LECTURE 1: DIFFERENTIAL FORMS

1. 1-FORMS ON R"

In calculus, you may have seen the differential or exterior derivative df of a
function f(z,y,z) defined to be

f of of ,
d+ad+8z

The expression df is called a 1-form. But what does this really mean?

df—a

Definition: A smooth 1-form ¢ on R" is a real-valued function on the set
of all tangent vectors to R"”, i.e.,

¢:TR" - R
with the properties that
1. ¢ is linear on the tangent space T,R" for each x € R".

2. For any smooth vector field v = v(z), the function ¢(v) : R
smooth.

" - Ris
Given a 1-form ¢, for each € R™ the map
op : T,R" - R

is an element of the dual space (T,R™)*. When we extend this notion to all
of R™, we see that the space of 1-forms on R™ is dual to the space of vector
fields on R™.

In particular, the 1-forms dz', ... ,da" are defined by the property that for
any vector v = (v',... ,v") € T,R",

dz'(v) = v'.
The dz"’s form a basis for the 1-forms on R”, so any other 1-form ¢ may be
expressed in the form

n
0= fi(z)da'
i=1
If a vector field v on R™ has the form

v(z) = (vi(z),...,v"(x)),
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then at any point z € R"”,

6:(0) = 3 fila) o' (@)

2. p-FORMS ON R"

The 1-forms on R™ are part of an algebra, called the algebra of differential
forms on R™. The multiplication in this algebra is called wedge product, and
it is skew-symmetric:

det A da? = —da? A dat.
One consequence of this is that dx’ A da’ = 0.

If each summand of a differential form ¢ contains p da'’s, the form is called
a p-form. Functions are considered to be 0-forms, and any form on R™ of
degree p > n must be zero due to the skew-symmetry.
A basis for the p-forms on R" is given by the set
{dz™ A~ ANda' i 1<y <ipg < - <ip<n}
Any p-form ¢ may be expressed in the form
$=> frdz" A--- Ada'?
[7|=p
where I ranges over all multi-indices I = (i1,... ,ip,) of length p.
Just as 1-forms act on vector fields to give real-valued functions, so p-forms

act on p-tuples of vector fields to give real-valued functions. For instance, if
¢, are 1-forms and v, w are vector fields, then

(@A) (v, w) = ¢(v)Y(w) — p(w)y(v).

In general, if ¢1,... , ¢, are 1-forms and v; ... ,v, are vector fields, then
(¢1 ARERRA ¢P)<v17 <. ?UP> = Z sgn(a) ¢1(UU(1)) ¢2(UU(2)> T ¢n(va(n))'
o€Sp

3. THE EXTERIOR DERIVATIVE

The exterior derivative is an operation that takes p-forms to (p + 1)-forms.
We will first define it for functions and then extend this definition to higher
degree forms.

Definition: If f : R™ — R is differentiable, then the exterior derivative of
f is the 1-form df with the property that for any x € R", v € T,R",

dfz(v) = v(f),

i.e., df;(v) is the directional derivative of f at x in the direction of v.
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It is not difficult to show that
d = 7d Z.
f ; ox? v

The exterior derivative also obeys the Leibniz rule
d(fg) =gdf + fdg
and the chain rule
d(h(f)) = I'(f) df.
We extend this definition to p-forms as follows:

Definition: Given a p-form ¢ = Z frdaz™ A--- Ada'®, the exterior deriv-

l=p
ative d¢ is the (p + 1)-form

dp =Y dfr Nda™ Ao Adat,

[I|=p

If ¢ is a p-form and ¢ is a ¢-form, then the Leibniz rule takes the form

d(¢ Np) =dp N+ (=1)PP N dip.

Very Important Theorem: d? = 0. i.e., for any differential form ¢,
d(d¢) = 0.

Proof: First suppose that f is a function, i.e., a O-form. Then

d(df) = d( of dx?)

i=1

0% f Of i
B ;(a$j dxi i G:Uj)dx N d

because mixed partials commute.

Next, note that da’ really does mean d(mi'), where z° is the ith coordinate
function. So by the argument above, d(dz') = 0. Now suppose that

¢=> frdz" A--- Ada'r.

|I|=p
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Then by the Leibniz rule,
d(d¢) = d( > dfr Adx™ A - Ada'?)
[1|=p
= ) ld(dfr) Adat A Adatt — dfy Ad(da) A A dat L
l7|=p
=0. O

Definition: A p-form ¢ is closed if dp = 0. ¢ is exact if there exists a
(p — 1)-form n such that ¢ = dn.

By the Very Important Theorem, every exact form is closed. The converse
is only partially true: every closed form is locally exact. This means that
given a closed p-form ¢ on an open set U C R"™, any point x € U has a
neighborhood on which there exists a (p — 1)-form n with dn = ¢.

4. DIFFERENTIAL FORMS ON MANIFOLDS

Given a smooth manifold M, a smooth I-form ¢ on M is a real-valued
function on the set of all tangent vectors to M such that

1. ¢ is linear on the tangent space T, M for each z € M.
2. For any smooth vector field v on M, the function ¢(v) : M — R is
smooth.

So for each z € M, the map
G T M — R
is an element of the dual space (T, M)*.

Wedge products and exterior derivatives are defined similarly as for R™. If
f M — R is a differentiable function, then we define the exterior derivative
of f to be the 1-form df with the property that for any z € M, v € T, M,

dfx(v) = U(f)
A local basis for the space of 1-forms on M can be described as before in
terms of any local coordinate chart (z!,...,2") on M, and it is possible
to show that the coordinate-based notions of wedge product and exterior
derivative are in fact independent of the choice of local coordinates and so
are well-defined.

