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Abstract

In this paper we consider a family of Dirac-type operators on fibration P → B
equivariant with respect to an action of an étale groupoid. Such a family defines an
element in the bivariant K theory. We compute the action of the bivariant Chern
character of this element on the image of Connes’ map Φ in the cyclic cohomology.
A particular case of this result is Connes’ index theorem for étale groupoids [9] in
the case of fibrations.

1 Introduction

In [36,37], answering a question posed by A. Connes in [6], V. Nistor defined
a bivariant Chern character for a p-summable quasihomomorphism and es-
tablished its fundamental properties. This theory was further developed in
[17,16]. Bivariant Chern character encodes extensive information related to
index theory. In the present paper we compute the action of the bivariant
Chern character on cyclic cohomology in geometric situations arising from
equivariant families of elliptic operators.

We consider first the following geometric situation. Let π : P → B be a
fibration. We assume that we are given a vertical Riemannian metric on this
fibration, i.e. that there is a Riemannian metric on each of the fibers Pb =
π−1(b), which varies smoothly with b. We assume that each Pb is a complete
Riemannian manifold. Let D be a family of fiberwise Dirac type operators on
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this fibration acting on the section of the bundle E . In this paper we consider
only the even-dimensional situation, and hence the bundle E is always Z2-
graded. We assume that an étale groupoid G with the unit space B acts on
this fibration, and that the operator D is invariant under this action. This
means that every γ ∈ G defines a diffeomorphism Pr(γ) → Ps(γ), p 7→ pγ.One
also requires that these diffeomorphisms are compatible with the groupoid
structure, i.e. that (pγ1)γ2 = p(γ1γ2). Notice that this implies that the vertical
metric is invariant under the action of G. We do not assume existence of a
metric on P , invariant under the action of G.

There are two constructions in K-theory and cyclic cohomology we need to
use to describe the problem. The first is Nistor’s bivariant Chern character.
It appears in our setting as follows. The operator D described above defines
an element of the equivariant KK-theory KKG (C0(P ), C0(B)), [30,29]. Using
the canonical map

jG : KKG (C0(P ), C0(B)) → KK (C0(P ) oG,C0(B) oG) (1)

we obtain a class in KK (C0(P ) oG,C0(B) oG) defined by D. This class can
be represented by an explicit quasihomomorphism ψD in the sense of J. Cuntz
[14,15]. Moreover, one can show that ψD actually defines a p-summable quasi-
homomorphism of smooth algebraic cross-products C∞

0 (P )oG and C∞
0 (B)oG

in the sense of V. Nistor [36,37]. One can then use techniques developed in
[36,37] to define the bivariant Chern character Ch(D) in bivariant cyclic ho-
mology which is a morphism of complexes CC∗(C

∞
0 (P )oG) → CC∗(C

∞
0 (B)o

G).

The other tool which we need is the explicit construction, due to A. Connes
[8,9], of the classes in the cyclic cohomology of cross product algebras. Let
M be a manifold on which an étale groupoid G acts, and let MG be the
corresponding homotopy quotient. Then Connes constructs an explicit chain
map of complexes inducing an injective map in cohomology Φ : H∗

τ (MG) →
HC∗ (C∞

0 (M) oG). Here τ denotes a twisting by the orientation bundle of
M . Introduce now the following notations. The map π induces a map PG →
BG = BG which we also denote by π. Since the fibers of PG → BG are
spinc and hence oriented we have a pull-back map π∗ : H∗

τ (BG) → H∗
τ (PG).

Let ÂG(TP/B) ∈ H∗(PG) be the equivariant Â-genus of the vertical tangent
bundle, i.e. the Â-genus of the bundle on PG induced by the vertical tangent
bundle TP/B on P . Note that we use the conventions from [1] in the definitions
of characteristic classes. Let ChG(E/S) be the equivariant twisting Chern
character of the bundle E . If the fibers of P → B have spin structure, and
E = S ⊗ V where S is the vertical spin bundle, then ChG(E/S) = ChG(V )
is just the equivariant Chern character of V . In other words it is the Chern
character of the bundle on PG induced by the bundle V on P . Set now for
c ∈ H∗

τ (BG) π̃∗(c) = (2πi)−
dim P−dim B

2 ÂG(TP/B) ChG(E/S)π∗(c)
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Our main result is then the following:

Theorem 1 The diagram

H∗
τ (PG) Φ //HC∗(C∞

0 (P ) oG)

H∗
τ (BG)

π̃∗

OO

Φ //HC∗(C∞
0 (B) oG)

Ch(D)t

OO (2)

commutes.

As an illustration consider the case when the action of G on P is free, proper
and cocompact. In this case there is a Morita equivalence between the alge-
bras C∞

0 (P )oG and C∞
0 (P/G). We have a canonical class 1 ∈ K0 (C∞

0 (P/G)),
and hence the corresponding class in K0 (C∞

0 (P ) oG). This class can be rep-
resented by an idempotent e ∈ C∞

0 (P ) o G. It can be described explicitly as
follows. Let φ ∈ C∞

0 (P ) be such that for every p ∈ P ∑
r(γ)=π(p) φ(pγ)2 = 1. We

then define an element in C∞
0 (P )oG by e(p, γ) = φ(p)φ(pγ). Since the action

of G on P is proper one can define and index IndD of D in K0(C
∞
0 (G)⊗R)

where R is the algebra of matrices with rapidly decaying entries [10]. One
can represent index of D as the product in KK-theory: IndD = ψD[e]. This,
together with commutativity of (2) allows to compute the pairing of IndD
with H∗(BG) in topological terms:

〈Φ(c),Ch (IndD)〉 =

(2πi)−
dim P−dim B

2

〈
Φ(ÂG(TP/B) ChG(E/S)π∗(c)),Ch e

〉
(3)

Now due to the conditions imposed on the action in this case P/G is a smooth
manifold, and every cocycle C ∈ C∗(G,Ω∗(P )) defines a class [C] ∈ H∗

τ (P/G).
It is easy to see that

〈Φ(C),Ch e〉 =
∫

P/G

[C]. (4)

Hence the pairing in the right hand side equals
∫

P/G

Â(F) Ch(E/S)[π∗(c)],

where F is the foliation on P/G induced by the fibers of the fibration π.
Thus in this case we recover Connes’ index theorem for étale groupoids [9],
for the case when P → B is a fibration. Notice that we have a constant
different from the one in [9], which is due to the different conventions in defin-
ing characteristic classes. Among important particular cases of this theorem
let us mention Connes’-Moscovici higher Γ-index theorem, obtained when the
groupoid G is a discrete group. There are several other proofs of this theorem
using the bivariant Chern character idea, compare [42,39].

Our proof or the Theorem 1 is as follows. Let Ω∗(B) denote the complex of
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smooth currents, i.e. differential forms with values in the orientation bundle,
on the manifold B. Then cohomology of the complex C∗(G,Ω∗(B)) equals
H∗
τ (BG). We show that the diagram of complexes corresponding to (2) com-

mutes up to the chain homotopy of complexes. To this end we use a simplicial
version A [18,19] of the Bismut superconnection [2] to construct a map of
complexes ΦA : C∗(G,Ω∗(B)) → CC∗(C∞

0 (P ) o G) to obtain the following
diagram:

C∗(G,Ω∗(P )) Φ //CC∗(C∞
0 (P ) oG)

C∗(G,Ω∗(B))

π̃∗

OO

ΦA

77oooooooooooo
Φ //CC∗(C∞

0 (B) oG)

Ch(D)t

OO (5)

We then show that each of the triangles in this diagram is commutative up
to homotopy. The map ΦA plays the role of McKean-Singer formula in our
context. To show the commutativity of the upper triangle we replace the
superconnection A by a rescaled superconnection As and compute the limit
when s→ 0. To show commutativity of the lower triangle the classical method
[2] of computing the limit when s→∞ runs into serious difficulties. We avoid
this difficulty by using a modification of the method from [26,27], which was
inspired by [38].

We note that superconnection proofs of the Connes-Moscovici higher Γ-index
theorem were obtained in [31,42]. In our work with J. Lott [26,27] we extended
the methods of [31] to obtain a superconnection proof of Connes’ index theo-
rem for étale groupoids in full generality. While in the present paper also uses
superconnections as the main tool, the approach here is quite different from
the approach in [26,27]. We note also that an alternative approach to local
index theorems is provided in the work of R. Nest and B. Tsygan [33,34].

The paper is organized as follows. In the Section 2 we construct the map ΦA.
Then, after some preparations in the Section 3, we prove commutativity of the
lower triangle in the section 4. In the Section 5 we use Bismut superconnection
to show commutativity of the upper triangle.

The author thanks A. Connes, X. Dai, J. Lott, R. Nest, V. Nistor, H. Moscovici,
P. Piazza, R. Ponge and B. Tsygan for many helpful discussions.

2 Construction of the map ΦA.

In this section we construct the map ΦA, as described in the introduction.
We start by considering in 2.1 the case when our groupoid is just an ordinary
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manifold. Then, after reviewing in 2.2 some definitions and results about ac-
tions of groupoids on algebras, we proceed to give the general construction in
2.3.

