
LECTURE 1: DIFFERENTIAL FORMS

1. 1-forms on Rn

In calculus, you may have seen the differential or exterior derivative df of a
function f(x, y, z) defined to be

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

The expression df is called a 1-form. But what does this really mean?

Definition: A smooth 1-form φ on Rn is a real-valued function on the set
of all tangent vectors to Rn, i.e.,

φ : TRn → R
with the properties that

1. φ is linear on the tangent space TxRn for each x ∈ Rn.
2. For any smooth vector field v = v(x), the function φ(v) : Rn → R is

smooth.

Given a 1-form φ, for each x ∈ Rn the map

φx : TxRn → R
is an element of the dual space (TxRn)∗. When we extend this notion to all
of Rn, we see that the space of 1-forms on Rn is dual to the space of vector
fields on Rn.

In particular, the 1-forms dx1, . . . , dxn are defined by the property that for
any vector v = (v1, . . . , vn) ∈ TxRn,

dxi(v) = vi.

The dxi’s form a basis for the 1-forms on Rn, so any other 1-form φ may be
expressed in the form

φ =
n∑

i=1

fi(x) dxi.

If a vector field v on Rn has the form

v(x) = (v1(x), . . . , vn(x)),
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then at any point x ∈ Rn,

φx(v) =
n∑

i=1

fi(x) vi(x).

2. p-forms on Rn

The 1-forms on Rn are part of an algebra, called the algebra of differential
forms on Rn. The multiplication in this algebra is called wedge product, and
it is skew-symmetric:

dxi ∧ dxj = −dxj ∧ dxi.

One consequence of this is that dxi ∧ dxi = 0.

If each summand of a differential form φ contains p dxi’s, the form is called
a p-form. Functions are considered to be 0-forms, and any form on Rn of
degree p > n must be zero due to the skew-symmetry.

A basis for the p-forms on Rn is given by the set

{dxi1 ∧ · · · ∧ dxip : 1 ≤ i1 < i2 < · · · < ip ≤ n}.
Any p-form φ may be expressed in the form

φ =
∑
|I|=p

fI dx
i1 ∧ · · · ∧ dxip

where I ranges over all multi-indices I = (i1, . . . , ip) of length p.

Just as 1-forms act on vector fields to give real-valued functions, so p-forms
act on p-tuples of vector fields to give real-valued functions. For instance, if
φ, ψ are 1-forms and v, w are vector fields, then

(φ ∧ ψ)(v, w) = φ(v)ψ(w)− φ(w)ψ(v).

In general, if φ1, . . . , φp are 1-forms and v1 . . . , vp are vector fields, then

(φ1 ∧ · · · ∧ φp)(v1, . . . , vp) =
∑
σ∈Sp

sgn(σ)φ1(vσ(1))φ2(vσ(2)) · · ·φn(vσ(n)).

3. The exterior derivative

The exterior derivative is an operation that takes p-forms to (p+ 1)-forms.
We will first define it for functions and then extend this definition to higher
degree forms.

Definition: If f : Rn → R is differentiable, then the exterior derivative of
f is the 1-form df with the property that for any x ∈ Rn, v ∈ TxRn,

dfx(v) = v(f),

i.e., dfx(v) is the directional derivative of f at x in the direction of v.
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It is not difficult to show that

df =
n∑

i=1

∂f

∂xi
dxi.

The exterior derivative also obeys the Leibniz rule

d(fg) = g df + f dg

and the chain rule

d(h(f)) = h′(f) df.

We extend this definition to p-forms as follows:

Definition: Given a p-form φ =
∑
|I|=p

fI dx
i1 ∧ · · · ∧ dxip , the exterior deriv-

ative dφ is the (p+ 1)-form

dφ =
∑
|I|=p

dfI ∧ dxi1 ∧ · · · ∧ dxip .

If φ is a p-form and ψ is a q-form, then the Leibniz rule takes the form

d(φ ∧ ψ) = dφ ∧ ψ + (−1)pφ ∧ dψ.

Very Important Theorem: d2 = 0. i.e., for any differential form φ,

d(dφ) = 0.