More generally, suppose that Mi, Ms are smooth manifolds and that F :
M; — M,y is a differentiable map. For any = € M, the differential dF
(also denoted Fl) : Tp My — Tp(y) M2 may be thought of as a vector-valued
1-form, because it is a linear map from T M to the vector space Tp(,) Ma.
There is an analogous map in the opposite direction for differential forms,
called the pullback and denoted F™*. It is defined as follows.
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Definition: If F': My — M> is a differentiable map, then

1. If f: My — R is a differentiable function, then F*f : M; — R is the
function

(F*f)(x) = (f o F)(x).
2. If ¢ is a p-form on Mo, then F*¢ is the p-form on M; defined as follows:

if v1,...,vp, € T, My, then
(F*¢)(vi,...,vp) = ¢(Fy(v1),..., Fi(vp)).
In terms of local coordinates (z!,...,2") on My and (y',...,4™) on Mo,
suppose that the map F' is described by
Yy =9zt .2, 1<i<m.

Then the differential dF' at each point x € M; may be represented in this
coordinate system by the matrix
OxI

The dx’’s are forms on M, the dy"’s are forms on M>, and the pullback
map F™* acts on the dy"’s by

F*(dy") = Z a:Ejd:L“j.
j=1

The pullback map behaves as nicely as one could hope with respect to the
various operations on differential forms, as described in the following theo-
rem.

Theorem: Let F' : M; — My be a differentiable map, and let ¢,n be
differential forms on Ms. Then

1. F¥*(p+n) = F*¢ + F*n.
2. F*(pAn) = F*¢ N F*n.
3. F*(do) = d(F*¢).

5. THE LIE DERIVATIVE
The final operation that we will define on differential forms is the Lie de-

rivative. This is a generalization of the notion of directional derivative of a
function.
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Suppose that v(z) is a vector field on a manifold M, and let ¢ : M x(—¢,¢) —
M be the flow of v. This is the unique map that satisfies the conditions

% 2, 1) = (e, 1)

o(z,0) = x.
In other words, ¢i(z) = @(x,t) is the point reached at time t by flowing
along the vector field v(z) starting from the point x at time 0.

Recall that if f : M — R is a smooth function, then the directional derivative
of f at x in the direction of v is

v(f) = lim t
@D - D)
t—0 t

Similarly, given a differential form ¢ we define the Lie derivative of ¢ along
the vector field v(z) to be

Lop = %E% w
Fortunately there is a practical way to compute the Lie derivative. First we
need the notion of the left-hook of a differential form with a vector field.
Given a p-form ¢ and a vector field v, the left-hook v_¢ of ¢ with v (also

called the interior product of ¢ with v) is the (p — 1)-form defined by the
property that for any wy,... ,wp—1 € T,R",

(UJ¢)(M1’ T ’wp_l) = ¢(U7w1) s 7wp—1)'
For instance,
aa_l(dx/\dy—l—dz/\da:) =dy — dz.
T

Now according to Cartan’s formula, the Lie derivative of ¢ along the vector
field v is

Lyp =v1do+d(vg).

Exercises

1. Classical vector analysis avoids the use of differential forms on R? by
converting 1-forms and 2-forms into vector fields by means of the following
one-to-one correspondences. (£1,¢9,e3 will denote the standard basis e =
[1,0,0], €2 = [07 130]7 €3 = [an’ 1])
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fidz' + foda® + f3da® —— fiei+ faco+ faes
frdz® Ada® + foda® Adat + fyda' Ada? —— frer + faea+ fres

Vector analysis uses three basic operations based on partial differentiation:

1. Gradient of a function f:

3
0
grad(f) =Y 2T
=1

3
2. Curl of a vector field v = sz(x) Ei:
i=1

s Ov? ol o3 o ovt
Curl(“): @_ﬁ €1+ ﬁ_@ €9 + w—@ €3

3
3. Divergence of a vector field v = Zv’(:c) Ei:
i=1

3 .
ov'
di = .
iv(v) > o

=1

Prove that all three operations may be expressed in terms of exterior deriva-
tives as follows:

1. df < grad(f)
2. If ¢ is a 1-form and ¢ < v, then d¢ < curl(v).

3. If n is a 2-form and 1 < v, then dn < div(v) dz' A da? A da3.

Show that the identities
curl(grad(f)) =0
div(curl(v)) =0
follow from the fact that d? = 0.

2. Let f and ¢ be real-valued functions on R%. Prove that

af  of
B) 0

df Adg = a: 8z dx A dy.
or  y

(You may recognize this from the change-of-variables formula for double
integrals.)

3. Suppose that ¢, are 1-forms on R™. Prove the Leibniz rule
d(§ Ap) = dd Avp — § A di.



8 JEANNE NIELSEN CLELLAND

4. Prove the statement above that if F': M} — M5y is described in terms of
local coordinates by

Y=yt ,2"), 1<i<m
then

* ) - 8Z ]
F (dy)zzagjdznj.
j=1

5. Let (r,0) be coordinates on R? and (z,y,z) coordinates on R3. Let
F : R? — R3 be defined by

F(r,0) = (cosf,sind,r).

Describe the differential dF in terms of these coordinates and compute the
pullbacks F*(dx), F*(dy), F*(dz).