2.1 Consider first the following situation. Let P → B be a submersion.
We use the notation from [22] for the cyclic complexes. For an algebra A

set Ck (A) =
(
A⊗ Ā⊗k

)′
, where Ā = A/C1. Let u be a formal variable

of degree 2. We denote by CC∗ (A) the periodic complex of A: the com-
plex (C∗ (A) [u, u−1], b+ uB). For the nonunital algebras we consider the re-
duced cyclic complex of the unitalization. Another complex we consider is

the complex of smooth currents. We use notation Ωk ⊂
(
Ωk

)′
for smooth

currents of degree k. We also adjoin u to this complex, so that (Ω∗)
k =

⊕iu
iΩk−2i, and the differential of degree one is given by u∂ where ∂ = dt is the

transpose of de Rham differential. In this situation we consider the complex
Hom (Ω∗ (B) , CC∗ (C∞

0 (P ))). Here we consider complex of homomorphisms
of C[u, u−1] modules. Let D be a family of Dirac-type operators on this sub-
mersion, acting on the sections of a bundle E . On the base B we have an
infinite-dimensional bundle π∗(E) whose fiber over a point b ∈ B is Γ (E , Pb).
Consider now a superconnection A adapted to the operatorD, compare [1]. We
assume that the superconnection has the form A = D+A[1] + . . . where A[1] is
a connection on the bundle π∗ (E) and A[i] for i > 1 is a proper fiberwise pseu-
dodifferential operator. We assume that the connection in a local trivialization
chart has a form d + ω where ω is a 1-form on B with values in the proper
fiberwise pseudodifferential operators. With such a superconnection we will as-
sociate a cochain ΘA of degree 0 in the complex Hom (Ω∗ (B) , CC∗ (C∞

0 (P ))).

As a first step we have the following proposition.

Proposition 2 The following expression defines a cocycle of degree 0 in the
complex Hom (Ω∗ (B) , C∗ (C∞

0 (P )) [u, u−1]], b+ uB)

θA : c 7→
∑

l≥−deg c
2

u−lθl (c) (6)

where θl ∈ Ck (C∞
0 (P )), k = deg c+ 2l, is given by the formula:

θl (c) (a0, a1, . . . , ak)

=

〈
c,

∫
∆k

Trs a0e
−t0A2

[A, a1] . . . [A, ak]e−tkA2

dt1 . . . dtk

〉
(7)

Here ∆k = {(t0, t1, . . . tk) |
∑
ti = 1, ti ≥ 0}.
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PROOF. It is easy to see that the expression under the trace is a always a
smoothing operator, and hence the trace is well defined. It is also easy to see
that the expression in the formula (7) is nonzero only if deg c− k is even. The
cocycle condition is verified by a direct computation compare [23].

We can now follow the method of Connes and Moscovici [11] and replace θA
by a finite cochain ΘA ∈ Hom (Ω∗ (B) , CC∗ (C∞

0 (P ))).

The construction is as follows. Let As denote the rescaled superconnection
As = sD + A[0] + s−1A[1] + . . ..

Introduce the cochain τs ∈ Hom−1 (Ω∗ (B) , C∗ (C∞
0 (P )) [u, u−1]], b+ uB) de-

fined by τs (c) =
∑
l≥−deg c−1

2
u−l (τs)l (c), where (τs)l (c) ∈ Ck (C∞

0 (P )), k =

deg c+ 2l − 1, is given by the formula:

(τs)l (c) (a0, a1, . . . , ak)

=
k∑
i=0

(−1)i
〈
c,

∫
∆k+1

Trs a0e
−t0A2

s [As, a1] . . .

e−tiA
2
s
dAs

ds
e−ti+1A2

s . . . [As, ak]e
−tkA2

sdt1 . . . dtk+1

〉
(8)

Then we have the following:

Lemma 3
d

ds
(θAs) (c) = (b+ uB) τs (c) + τs (u∂c) (9)

PROOF. Consider the submersion P × [a, b] → B × [a, b] with superconnec-
tion d+ As, s ∈ [a, b], where d is de Rham differential on [a, b]. Here we view
the interval [a, b] as a subset of R for the purpose of defining smooth func-
tions, etc. With the projection p : B × [a, b] → B we can associate a cochain
p∗ ∈ Hom1 (Ω∗ (B) ,Ω∗ (B × [a, b])), which is defined on currents of degree k
as (

∫
)t, where

∫
: Ω∗

c (B × [a, b]) → Ω∗ (B) is the integration along the fibers of
p. Denote by ca a current on B× [a, b] whose value on a form is a composition
of restriction to B × a with c, and similarly for cb. Then if we denote by u∂
differential in Hom1 (Ω∗ (B) ,Ω∗ (B × [a, b])) we have

(u∂p∗) (c) = u (cb − ca) . (10)

Define also e∗ ∈ Hom0 (C∗ (C∞
0 (P × [a, b])) [u, u−1]], C∗ (C∞

0 (P )) [u, u−1]]). e∗

is clearly a cocycle. The Proposition 2 implies that θAs+d is a cocycle in
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Hom (Ω∗ ([0, 1]×B) , CC∗ (C∞
0 ([0, 1]× P ))), and hence

(b+ uB + u∂) (e∗ ◦ θd+As ◦ p∗) (c) = e∗ ◦ θd+As ◦ (u∂p∗) (c)

= ue∗ ◦ θd+As (cb − ca) = u (θAb
− θAa) (c) , (11)

or (θAb
− θAa) (c) = (b+ uB + u∂)u−1 (e∗ ◦ θd+As ◦ p∗) (c). But it is easy to

see that u−1 (e∗ ◦ θd+As ◦ p∗) (c) is exactly
b∫
a
τs (c) ds, and the statement of the

Proposition follows.

We will now study behavior of θAs and τs near s = 0.

Lemma 4 Let V0, V1, . . .Vl are operators acting on sections of some vector
bundle over a manifold M . We assume that Vi is a composition of a pseudod-
ifferential operator of order vi with a compact support with a diffeomorphism
of M , lifted to act on the sections of the vector bundle, and D is a first-
order selfadjoint pseudodifferential operator on M . If vi = max{orderVi, 0}
and

∑
vi ≤ l then∣∣∣∣∣∣∣

∫
∆k

Trs V0e
−t0s2D2

V1 . . . Vle
−tls2D2

dt1 . . . dtl

∣∣∣∣∣∣∣ = O
(
s−

∑
vi−dimM−1

)
(12)

as s→ 0. If Vi and D depend continuously on some parameters, the estimate
is uniform on the compacts.

PROOF. First, using the fact that each Vi is compactly supported integral
operator and exponential decay of the heat kernel off diagonal we can replace
M by a compact manifold changing our expression by at most O (s∞). If
the case when some of the operators Vi have order 1 and the other order 0
this follows from [23] and Weyl asymptotics. In general replace each V i by
V ′
i (1 +D2)

vi with V ′
i of order 0. Then distribute powers of (1 +D2) replacing

as needed (1 +D2)
α
V ′
i by

(
(1 +D2)

α
V ′
i (1 +D2)

−α)
(1 +D2)

α
to reduce to

the case when we have at most
∑
vi + 1 operators Vi of order 1 and the rest

are of order 0 .

Remark 5 More precise asymptotics O
(
s−

∑
orderVi−dimM

)
with no restric-

tions imposed in the previous lemma can be obtained by methods of pseudodif-
ferential calculus, compare [40,41,24].

Remark 6 One can differentiate the expression in the left hand side of (12)
by the parameters,obtaining again an expression of the same kind, by the
Duhamel’s formula. By similar methods one can show that the derivatives
of order α are O

(
s−

∑
vi−dimM−1−2α

)
as s→ 0.
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Proposition 7 There exists a number N , depending on the orders of compo-
nents of superconnection as pseudodifferential operators and dimB such that
for all l > N coefficients θl for u−l in θAs have limit 0 as s → 0, and coeffi-
cients for u−l in τs are integrable near s = 0.

PROOF. Let A2 =
∑F[i], where F[i] is the component of degree i. Then

A2
s = s2D2 +

∑
i≥1 s

(2−i)F[i]. Decomposing [As, a], a ∈ C∞
0 (P ) according to the

form degree looks as follows: [As, a] = sα[0] (a)+α[1] (a)+ . . . s(1−i)α[i] (a)+ . . .
where α[i] (a) are pseudodifferential operators, depending on a, and order of
α[i] (a) is 0 for i = 1, 2, and ki − 1 for i ≥ 2. Using Duhamel’s expansion we

can write component of cochain θ in Hom
(
Ωp (B) , CCk (C∞

0 (P ))
)

as a sum
of finitely many terms of the form∫

∆l

Trs V0e
−t0D2

V1 . . . Vle
−tlD2

dt1 . . . dtl

where each Vi is either α[j] for some j or F[j] for some j. The number of
the terms of the form α[j] is k, and we denote these terms as α[i1], . . . , α[ik].
Similarly denote the terms of the form F[j] as F[j1], . . .F[jm], for some m. If we
rescale the superconnection, this term changes to∫

∆l

sQ Trs V0e
−t0s2D2

V1 . . . Vle
−tls2D2

dt1 . . . dtl

whereQ = (1− i1)+. . .+(1− ik)+(2− j1)+. . .+(2− jm) = k−p+2m ≥ k−p.
Now notice that among the operators Vi there are at most dimB operators of
nonzero form degree, and every operator of zero form degree is bounded. Hence
if vi is the order of Vi as a pseudodifferential operator,

∑
vi ≤ v dimB, where

v = max vi. Since l ≥ k we see that if k ≥ v dimB we can apply the estimate
of the Lemma 4 and obtain that our term is O

(
sk−p−(dimP−dimB)−v dimB−1

)
,

and if k − p > n + v dimB/ + 1, the corresponding component has a limit 0
when s→ 0. Similarly one can show that with the same bound on the degree
k−p we obtain τs is integrable at s = 0. For the future use notice that we can
take N = dimP + (v − 1) dimB + 1.