Proof: First suppose that f is a function, i.e., a 0-form. Then

d(df) = d(
n∑

i=1

∂f

∂xi
dxi)

=
∑
i,j

∂2f

∂xi ∂xj
dxj ∧ dxi

=
∑
i<j

(
∂2f

∂xj ∂xi
− ∂2f

∂xi ∂xj
)dxi ∧ dxj

= 0

because mixed partials commute.

Next, note that dxi really does mean d(xi), where xi is the ith coordinate
function. So by the argument above, d(dxi) = 0. Now suppose that

φ =
∑
|I|=p

fI dx
i1 ∧ · · · ∧ dxip .
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Then by the Leibniz rule,

d(dφ) = d(
∑
|I|=p

dfI ∧ dxi1 ∧ · · · ∧ dxip)

=
∑
|I|=p

[d(dfI) ∧ dxi1 ∧ · · · ∧ dxip − dfI ∧ d(dxi1) ∧ · · · ∧ dxip + . . . ]

= 0. 2

Definition: A p-form φ is closed if dφ = 0. φ is exact if there exists a
(p− 1)-form η such that φ = dη.

By the Very Important Theorem, every exact form is closed. The converse
is only partially true: every closed form is locally exact. This means that
given a closed p-form φ on an open set U ⊂ Rn, any point x ∈ U has a
neighborhood on which there exists a (p− 1)-form η with dη = φ.

4. Differential forms on manifolds

Given a smooth manifold M , a smooth 1-form φ on M is a real-valued
function on the set of all tangent vectors to M such that

1. φ is linear on the tangent space TxM for each x ∈M .
2. For any smooth vector field v on M , the function φ(v) : M → R is

smooth.

So for each x ∈M , the map

φx : TxM → R
is an element of the dual space (TxM)∗.

Wedge products and exterior derivatives are defined similarly as for Rn. If
f : M → R is a differentiable function, then we define the exterior derivative
of f to be the 1-form df with the property that for any x ∈M, v ∈ TxM ,

dfx(v) = v(f).

A local basis for the space of 1-forms on M can be described as before in
terms of any local coordinate chart (x1, . . . , xn) on M , and it is possible
to show that the coordinate-based notions of wedge product and exterior
derivative are in fact independent of the choice of local coordinates and so
are well-defined.

More generally, suppose that M1,M2 are smooth manifolds and that F :
M1 → M2 is a differentiable map. For any x ∈ M1, the differential dF
(also denoted F∗) : TxM1 → TF (x)M2 may be thought of as a vector-valued
1-form, because it is a linear map from TxM1 to the vector space TF (x)M2.
There is an analogous map in the opposite direction for differential forms,
called the pullback and denoted F ∗. It is defined as follows.



LIE GROUPS AND THE METHOD OF THE MOVING FRAME 5

Definition: If F : M1 →M2 is a differentiable map, then

1. If f : M2 → R is a differentiable function, then F ∗f : M1 → R is the
function

(F ∗f)(x) = (f ◦ F )(x).

2. If φ is a p-form on M2, then F ∗φ is the p-form on M1 defined as follows:
if v1, . . . , vp ∈ TxM1, then

(F ∗φ)(v1, . . . , vp) = φ(F∗(v1), . . . , F∗(vp)).

In terms of local coordinates (x1, . . . , xn) on M1 and (y1, . . . , ym) on M2,
suppose that the map F is described by

yi = yi(x1, . . . , xn), 1 ≤ i ≤ m.
Then the differential dF at each point x ∈ M1 may be represented in this
coordinate system by the matrix [

∂yi

∂xj

]
.

The dxj ’s are forms on M1, the dyi’s are forms on M2, and the pullback
map F ∗ acts on the dyi’s by

F ∗(dyi) =
n∑

j=1

∂yi

∂xj
dxj .

The pullback map behaves as nicely as one could hope with respect to the
various operations on differential forms, as described in the following theo-
rem.

Theorem: Let F : M1 → M2 be a differentiable map, and let φ, η be
differential forms on M2. Then

1. F ∗(φ+ η) = F ∗φ+ F ∗η.
2. F ∗(φ ∧ η) = F ∗φ ∧ F ∗η.
3. F ∗(dφ) = d(F ∗φ).

5. The Lie derivative

The final operation that we will define on differential forms is the Lie de-
rivative. This is a generalization of the notion of directional derivative of a
function.
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Suppose that v(x) is a vector field on a manifoldM , and let ϕ : M×(−ε, ε)→
M be the flow of v. This is the unique map that satisfies the conditions

∂ϕ

∂t
(x, t) = v(ϕ(x, t))

ϕ(x, 0) = x.

