2 + f_3 dx^3 \longleftrightarrow f_1 \varepsilon_1 + f_2 \varepsilon_2 + f_3 \varepsilon_3$$
$$f_1 dx^2 \wedge dx^3 + f_2 dx^3 \wedge dx^1 + f_3 dx^1 \wedge dx^2 \longleftrightarrow f_1 \varepsilon_1 + f_2 \varepsilon_2 + f_3 \varepsilon_3$$

Vector analysis uses three basic operations based on partial differentiation:

1. Gradient of a function f:

$$\operatorname{grad}(f) = \sum_{i=1}^{3} \frac{\partial f}{\partial x^{i}} \, \varepsilon_{i}$$

2. Curl of a vector field $v = \sum_{i=1}^{3} v^{i}(x) \varepsilon_{i}$:

$$\operatorname{curl}(v) = \left(\frac{\partial v^3}{\partial x^2} - \frac{\partial v^2}{\partial x^3}\right) \varepsilon_1 + \left(\frac{\partial v^1}{\partial x^3} - \frac{\partial v^3}{\partial x^1}\right) \varepsilon_2 + \left(\frac{\partial v^2}{\partial x^1} - \frac{\partial v^1}{\partial x^2}\right) \varepsilon_3$$

3. Divergence of a vector field $v = \sum_{i=1}^{3} v^{i}(x) \varepsilon_{i}$:

$$\operatorname{div}(v) = \sum_{i=1}^{3} \frac{\partial v^{i}}{\partial x^{i}}$$

Prove that all three operations may be expressed in terms of exterior derivatives as follows:

- 1. $df \leftrightarrow \operatorname{grad}(f)$
- 2. If ϕ is a 1-form and $\phi \leftrightarrow v$, then $d\phi \leftrightarrow \text{curl}(v)$.
- 3. If η is a 2-form and $\eta \leftrightarrow v$, then $d\eta \leftrightarrow \operatorname{div}(v) dx^1 \wedge dx^2 \wedge dx^3$.

Show that the identities

$$\operatorname{curl}(\operatorname{grad}(f)) = 0$$

 $\operatorname{div}(\operatorname{curl}(v)) = 0$

follow from the fact that $d^2 = 0$.

2. Let f and g be real-valued functions on \mathbb{R}^2 . Prove that

$$df \wedge dg = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} dx \wedge dy.$$

(You may recognize this from the change-of-variables formula for double integrals.)

3. Suppose that ϕ, ψ are 1-forms on \mathbb{R}^n . Prove the Leibniz rule

$$d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi.$$

4. Prove the statement above that if $F: M_1 \to M_2$ is described in terms of local coordinates by

$$y^i = y^i(x^1, \dots, x^n), \quad 1 \le i \le m$$

then

$$F^*(dy^i) = \sum_{j=1}^n \frac{\partial y^i}{\partial x^j} dx^j.$$

5. Let (r, θ) be coordinates on \mathbb{R}^2 and (x, y, z) coordinates on \mathbb{R}^3 . Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$F(r, \theta) = (\cos \theta, \sin \theta, r).$$

Describe the differential dF in terms of these coordinates and compute the pullbacks $F^*(dx), F^*(dy), F^*(dz)$.