Proposition 8 Choose any even k ≥ N . Define the cochain ΘA ∈ Hom0 (Ω∗ (B) , CC∗ (C∞
0 (P )))

as
∑
u−l (ΘA)l

(ΘA)l =


(θA)l for l < k

(θA)k −
1∫
0

(B + ∂) (τs)k+1 ds for l = k

0 for l > k

(13)

Then this cochain is a cocycle. Its cohomology class is independent of k.
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PROOF.

Integrating equation (9) and using the results of Proposition 7 we obtain

(θA)l = b (δ)l−1 + (B + ∂) (δs)l+1 (14)

where δl =
∫ 1
0 (τs)l ds and l > k. Set also δl = 0 for l < k. Then ΘA =

θA − (uB + b+ u∂) δ is a cocycle, since θA is one. If we change k to k′,k < k′

the cocycle ΘA will change by (b+ uB + u∂) (
∑
k<i<k′ δi) so its cohomology

class remains the same.

Assume now that we have a smooth family of superconnections A(t), adapted
to the family D. We then have the following

Proposition 9 Let A(t) be a continuous family of superconnections adapted
to the family D. Then

ΘA(1) −ΘA(0) = (b+ uB + u∂)T (15)

where TA(t) ∈ Hom−1 (Ω∗ (B) , CC∗ (C∞
0 (P ))) is defined by the formula TA(t) =

u−1
∫

t∈[0,1]

e∗ ◦ Θd+A(t) ◦ p∗. Here p∗ ∈ Hom1 (Ω∗ (B) ,Ω∗ (B × [0, 1])) is defined

by

p∗ (c) =

 ∫
B×[0,1]/B


t

c, (16)

Θd+A(t) is a cocycle in Hom0 (Ω∗ (B × [0, 1]) , CC∗ (C∞
0 (P × [0, 1]))) and e is

the pull-back C∞
0 (P ) → C∞

0 ([0, 1]× P ). Here we use the same truncation to
construct Θd+A(t), ΘA(1) and ΘA(0).

PROOF. Notice that the superconnection d + A(t) satisfies all the condi-
tions necessary to construct the cocycle Θd+A(t) by choosing the appropriate
truncation. The rest of the proof is the same as the proof of the Lemma 3.

To extend this construction to the case of nontrivial groupoid action notice
that this construction can be sheafified. Consider the following sheaves on B:
one is given by U 7→ Ω∗ (U), the other is the sheafification of the presheaf
given by U 7→ CC∗ (C∞

0 (π−1 (U))). Both of these sheaves are fine. The map
ΘA constructed above defines a morphism of these complexes of sheaves.
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2.2 We now review some notation and definitions regarding groupoid alge-
bras and cross-products by groupoids [28,12]. Let F be a soft sheaf on B = G(0)

with an action of G. This means that every γ ∈ G defines a map Fs(γ) → Fr(γ),
which is continuous. We denote by C∗ (G,F ) the complex of nonhomogeneous
G-cochains with values in F . It can be described as follows. Set for n ≥ 1:

G(n) = {(γ1, γ2, . . . , γn) ∈ Gn | s (γi) = r (γi+1) , i = 1, 2, . . . n− 1} (17)

We have for every n a map εn : G(n) → B defined by

εn (γ1, γ2, . . . , γn) = r (γ1) (18)

Set Cn (G,F ) = Γ
(
G(n); ε∗nF

)
. To define the coboundary operator we use the

simplicial maps δi : G(n) → G(n−1). They are given for n > 1 by the formula

δi (γ1, γ2, . . . , γn) =


(γ2, . . . , γn) if i = 0

(γ1, . . . , γiγi+1 . . . , γn) if 1 ≤ i < n− 1

(γ1, γ2, . . . , γn−1) if i = n

. (19)

For n = 1 δ0 (γ1) = r (γ1) and δ1 (γ1) = s (γ1). The coboundary δ : Cn−1 (G,F ) →
Cn (G,F ) is given by

∑n
i=0 (−1)i δi where the action of G on F is used to iden-

tify δ∗0ε
∗
n−1F with ε∗nF . We can apply this construction if F = (F ∗, d) is a

complex of sheaves with a differential d : F ∗ → F ∗+1. In this case C∗ (G,F ∗)
is a bicomplex; we consider only finite cochains in this bicomplex. To form a
total complex of this bicomplex we equip it with the differential ±δ+d, where
± = (−1)n on Cm (G,F n).

If A is a sheaf of algebras over G, one can form a G-sheaf CC∗ (A), defined as
sheafification of the presheaf U 7→ CC∗ (Γc (U ;A)). In our examples this sheaf
is always fine. Hence we can define a complex C∗ (G,CC∗ (A)). On the other
hand one can form a cross-product algebra AoG, defined as functions on G
with f (γ) ∈ Ar(γ). The product is given by convolution taking the action of G
on A into account. When A is the sheaf of smooth functions on B one obtains
the convolution algebra which we denote by C∞

0 (G). One can then define a
map of complexes

Φ : C∗ (G,CC∗ (A)) → CC∗ (AoG) (20)

This map has been constructed in [12], based on the constructions in [5],
compare also [35], [20], [22] . An important particular case is when A is the
sheaf C∞(B) of smooth functions on B. In this case there is a canonical
morphism of complexes of sheaves ι : Ω∗ (B) → CC∗ (C∞

0 (B)) defined on the
current c of degree m by

ι(c)(a0, a1, . . . , am) =
1

m!
〈c, a0da1 . . . dam〉 . (21)

10



Composing ι with the map in (20) one obtains Connes’ map [8,9], also denoted
by Φ:

Φ : C∗ (G,Ω∗ (B)) → CC∗ (C∞
0 (G)) . (22)

We will use the following properties of the map Φ, compare [12]:

• If A, B two G-algebras and f : A→ B is a G-homomorphism, we get a natu-
ral induced homomorphism, which we also denote by f , from AoG to BoG.
Also the induced map f ∗ : CC∗ (B) → CC∗ (A) is G-equivariant, and hence
defines a map, also denoted by f ∗, from C∗ (G,CC∗ (B)) to C∗ (G,CC∗ (A)).
Then the following diagram commutes:

C∗ (G,CC∗ (A)) Φ //CC∗ (AoG)

C∗ (G,CC∗ (B))

f∗

OO

Φ //CC∗ (B oG)

f∗

OO (23)

• If A is a filtered algebra and the action of G preserves filtration then the
complexes C∗ (G,CC∗ (A)) and CC∗ (AoG) also are naturally filtered. The
map Φ preserves this filtration.

• Let Ui be an open cover of B and set B′ =
∐
Ui. Let G′ be the pull-

back of the groupoid G by the natural projection p : B′ → B. Set also
A′ = p∗A. Then A′ is naturally a G′-algebra. The cross-products A o G
and A′ oG′ are naturally Morita equivalent. We also have a pull-back map
C∗ (G,CC∗ (A)) → C∗ (G′, CC∗ (A′)). Then the following diagram is com-
mutative up to homotopy:

C∗ (G′, CC∗ (A′)) Φ //CC∗ (A′ oG′)

C∗ (G,CC∗ (A)) Φ //

OO

CC∗ (AoG)

OO (24)

Here the vertical arrows are the isomorphisms induced by the pull-back and
Morita equivalence respectively.

2.3 Let G be an étale groupoid with the unit space G(0). We say that a
manifold P is a G-space if we are given submersion π : P → G(0), and for
every γ ∈ G we have a diffeomorphism γ : Pr(γ) → Ps(γ). Here Pb, b ∈ B is
a fiber p−1 (b) over the point b. The diffeomorphisms γ should be compatible
with the groupoid structure. We assume also that the fibers are equipped with
the complete G-invariant Riemannian metric, and we are given a family of G-
invariant fiberwise Dirac operators acting on the sections of G-equivariant
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bundle E . We define the map ΘA associated to the simplicial superconnection.

P (n) = {(p, γ1, γ2, . . . , γn) ∈ P ×Gn | π (p) = r (γ1) and s (γi) = r (γi+1)}
(25)

For n = 0 we set P 0 = P . Note that π induces a natural submersion πn :
P (n) → G(n):

πn (p, γ1, γ2, . . . , γn) = (γ1, γ2, . . . , γn) . (26)

For every 0 ≤ i ≤ n we get a submersion map δi : P (n) → P (n−1) defined by

δi (p, γ1, γ2, . . . , γn) =


(pγ1, γ2, . . . , γn) if i = 0

(p, γ1, . . . , γiγi+1 . . . , γn) if 1 ≤ i < n− 1

(p, γ1, γ2, . . . , γn−1) if i = n

. (27)

The underlying map of the base spaces is given by the formulas (19). We
introduce also submersion maps αi : P (n) → P , i = 0, 1, . . . , n defined by

αi (p, γ1, . . . , γn) =

pγ1 . . . γi if i > 0

p if i = 0
. (28)

The underlying maps of the base spaces are αi (γ1, . . . , γn) = s (γ1 . . . γi), with
α0 (γ1, . . . , γn) = r (γ1). On each of the spaces P (n) we consider the bundle
E (n) = α∗0E . It is naturally isomorphic to each of the bundles α∗i E , with the
isomorphism given by the action of G on E .