In other words, ϕt(x) = ϕ(x, t) is the point reached at time t by flowing
along the vector field v(x) starting from the point x at time 0.

Recall that if f : M → R is a smooth function, then the directional derivative
of f at x in the direction of v is

v(f) = lim
t→0

f(ϕt(x))− f(x)
t

= lim
t→0

(ϕ∗t (f)− f)(x)
t

.

Similarly, given a differential form φ we define the Lie derivative of φ along
the vector field v(x) to be

Lvφ = lim
t→0

ϕ∗tφ− φ
t

.

Fortunately there is a practical way to compute the Lie derivative. First we
need the notion of the left-hook of a differential form with a vector field.
Given a p-form φ and a vector field v, the left-hook v φ of φ with v (also
called the interior product of φ with v) is the (p − 1)-form defined by the
property that for any w1, . . . , wp−1 ∈ TxRn,

(v φ)(w1, . . . , wp−1) = φ(v, w1, . . . , wp−1).

For instance,
∂

∂x
(dx ∧ dy + dz ∧ dx) = dy − dz.

Now according to Cartan’s formula, the Lie derivative of φ along the vector
field v is

Lvφ = v dφ+ d(v φ).

Exercises

1. Classical vector analysis avoids the use of differential forms on R3 by
converting 1-forms and 2-forms into vector fields by means of the following
one-to-one correspondences. (ε1, ε2, ε3 will denote the standard basis ε1 =
[1, 0, 0], ε2 = [0, 1, 0], ε3 = [0, 0, 1].)
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f1 dx
1 + f2 dx

2 + f3 dx
3 ←→ f1 ε1 + f2 ε2 + f3 ε3

f1 dx
2 ∧ dx3 + f2 dx

3 ∧ dx1 + f3 dx
1 ∧ dx2 ←→ f1 ε1 + f2 ε2 + f3 ε3

Vector analysis uses three basic operations based on partial differentiation:

1. Gradient of a function f :

grad(f) =
3∑

i=1

∂f

∂xi
εi

2. Curl of a vector field v =
3∑

i=1

vi(x) εi:

curl(v) =
(
∂v3

∂x2
− ∂v2

∂x3

)
ε1 +

(
∂v1

∂x3
− ∂v3

∂x1

)
ε2 +

(
∂v2

∂x1
− ∂v1

∂x2

)
ε3

3. Divergence of a vector field v =
3∑

i=1

vi(x) εi:

div(v) =
3∑

i=1

∂vi

∂xi

Prove that all three operations may be expressed in terms of exterior deriva-
tives as follows:

1. df ↔ grad(f)
2. If φ is a 1-form and φ↔ v, then dφ↔ curl(v).
3. If η is a 2-form and η ↔ v, then dη ↔ div(v) dx1 ∧ dx2 ∧ dx3.

Show that the identities

curl(grad(f)) = 0

div(curl(v)) = 0

follow from the fact that d2 = 0.

2. Let f and g be real-valued functions on R2. Prove that

df ∧ dg =

∣∣∣∣∣∣
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣∣∣∣∣∣ dx ∧ dy.
(You may recognize this from the change-of-variables formula for double
integrals.)

3. Suppose that φ, ψ are 1-forms on Rn. Prove the Leibniz rule

d(φ ∧ ψ) = dφ ∧ ψ − φ ∧ dψ.
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4. Prove the statement above that if F : M1 →M2 is described in terms of
local coordinates by

yi = yi(x1, . . . , xn), 1 ≤ i ≤ m
then

F ∗(dyi) =
n∑

j=1

∂yi

∂xj
dxj .

5. Let (r, θ) be coordinates on R2 and (x, y, z) coordinates on R3. Let
F : R2 → R3 be defined by

F (r, θ) = (cos θ, sin θ, r).

Describe the differential dF in terms of these coordinates and compute the
pullbacks F ∗(dx), F ∗(dy), F ∗(dz).