We now give a definition of simplicial connection. Natural imbedding of the
simplex as a subset of Rn allows one to talk about smooth functions, etc. on
the simplex. By simplicial connection we mean a collection of connections ∇(n)

on the πn× id : P (n)×∆n → B(n)×∆n where ∆n = {σ0, . . . , σn ∈ R | ∑
σi =

1, σi ≥ 0} satisfying the following compatibility conditions, compare [19]:

(id× ∂)∗∇(n) = (δi × id)∗∇(n−1) (29)

Here ∂i : ∆n−1 → ∆n is the i-th face map given by (σ0, . . . σn−1) 7→ (σ0, . . . σi−1, 0, σi, . . . σn−1).
We also require that our connection has the hollowing property: in a local chart
∇(n) can be written as d+ ω; we require that ω

(
∂
∂σi

)
= 0.

Existence of simplicial connections follows from the following construction.
One starts with an arbitrary connection ∇ on the submersion P → G(0).
Then one can set

∇(n) =
n∑
i=0

σiα
∗
i∇+ ddR (30)

where we set ∇(0) = ∇. Here ddR is de Rham differential on ∆n.

12



A G-invariant family D naturally defines a family of fiberwise operators on
each of the submersion πn, which we also denote by D. We then define sim-
plicial superconnection A on G-submersion π : P → B as a collection of
superconnections on submersions πn × id : P (n) ×∆n → G(n) ×∆n, adapted
to D and satisfying the compatibility conditions:

(id× ∂i)
∗ A(n) = (δi × id)∗ A(n−1). (31)

We also require that they have the following properties. Locally the super-
connection A(n) can be written as d + ω where ω is sum of differential forms
on G(n) × ∆n. We require that every component of ω which has a positive
degree in dσ variables also has a positive degree in G(n) variables. It follows

that
(
A(n)

)2
also has this property. In particular we see that there exists num-

ber r > 0 such that every component of ω or of
(
A(n)

)2
of degree m in dσ

has degree at least m/r in G(n) direction. We also require that the degrees of
components of A(n) as pseudodifferential operators are bounded uniformly in
n.

An example of such superconnection is given by the A0 = D + ∇, with ∇
an arbitrary simplicial connection. More precisely we set A(n) = D + ∇(n).
Another example is given by the Bismut simplicial superconnection described
in the section 5.

We now use simplicial superconnection A to construct the map ΦA. We start
by constructing a cocycle {Θi

A} ∈ C∗ (G,Hom (Ω∗ (B) , CC∗ (C∞
0 (P )))).

Introduce the cochains pn ∈ Homn (Ω∗ (B) ,Ω∗ (B ×∆n)) by the formula

pn (c) =

 ∫
B×∆n/B


t

c. (32)

Here we view Ω∗ (B ×∆n) as a sheaf on B.

θnA = u−n (en)
∗◦θA(n)◦pn ∈ Hom−n

(
Ω∗

(
G(n)

)
, C∗

(
C∞

0

(
P (n)

))
[u, u−1]], b+ uB

)
.

(33)
Similarly one constructs τns by using the superconnection A(n).

Lemma 10 There exists number L such that θnA = 0 and τns = 0 for n > L.

PROOF.

Let U ∈ G(n) be an open set, c ∈ Ω∗ (U), ai ∈ C∞
0 (π−1

n (U)). Then

13



(e∗ ◦ θA(n))l (p
n (c)) (a0, a1, . . . , ak)

=

〈
c,

∫
∆n×G(n)|G(n)

∫
∆k

Trs a0e
−t0(A(n))

2

[A(n), a1] . . . [A(n), ak]e
−tk(A(n))

2

dt1 . . . dtk

〉
.

(34)

Now due to the conditions imposed on the superconnection every component
of [A(n), ai] of degree m in dσ variables has degree at least m/k in the G(n)

direction, and the same is true about
(
A(n)

)2
. Duhamel’s expansion shows that

the same is true about e−t(A(n))
2

. Hence the component of the expression under
the integral which has degree n in dσ variables has degree at least n/r in the
G(n) direction. Since dimG(n) = dimB this expression is 0 for n > r dimB.
The same argument works for τns .

From this and the Proposition 7 we immediately obtain the following:

Proposition 11 There exists a number N , depending on the orders of com-
ponents of superconnection as pseudodifferential operators and dimB and in-
dependent of n such that for all l > N lim

s→0

(
θnAs

)
l
= 0 and (τns )l (c) is integrable

near s = 0.

We now can construct cochains Θn
A ∈ Hom−n

(
Ω∗

(
G(n)

)
, CC∗

(
C∞

0

(
P (n)

)))
as follows. Chose any k > N , with N as in the previous Proposition, and
define the cochain ΘA(n) as in the Proposition 8. We define then Θn

A = u−ne∗ ◦
ΘA(n) ◦ pn. Notice that Θn

A = 0 for n > r dimB. Hence we can view Θn
A as a

cochain in C∗ (G,Hom (Ω∗ (B) , CC∗ (C∞
0 (P )))). We then have the following

Lemma 12
(b+ uB + u∂) Θn

A = (−1)n−1 δΘn−1
A . (35)

PROOF. First, notice that as in the proof of Proposition 8 we have e∗ ◦
(b+ uB + u∂) ΘA(n) ◦ pn = 0. Hence (b+ uB + u∂) Θn

A = e∗ ◦ΘA(n) ◦u∂pn. We
have

∂pn = (−1)n−1
n∑
i=0

(−1)i (id× ∂i)∗ ◦ p
n−1. (36)

The result of the Proposition then follows from this formula together with the
compatibility conditions (31).

Theorem 13 The cochain {Θi
A} =

∑
n≥0 Θn

A ∈ C∗ (G,CC∗ (C∞
0 (P ))) is a

cocycle. The cohomology class of this cocycle is independent of the choice of
simplicial superconnection adapted to the family D.

14



PROOF. The first assertion – that {Θi
A} is a cocycle – follows immediately

from the Lemma 12. To see independence of the connection let A be any sim-
plicial superconnection and let A0 = D+∇, where ∇ = {∇(n)} is an arbitrary
simplicial connection. Define then A(t) = tA+(1− t) A0. More precisely we set

A(t)(n) = tA(n) +(1− t) A(n)
0 . A(t) is then a simplicial superconnection for ev-

ery 0 ≤ t ≤ 1, i.e. the equation (31) is satisfied, as well as the conditions listed
after that equations. Moreover, we can use the same number r as defined there.
It follows that we can use the construction of the Proposition 9 and construct
for every n a cochain T nA(t) = u−ne∗◦TA(t)(n) ◦pn, which is 0 for n > r dimB+1.

Hence we get a cochain {T iA(t)} ∈ C∗ (G,Hom (Ω∗ (B) , CC∗ (C∞
0 (P )))). As in

the Lemma 12 we obtain

(b+ uB + u∂)T nA(t) = (−1)n δT n−1
A(t) + Θn

A −Θn
A0

(37)

and hence (b+ uB + u∂ ± δ) {T iA(t)} = {Θi
A} − {Θi

A0
}. We conclude that the

cocycle {Θi
A} is cohomologous to the cocycle {Θi

A0
} for every simplicial super-

connection A.

Now using the cup product

∪ : C∗ (G,Hom (Ω∗, CC
∗ (C∞

0 (P ))))⊗ C∗ (G,Ω∗) → C∗ (G,CC∗ (C∞
0 (P )))

(38)
we construct the map C∗ (G,Ω∗) → C∗ (G,CC∗ (C∞

0 (P ))) defined by α 7→
{Θi

A} ∪ α. We obtain the map ΦA by composing this map with the map Φ :
C∗ (G,CC∗ (C∞

0 (P ))) → CC∗ (C∞
0 (P ) oG). Explicitly we define

ΦA (α) = Φ
(
{Θi

A} ∪ α
)

(39)

The following theorem follows immediately from the Theorem 13.

Theorem 14 Let A be a simplicial superconnection adapted to the family D.
Then ΦA defined in the equation (39) is a cochain map of complexes. If A′ is
another simplicial superconnection adapted to the family D, the maps ΦA and
ΦA′ are homotopic.

3 Fiberwise Pseudodifferential Operators and Bivariant Chern Char-
acter

In this section we consider the properties of the algebra of the proper fiberwise
pseudodifferential operators which will be needed in our discussion of the
bivariant Chern character in the Section 4. We start by giving the general
definitions in 3.1. Then in 3.2 we define the trace map on the cyclic complex
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of this algebra. In 3.3 we discuss a different construction of the trace map,
involving connections. Finally in 3.4 we show that the two maps are the same
up to homotopy.

3.1 Let F be a G-equivariant bundle over P . We assume that F is Z2-
graded with the grading given by the operator γ ∈ End (F). In this section we
consider the algebra Ψ (F) of the fiberwise pseudodifferential operators on the
submersion P → B of order 0 acting on the sections of the bundle F which
are even with respect to the grading and whose Schwartz kernel is compactly
supported. The Z2 grading we use here is induced by the grading of F .

This algebra also has a natural filtration by the order of pseudodifferential op-
erators. This filtration induces corresponding filtration on the cyclic homology
complex of the algebra Ψ (F). We denote by F−kCC∗ (Ψ (F)) the subcomplex
of the cyclic complex CC∗ (Ψ0) generated by the

⊕
j0+...jl≤−k

Ψj0 (F) ⊗ . . . ⊗

Ψjl (F). Thus we obtain filtration

CC∗ (Ψ (F)) = F 0CC∗ (Ψ (F)) ⊃ F−1CC∗ (Ψ (F)) ⊃ F−2CC∗ (Ψ (F)) ⊃ . . .

It follows from Goodwillie’s theorem [25], compare also [17], that the inclusion
F−iCC∗ (Ψ (F)) → F−1CC∗ (Ψ (F)) is a quasiisomorphism for every i.

We will also consider the dual complexes FkCC
∗ (Ψ (F)), so that we have

CC∗ (Ψ (F)) = F0CC
∗ (Ψ (F)) ⊂ F1CC

∗ (Ψ (F)) ⊂ F2CC
∗ (Ψ (F)) ⊂ . . .

Groupoid G acts on Ψ (F), preserving the order filtration. We can then form
the cross-product algebra Ψ (F)oG, which inherits filtration from the algebra
Ψ (F). We use this filtration to construct the complexes F−kCC∗ (Ψ (F) oG)
and FkCC

∗ (Ψ (F) oG). Note also that the map Φ defines a map of complexes:

Φ : C∗ (G,FiCC
∗ (Ψ (F))) → FiCC

∗ (Ψ (F) oG) . (40)

3.2 Now assuming that P → B is a fibration we construct for every
n > dim (P )− dim (B) a map

τ : F−nCC∗ (Ψ (F) oG) → CC∗ (C∞
0 (G)) . (41)

The construction is as follows, compare [13]. Consider a covering Ui of B
trivializing the fibration. Set B′ =

∐
Ui. Also set P ′ =

∐
π−1Ui. The pull-back

groupoid G′ then acts on the trivial fibration π′ : P ′ → B′. Morita equivalence
induces an isomorphism CC∗ (Ψ (F) oG) → CC∗ (Ψ (F ′) oG′), where F ′ is
the pull-back of F to P ′. This isomorphism preserves filtrations. This allows
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us to assume that the fibration is trivial, P = F × B with π given by the
projection on the second factor. Notice that since the fibration is trivial the
action of G on B induces an action on the fibration by (f, b) γ = (f, bγ). We
will call this action the product action. This action is different in general from
the action arising from the original action on P .

We will need to consider a bigger algebra Ψ∆ = Ψ∆ (F) = Ψ (F)oDiff instead
of the algebra Ψ (F), where Diff is the group of smooth families of the fiberwise
diffeomorphisms, viewed as a discrete group. An element of this algebra can be
viewed as a fiberwise integral operator on the fibration with a distributional
kernel. We will denote by Ψ∆ ot G the cross product of the algebra Ψ∆
by the product action. The algebra Ψ∆ contains a dense subalgebra defined
as an algebraic tensor product of the algebra K of the smoothing integral
operators on the fiber with the smooth compactly supported functions on
B. The corresponding cross-product algebra is the algebraic tensor product
C∞

0 (G)⊗K, and we define τ0 by

τ0 ((a0 ⊗ k0)⊗ . . . (ai ⊗ ki)) = Trs (k0 . . . ki) a0 ⊗ a1 . . . ai (42)

where ai ∈ C∞
0 (G), ki ∈ K. The map τ0 then has a unique extension to the

cyclic complex F−nCC∗(Ψ∆ ot G).

We now consider the general case, when the action on the fibration is not
necessarily the product. In this case the action of γ ∈ G is given by

(f, b) γ = (σ (γ) f, bγ) (43)

where σ (γ) is a diffeomorphism of the fiber F . Notice that σ has to satisfy
the cocycle condition:

σ (γ1γ2) = σ (γ2)σ (γ1) (44)

We will denote by Ψ∆ o G the cross-product of Ψ∆ by G with the action
given by (43). These two cross-products are isomorphic as filtered algebras.
Explicitly the isomorphism I : Ψ∆ oG→ Ψ∆ ot G is given by

(I (f)) (γ) = f (γ)σ (γ) (45)

We can now define the trace map τ by

τ = τ0 ◦ I∗ ◦ i∗ (46)

where i : Ψ (F) oG→ Ψ∆ oG is the inclusion map.
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3.3 On the other hand a choice of simplicial connection ∇ as in the section
2 provides us with the map

T∇ : C∗ (G,Ω∗ (B)) → FkCC
∗ (Ψ) (47)

where k depends on the choice of the superconnection ∇, or more precisely on
order of it as a vertical pseudodifferential operator. The definition is parallel
to the definition of the map ΘA but only the connection part is used instead of
the full superconnection. Since the definition is very close to the construction
in the section 2, we give just a brief outline here.

Notice that Ψ (F) naturally can be viewed as compactly supported sections
of a sheaf over B U 7→ ΨU (F), where ΨU (F) is the algebra of proper fiber-
wise pseudodifferential operators on the submersion π−1 (U) → U . We can
then form a sheaf CC∗ (Ψ (F)) as the sheafification of the presheaf U 7→
CC∗

((
ΨU (F)

)
c

)
.

First we consider the case of the trivial action of G. In that case for any choice
of connection∇ on P → B we can define a cocycle L∇ ∈ Hom (Ω∗ (B) , FmCC

∗ (Ψ (F)))
by the formula similar to the equation (7) and m is specified below in (50).
Explicitly we define

L∇ : c 7→
∑

l≥−deg c
2

u−lLl (c) (48)

where Ll (c) ∈ Ck (Ψ (F)), k = deg c+ 2l, is given by the formula:

Ll (c) (a0, a1, . . . , ak)

=

〈
c,

∫
∆k

Trs a0e
−t0∇2

[∇, a1] . . . [∇, ak]e−tk∇
2

dt1 . . . dtk

〉
(49)

Here we view ∇2 as a 2-form on B with values in the fiberwise differential
operators and define e−t∇

2
by the usual series.

If∇ locally looks like d+ω where ω is a one-form onB with values in the proper
fiberwise pseudodifferential operators of order v ≥ 1. Then ∇2 is a vertical
operator of order at most 2v. If a0⊗ . . .⊗ak above is in F−mCC∗ (Ψ (F)) then
the expression under the integral above is a compactly supported fiberwise
pseudodifferential operator of order at most v dimB−m. Hence the expression
under the integral will be well-defined if

m > (v − 1) dimB + dimP. (50)

Next given a simplicial connection ∇(n) we construct a cocycle

{Li∇} ∈ C∗ (G,Hom (Ω∗ (B) , FmCC
∗ (Ψ (F)))) . (51)
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The n-th component Ln∇ ∈ ε∗n Hom−n (Ω∗ (G) , FmCC
∗ (Ψ (F))) is given by

Ln∇ = u−ne∗ ◦ L∇(n) ◦ pn. We assume that order of ∇(n) as a pseudodiffer-
ential operator is bounded by v, independent from n. Then for Ln∇ to be
well-defined it is sufficient to have m > (v − 1) (dimB + n) + dimP . How-
ever, as before we have Ln∇ = 0 for n > dimB, by exactly the same ar-
gument as in the section 2. This implies that we indeed get a cochain in
C∗ (G,Hom (Ω∗ (B) , FmCC

∗ (Ψ (F)))), and also that anym > 2 (v − 1) dimB+
dimP can be used for all n. The same argument shows that this cochain is
indeed a cocycle. We can now construct a map of complexes C∗ (G,Ω∗ (B)) →
CC∗ (G,FmCC

∗ (Ψ (F))) by taking the cup product with {Li∇}. Following it
by the map Φ we obtain our map T∇. It is a map of complexes and different
choice of simplicial connection leads to a chain-homotopic map. Explicitly we
have

T∇ (α) = Φ
(
{Li∇} ∪ α

)
. (52)

3.4 In this section we prove the following result:

Theorem 15 The following diagram is commutative up to homotopy.

FmCC
∗ (Ψ (F) oG)

C∗ (G,Ω∗ (B))

T∇

77nnnnnnnnnnnnnnnnnnnnnnnnn
Φ //CC∗ (C∞

0 (G))

(τ)t

OO (53)

PROOF.

First we reduce this statement to the case of trivial fibration P → B. Let
P ′, B′ and G′ be as in section 3.2, and Ψ′ -corresponding sheaf of algebras of
pseudodifferential operators on P ′ → B′. We then have for every n a natural
projection ρ : (G′)(n) → G(n), and (P ′)(n) is a pull-back, as a bundle, of P (n)

under this projection. We can construct a simplicial connection ∇′ by setting
(∇′)(n) = ρ∗∇(n). It is easy to see then that {Li∇′} = ρ∗{Li∇}. This implies
that the diagram

C∗ (G′,Ω∗ (B′))
·∪{Li

∇′} //C∗ (G′, FmCC
∗ (Ψ (F ′)))

C∗ (G,Ω∗ (B))

ρ∗

OO

·∪{Li
∇} //C∗ (G′, FmCC

∗ (Ψ (F)))

ρ∗

OO (54)
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commutes. This, together with (24) implies commutativity of the diagram

C∗ (G′,Ω∗ (B′))
T∇′ //FmCC

∗ (Ψ (F ′) oG′)

C∗ (G,Ω∗ (B))

ρ∗

OO

T∇ //FmCC
∗ (Ψ (F) oG)

OO (55)

up to homotopy. Here the right vertical arrow is induced by the Morita equiv-
alence. This, together with the definition of the map τ and (24) implies that
the statement in the general case follows from the statement in the case of the
trivial fibration.

Next consider the case of the trivial fibration with the product action. We can
chose a trivial connection on fibrations P (n) → G(n), i.e. the one given by the
de Rham differential d with respect to the decomposition P (n) = F×G(n). This
clearly defines a simplicial connection which we denote ∇0. Commutativity of
the diagram (53) in this case is clear.

Consider now the general case: P = F ×B, the action is given by the formula
(45), and let ∇1 be an arbitrary simplicial connection. The statement will
follow from the previous observations and the following result: the diagram

FmCC
∗ (Ψ∆ oG)

C∗ (G,Ω∗ (B))

T∇1

44hhhhhhhhhhhhhhhhhh

T∇0

**VVVVVVVVVVVVVVVVVV

FmCC
∗ (Ψ∆ ot G)

I∗

OO (56)

is commutative up to homotopy. To prove this consider the algebra M2 (Ψ∆).
The product action of G on Ψ∆ induces an action on the algebra M2 (Ψ∆)
which we denote as m 7→ mγ. Consider now another action of G on this
algebra:

γ (m) =

1 0

0 σ (γ)

mγ

1 0

0 σ (γ)


−1

(57)

We use this action to form the cross-product algebra M2 (Ψ∆)oG. Notice that
we have homomorphisms i0 : Ψ∆ ot G → M2 (Ψ∆) o G and i1 : Ψ∆ o G →
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M2 (Ψ∆) oG defined by

i0 (f) (γ) =

f (γ) 0

0 0

 (58)

i1 (f) (γ) =

0 0

0 f (γ)

 (59)

Notice that these homomorphisms are induced by the G-homomorphisms of
the corresponding algebras. Let Λ be an automorphism of M2 (Ψ∆) o G
given by

Λ (f) =

0 −1

1 0

 f
0 −1

1 0


−1

. (60)

Notice that
i0 ◦ I = Λ ◦ i1 (61)

We can construct a new simplicial connection ∇0⊕∇1 on π∗ (F)⊕π∗ (F). Its
commutation with elements of M2 (Ψ∆) is given by∇0 ⊕∇1,

a b
c d


 =

 [∇0, a] [∇0, b]− b (∇1 −∇0)

[∇0, c] + (∇1 −∇0) c [∇1, d]

 (62)

and the curvature is

(∇0 ⊕∇1)
2 =

∇2
0 0

0 ∇2
1

 (63)

One way to view this construction is to replace P with P t P , fibered over
B, with the G action on the first copy being the product action and on the
second copy being the one given by equation (45). The algebra M2 (Ψ∆) is
then the cross-product algebra for this G-fibration.

We can use connection ∇0 ⊕∇1 to construct the map

T∇0⊕∇1 : C∗ (G,Ω∗ (B)) → FmCC
∗ (M2 (Ψ∆) oG) (64)

for m large enough. We then have

(i0)
∗ T∇0⊕∇1 = T∇0 (65)

(i1)
∗ T∇0⊕∇1 = T∇1 (66)

Here we have used the fact that the map Φ is compatible with homomorphisms.
It follows these equalities and equation (61) that

I∗ ◦ T∇0 = I∗ ◦ (i0)
∗ ◦ T∇0⊕∇1 = (i1)

∗ ◦ Λ∗ ◦ T∇0⊕∇1 (67)
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We now notice that Λ∗ ◦ T∇0⊕∇1 is homotopic to T∇0⊕∇1 . Indeed, let Λt be an
automorphism of M2 (Ψ∆) oG given by

Λt (f) =

cos t − sin t

sin t cos t

 f
 cos t sin t

− sin t cos t

 (68)

Then Λ0 = id, Λπ
2

= Λ. Since we have d
dt

Λt (f) = [λ,Λt (a)], where λ =0 −1

1 0

 these maps satisfy d
dt

Λ∗
t = Λ∗

tLλ, where Lλ is the action of the deriva-

tion adλ on the cyclic complex. Notice that this derivation preserves the order
filtration. We then have a homotopy formula

Lλ = [(B + b) , Hλ] (69)

for the action of Lλ, [7,25,21]. Explicit formulas for Hλ are not important here,
we just need to know that it preserves the order filtration, since Lλ does. Since
T∇0⊕∇1 is a map of complexes we conclude that

d

dt
Λ∗
t ◦ T∇0⊕∇1 (c) =

(b+ uB) (HλΛ
∗
tT∇0⊕∇1) (c)− (HλΛ

∗
tT∇0⊕∇1) (±δ + u∂) . (70)

Integrating from 0 to π/2 provides us with desired homotopy and finishes the
proof.

4 Comparison with the bivariant Chern character.

We start by reviewing in 4.1 V. Nistor’s construction of the bivariant Chern
character. Then in 4.2 we explain the construction of the quasihomomorphism
ψD. Finally in 4.3 we show the commutativity of the lower triangle in (5) up
to homotopy.

4.1 In [36,37] V. Nistor constructed a bivariant Chern character of a quasi-
homomorphism. We will need the following from this construction. Given al-
gebras A and B, where B is equipped with filtration B = B0 ⊃ B1 . . ., with
BiBj ⊂ Bi+j. We can use this filtration introduce cyclic complexes F iCC∗ (B)
and FiCC

∗ (B) as in the section 3.1.

A quasihomomorphism Υ is a pair of homomorphisms υ0, υ1 : A → B such
that

υ1 (a)− υ0 (a) ∈ B1 (71)
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V. Nistor constructed a sequence of maps ci (Υ) : CC∗ (A) → CC−i
∗ (B), i =

1, 2, . . ., which satisfy the following properties:

• The first map c1 (Υ) is given by the formula

c1 (Υ) =
1

2
((υ1)∗ − (υ0)∗) (72)

We introduce the coefficient 1
2

since we consider below the symmetrized
version of quasihomomorphism associated to an operator, compare [7].

• If ri : F−iCC∗ (B) → F−1CC∗ (B) is the natural inclusion, then ri ◦ ci (Υ)
is homotopic to c1 (Υ) for i ≥ 1.

The construction proceeds as follows. Starting with the algebra A one con-
structs certain canonical algebra QA with filtration, together with canoni-
cal quasihomomorphism j = (j0, j1) from A to QA. One constructs canon-
ical maps si : F−1CC∗ (QA) → F−iCC∗ (QA) as follows: s1 = id, si+1 =
si + [b+uB,Hi], where Hi is a certain canonical endomorphism of CC∗ (QA),
which preserves filtration. We note that si defines a homotopy equivalence of
the complexes F−1CC∗ (QA) and F−iCC∗ (QA) for every i, with the homo-
topy inverse given by the inclusion F−iCC∗ (QA) → F−1CC∗ (QA). One then
can define the bivariant Chern character of the canonical quasihomomorphism
j. This is a sequence of canonical maps ck (j) : CC∗ (A) → F kCC∗ (QA) where
c1 (j) = 1

2
((i1)∗ − (i0)∗) and ck (j) = sk ◦ c1 for k ≥ 1. Now the quasihomo-

morphism Υ from A to B defines canonically a homomorphism h : QA→ B,
which preserves filtration. The bivariant Chern character of Υ then is defined
as ci (Υ) = h∗ ◦ ci (j).

We introduce also ci (Υ) = ci (Υ)t. Assume now that A and B are G-algebras,
filtration on B is G-invariant and υ0, υ1 are G-equivariant. In this case these
maps have the following naturality property. A G-equivariant quasihomomor-
phism induces a quasihomomorphism from A o G to B o G, which we also
denote by Υ. Since all the steps in the construction of the bivariant Chern
character are canonical ci (Υ) can be chosen to be G-equivariant. Hence its
transposed induces a map C∗ (G,FiCC

∗ (B)) → C∗ (G,CC∗ (A)).

Proposition 16 The following diagram is commutative up to homotopy for
every i ≥ 1:

C∗ (G,CC∗ (A)) Φ //CC∗ (AoG)

C∗ (G,FiCC
∗ (B))

ci(Υ)

OO

Φ //FiCC
∗ (B oG)

ci(Υ)

OO (73)
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PROOF. We start by showing the commutativity of the diagram

C∗ (G,CC∗ (A)) Φ //CC∗ (AoG)

C∗ (G,FiCC
∗ (QA))

ci(j)

OO

Φ //FiCC
∗ (QAoG)

ci(j)

OO (74)

First notice that since QA is constructed canonically it is indeed a G-algebra,
so the statement makes sense. For i = 1 the commutativity is clear. Hence it
is enough to show the commutativity up to homotopy of the diagram

C∗ (G,F1CC
∗ (QA)) Φ //F1CC

∗ (QAoG)

C∗ (G,FiCC
∗ (QA))

si

OO

Φ //FiCC
∗ (QAoG)

si

OO (75)

Here both vertical arrows are transposed of the maps si mentioned above. The
right vertical arrow is constructed for the algebra QA o G. The left is con-
structed from the transposed of si for the algebra QA. Since the construction is
canonical it is G-equivariant, and hence defines a map C∗ (G,FiCC

∗ (QA)) →
C∗ (G,F1CC

∗ (QA)). Notice that both of these maps are homotopy equiva-
lences of complexes, with the inverses induced by inclusion. This statement
follows from the Goodwillie’s theorem [25] for the right vertical arrow. For the
left arrow we notice that the homotopy Hi above is constructed canonically
and hence is G-equivariant. As a result Hi defines a filtration-preserving en-
domorphism of C∗ (G,CC∗ (QA)). This implies that si is indeed a homotopy
equivalence. Note that since we consider only the finite cochains in the complex
C∗ (G,CC∗ (QA)) the fact that si : FiCC

∗ (QA) → F1CC
∗ (QA) is a homo-

topy equivalence does not imply that C∗ (G,FiCC
∗ (QA)) → C∗ (G,F1CC

∗ (QA))
is a homotopy equivalence; we need the more precise version of the argument
given above.

Hence the commutativity of the diagram (75) follows from the commutativity
of the diagram

C∗ (G,F1CC
∗ (QA))

��

Φ //F1CC
∗ (QAoG)

��
C∗ (G,FiCC

∗ (QA)) Φ //FiCC
∗ (QAoG)

(76)
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where the vertical arrows are induced by the transposes of the inclusions. This
is true since Φ preserves filtrations.

Now to deduce the general case we note that the homomorphism QA → B
being canonical is G-equivariant. Hence the commutativity of the diagram
(73) follows from the compatibility of Φ with homomorphisms.

4.2 For our bundle E consider the algebra Ψ (E ⊕ E) of even operators on
E ⊕E . Here Z2-grading is defined as follows. The bundle E has a grading given
by the operator γ ∈ End (E). This induces the grading on E ⊕ E , and hence
on Ψ (E ⊕ E), given by the operator

Γ =

γ 0

0 −γ

 (77)

We will write elements of Ψ (E ⊕ E) as 2×2 matrices of pseudodifferential op-
erators on E . Consider now the algebra Ψr defined as a subalgebra of Ψ (E ⊕ E)

whose principal zero-order symbol has a form

a 0

0 0

, where a is a scalar en-

domorphism of E . We associate with the family D a G-equivariant quasiho-
momorphism from the algebra C∞

0 (P ) to the algebra Ψr. Here we use the
filtration on Ψr induced by the filtration on Ψ (E ⊕ E).

We now define quasihomomorphism ψD by the following formulas:

ψ0 (a) = UD

a 0

0 0

U−1
D (78)

ψ1 (a) =

a 0

0 0

 (79)

Here UD is constructed as follows. Let Q be a family of proper pseudodif-
ferential operators forming a parametrix of D. One can always chose Q to
be G-equivariant, as follows for example from explicit formulas for parametrix
[32]. Then S0 = 1−QD and S1 = 1−DQ are proper smoothing G-equivariant
fiberwise operators. Define then UD by the formula

UD =

D S1

S0 − (1 + S0)Q

 (80)
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Its inverse U−1
D is given by the following explicit formula:

U−1
D =

(1 + S0)Q S0

S1 −D

 (81)

It is easy to see that ψ1 (a) − ψ0 (a) ∈ Ψ−1
r . Moreover ψ0 and ψ1 are G-

equivariant, since D is G-equivariant. Notice also that UD is odd with respect
to Γ:

UDΓ = −ΓUD (82)

and in particular ψ0(a) is an even operator.

Since the quasihomomorphism ψD is G-equivariant, it also defines a quasiho-
momorphism, also denoted by ψD, from C∞

0 (P ) oG to Ψr oG. One now gets
for every i the map of complexes ci (ψD) : CC∗ (C∞

0 (P )) → F−iCC∗ (Ψr oG),
satisfying the above listed properties. We now define the bivariant Chern char-
acter Ch (D) : CC∗ (C∞

0 (P ) oG) → CC∗ (C∞
0 (G)) by the formula

Ch (D) = τ ◦ ci (ψD) (83)

where τ is defined in (46) and i > dimP − dimB. It is clear that different
choices of i give homotopic maps.

Remark 17 Write D =

 0 D+

D− 0

 , where the decomposition is with respect

to the grading γ. We can use above formulas applied to D+, omitting how-
ever the 1

2
factor from (72) and using ordinary trace instead of supertrace, to

construct the bivariant Chern character Ch (D+). Similarly we can construct
Ch (D−). It is easy to see that

Ch (D) =
1

2

(
Ch

(
D+

)
− Ch

(
D−

))
(84)

It is however easy to see that Ch (D+) is homotopic to −Ch (D−), and hence
Ch (D) and Ch (D+) are homotopic.

Different choices of Q are homotopic, and hence lead to the homotopic maps
of complexes. For our purposes it will be convenient to chose Q so that it
commutes with D. That this is possible again follows from the explicit con-
struction in [32]. In this case all the entries in UD commute with D and hence

UD commutes with

D 0

0 D

.

4.3 We start by proving the following:
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Proposition 18 Let A be any simplicial superconnection adapted to the fam-
ily D, and let ∇ be any simplicial connection on E, even with respect to γ.
Then the following diagram is commutative up to homotopy.

CC∗ (C∞
0 (P ) oG)

C∗ (G,Ω∗ (B))

ΦA

77nnnnnnnnnnnnnnnnnnnnnnnn T
∇̃ //FmCC∗ (Ψr oG)

cm(ψD)

OO (85)

PROOF. First notice that by the Theorem 13 we can assume that A = D+∇.
Consider now the superconnection Ã = A⊕A on the bundle Ẽ = E⊕E . By this
we mean that we lift naturally Ẽ to P (n) and define a simplicial superconnec-
tion Ã by Ã(n) = A(n)⊕A(n). It is adapted to theG-invariant family D̃ = D⊕D.
We can now construct a cocycle {X i

A} ∈ C∗ (G,Hom (Ω∗ (B) , F1CC
∗ (Ψr)))

by exactly the same formulas as {Θi
A}. Since for A ∈ Ψr the commutator

[D̃, A] has order 0, all the estimates used for the construction of {Θi
A} still

hold, and the formulas make sense. We use for {X i

Ã
} the same truncation as

for {Θi
A}. Proof of the Theorem 13 applies here as well and shows that if one

replaces Ã by another simplicial superconnection adapted to D̃ one obtains a
cohomologous cocycle.

Recall that c1 (ψD) defines aG-equivariant map F1CC
∗ (Ψr) → CC∗ (C∞

0 (P )),
and hence a map from C∗ (G,F1CC

∗ (Ψr)) to C∗ (G,CC∗ (C∞
0 (P ))). We then

have the following:

Lemma 19 The cocycles c1 (ψD) ◦ {X i

Ã
} and {Θi

A} are cohomologous.

PROOF. First notice that both ψ∗0 ◦ {X i

Ã
} and ψ∗1 ◦ {X i

Ã
} are well defined,

and not just their difference. It is clear that ψ∗1 ◦ {X i

Ã
} = ΦA. On the other

hand the identity

Trs UDa0U
−1
D e−t0A2

[A, UDa1U
−1
D ] . . . [A, UDakU−1

D ]e−tkA2

=

− Trs a0e
−t0(U−1

D AUD)
2

[
(
U−1
D AUD

)
, a1] . . . [

(
U−1
D AUD

)
, ak]e

−tk(U−1
D AUD)

2

(86)

together with a similar identity for components of τs imply that ψ∗0 ◦ {X i

Ã
} =

−ψ∗1 ◦ {X i

U−1
D ÃUD

}. Here U−1
D ÃUD is the simplicial superconnection defined by(

U−1
D ÃUD

)(n)
= U−1

D

(
Ã

)(n)
UD. It is also adapted to the operator D̃. Explicitly

we have

U−1
D ÃUD =

D 0

0 D

 + U−1
D

∇ 0

0 ∇

UD (87)
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Since the cohomology class of {X i

Ã
} is independent of the superconnection we

obtain that ψ∗0{X i

Ã
} is cohomologous to −ψ∗1{X i

Ã
}, and the statement of the

Lemma follows.

Consider now a map X : α 7→ Φ
(
{X i

Ã
} ∪ α

)
. It follows that the composition

of X with the map c1 (ψD) : F1CC
∗ (Ψr o G) → CC∗ (C∞

0 (P ) oG) is ho-
motopic to ΦA. Let rm : F1CC

∗ (Ψr oG) → FmCC
∗ (Ψr oG) be the be the

transposed of the inclusion rm. Since cm (ψD) ◦ rm is homotopic to c1 (ψD), to
complete the proof it is sufficient to show that rm ◦X is homotopic to T∇̃. To

establish this we consider a homotopy Ãt = tÃ + (1− t) ∇̃ = tD̃+ ∇̃ between
Ã and ∇̃. The existence of this homotopy clearly implies that rm ◦ {X i

Ã
} and

{Li
∇̃
} are cohomologous after one establishes an analogue of the identity (37)

in this context. Explicitly, one needs to show that the analogue of the cochain
T is well define. This is done exactly as before, with the only difference being
that the estimate of the Lemma 4 has to be replaced by the following:

Lemma 20 Let V0, V1, . . .Vl be pseudodifferential operators with a compact
support acting on sections of some vector bundle over a manifold M . Let
D be a first-order selfadjoint pseudodifferential operator on M . Assume that∑

orderVi < − dimM . Then the expression

∣∣∣∣∣∣∣
∫

∆k

Trs V0e
−t0s2D2

V1 . . . Vle
−tls2D2

dt1 . . . dtl

∣∣∣∣∣∣∣ (88)

is bounded uniformly in s.

PROOF. Let φ ∈ C∞
0 (M) be such that φV0 = V0. Denote V0e

−t0s2D2
V1 . . . Vle

−tls2D2

by A. Then TrsA = TrsAφ. If v
∑

orderVi, then the operator AφD−v is
bounded uniformly in s. Let now ψ ∈ C∞

0 (M) be such that φψ = φ. Then
|TrsA| = |TrsAφD

−vDvφ| ≤ ‖Aφ‖|TrDvφ|, which is bounded uniformly.

This estimate implies that for sufficiently small m T is well defined. This
completes the proof of the Proposition.

We now can prove the main result of this section:
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Theorem 21 The diagram

CC∗ (C∞
0 (P ) oG)

C∗ (G,Ω∗ (B))

ΦA

77nnnnnnnnnnnnnnnnnnnnnnnn
Φ //CC∗ (C∞

0 (G))

Ch(D)t

OO (89)

is commutative up to homotopy.

PROOF. The Proposition 16 together with the previous Proposition imme-
diately imply commutativity of the diagram

CC∗ (C∞
0 (P ) oG)

C∗ (G,Ω∗ (B))

ΦA

77nnnnnnnnnnnnnnnnnnnnnnnn T
∇̃ //FmCC

∗ (Ψr oG)

cm(ψD)

OO (90)

Combined with the Theorem 15 this gives the proof of our Theorem.

5 Bismut Superconnection and Short-time limit

In this section we obtain a topological expression for ΦA, thus finishing the
proof of the Theorem 1. In order to do this we construct simplicial Bismut
superconnection A for which ΦAs , with As the rescaled superconnection, has
a limit when s→ 0.

First we will need the following result:

Proposition 22 Let A be a simplicial superconnection. Consider the family
of maps ΦAs, where As is the rescaled superconnection. Then the maps obtained
for different values of s > 0 are homotopic.

PROOF. Consider first the case of the trivial groupoid action. In this case
we have in the notations of the Proposition 8

d

ds
ΘAs (c) = (b+ uB + u∂)

k∑
l≥−deg c−1

2

u−l (τs)l (c) (91)
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where τs is defined in the equation (8). Denote the cochain appearing in the
right hand side by TAs . In the general case construct the cochain {T iAs

} ∈
C∗ (G,Hom Ω∗ (B) , CC∗ (C∞

0 (P ))) by T nAs
= u−ne∗ ◦ TA(n)

s
◦ pn. Calculations

as in the Lemma 12 then show that

d

ds
{Θi

As
} = (b+ uB + u∂ ± δ) {T iAs

}. (92)

Integration of this identity shows that cocycles {Θi
As
} obtained for different

values of s are cohomologous. This implies that corresponding maps ΦAs are
homotopic.

We now proceed to construct the simplicial Bismut superconnection. Recall
that we are given a G-submersion π : P → B. The fibers are equipped with
the complete G-invariant Riemannian metric, and we are given a family of G-
invariant fiberwise Dirac operators acting on the sections ofG-equivariant Clif-
ford module bundle E . We start by reviewing the case of the trivial groupoid
action, see [1] for the details. In this case one needs to make the following
choices. First one needs to choose the horizontal distribution on the submer-
sion P → B. By this we mean choice of a smooth subbundle H of the tangent
bundle TP such that TP ∼= H ⊕ TP/B. Here TP/B is the vertical tangent
bundle. The choice of H is, of course, not unique. At each point p ∈ P the set
of all possible Hp has a natural structure of an affine space based on the vector

space Hom
(
Tπ(p)B, TpP/B

)
. Hence the set of all horizontal distributions has

a natural structure of an affine space. A choice of a horizontal distribution
H is equivalent to the choice of projection PH : TP → TP/B. We have the
following relation:

PtH1+(1−t)H2 = tPH1 + (1− t)PH2 (93)

Choice of H allows one also to construct a canonical connection ∇P/B =
∇P/B (H) on TP/B, whose restriction on the fibers of π coincides with Levi-
Civita connection. This connection can be defined by the relation

(
∇P/B
X Y, Z

)
=

1

2
((PH [X, Y ], Z)− ([Y, Z], PHX) +

(PH [Z,X], Y ) +X (Y, Z)− Z (PHX, Y ) + Y (Z, PHX)) (94)

From this equation it is clear that the correspondence H 7→ ∇P/B (H) is
an affine map. One then needs to chose a connection ∇E on the bundle E
which is compatible with the connection ∇P/B (H). Notice that here again
the vertical part of this connection is determined uniquely. Now using the
horizontal distribution H and a connection ∇E one can construct a connection
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∇ = ∇H on π∗E , compare [1]. The following facts are easy consequences of
the definitions:

• If H1, H2 are two horizontal distributions and ∇E
1 and ∇E

2 are two connec-
tions on E compatible with the connections ∇P/B (H1) and ∇P/B (H2) re-
spectively. Then the connection t∇E

1+(1− t)∇E
2 is compatible with∇P/B (tH1 + (1− t)H2).

• Let ∇Hi be constructed using connection ∇E
i , i = 1, 2. Then the connec-

tion ∇tH1+(1−t)H2 constructed using t∇E
1 + (1− t)∇E

2 is equal to t∇H1 +
(1− t)∇H2 .

The Bismut superconnection is then defined as

A = D +∇H − 1

4
c

(
TH

)
(95)

where c denotes the Clifford multiplication by a vertical vector field and T is a
2-form on B with the values in the vertical vector fields given by the curvature
of the distribution H. Explicitly it is described as follows. Let X, Y be two
vector fields on B, and XH , Y H their lifts to the horizontal vector fields on
P . Then

TH (X,Y ) = −
(
[XH , Y H ]− [X, Y ]H

)
(96)

We now explain how one can extend this construction to the simplicial context.
We fix the horizontal distributionH. Fix also a connection∇E compatible with
∇P/B. We will now use this data to construct a simplicial superconnection such
that each component A(n) is a Bismut superconnection on the corresponding
submersion. We start by constructing a horizontal distribution on each of the
submersions P (n) ×∆n → G(n) ×∆n. Recall the maps αi : P (n) → P defined
in (28). Define α̃i as the composition of the projection P (n)×∆n → P (n) with
the map αi Let σi be the barycentric coordinates on ∆n; below we view them
as functions on P (n) ×∆n. Define the distribution H(n) as

H(n) =
n∑
i=0

σi (dα̃i)
−1 (H) (97)

The corresponding projection is given by the formula

PH(n) =
n∑
i=0

σi ((α̃i)
∗ (PH)⊕ 0) . (98)

Notice that this horizontal distribution satisfies the compatibility conditions

(id× ∂i)
−1H(n) = (δi × id)−1H(n−1). (99)

Using the formula (94) and the horizontal distribution H(n) we can construct

for every n the canonical connection
(
∇P/B

)(n)
on the vertical bundle for the
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submersion P (n)×∆n → G(n)×∆n. It follows from the formula (94) that these
connections are given explicitly by the formula

(
∇P/B

)(n)
=

n∑
i=0

σiα
∗
i∇P/B (H) + d =

n∑
i=0

σi
(
α∗i∇P/B (H) + d

)
(100)

where d is de Rham differential on ∆n. It is clear that these connections satisfy
the simplicial compatibility conditions. It follows then that the connections on(
∇E

)(n)
on α̃∗0E defined by the formula

(
∇E

)(n)
=

n∑
i=0

σiα
∗
i∇E + d (101)

are compatible with the connections
(
∇P/B

)(n)
. We can now construct for ev-

ery n Bismut superconnection A(n) on the submersion P (n)×∆n → G(n)×∆n

using the distribution H(n) and connection
(
∇E

)(n)
. The simplicial compati-

bility conditions (31) are clearly satisfied.

Also, the only terms involving dσ in the superconnection form are the ones
arising from TH

(n)
. But it is easy to see that TH

(n)
(

∂
∂σi
, ∂
∂σi

)
= 0, and hence

there are no terms of positive degree in dσ and degree 0 in G(n) direction. It
follows that the conditions stated after the equation (31) are satisfied as well;
r can be taken to be 1.

To state the next proposition we follow conventions and notations from [1].

Let R(n) be the curvature of the connection
(
∇P/B

)(n)
. One can then define

the Â
(
R(n)

)
, a differential form on P (n), where Â (x) = det

1
2

(
x/2

sinh(x/2)

)
. The

structure of the Clifford module on E allows one to view R(n) as a 2-form
on P with values in the endomorphisms of E . The twisting curvature F

(n)
E/S of(

∇E
)(n)

is defined as F
(n)
E/S =

((
∇E

)(n)
)2

−R(n)

We now have the following

Proposition 23 a) The cocycle ΘAs has a limit when s→ 0 given by

lim
s→0

Θn
As

=
∑
l

u−n−lφnl (102)

32



where φnl ∈ Hom−n
(
Ω∗

(
G(n)

)
, CC∗

(
C∞

0

(
P (n)

)))
is defined by the formula

φnl (c) (a0, a1, . . . , am) =

(2πi)−
dim P−dim B

2

m!

〈 ∫
(P (n)×∆n)/P (n)

Â
(
R(n)

)
Ch

(
F

(n)
E/S

)
π∗nc, a0da1 . . . dam

〉
(103)

m = deg c+ 2l + n.

b) The cochain TAs defined in the proof of the Proposition 22 has a limit when
s→ 0.

PROOF. From the construction of Θn
As

it is clear that it is enough to compute
lims→0 ΘAs with ΘAs defined in the Proposition 8. From the equation (13) we
obtain

(ΘAs)l =


(θAs)l for l < k

(θAs)k −
s∫
0

(B + ∂) (τt)k+1 dt for l = k

0 for l > k

(104)

We see that it is enough to study the behavior of (θAs)l when s→ 0. Now the
standard application of the Getzler’s calculus [1] shows that

lim
s→0

(θAs)l (c) (a0, a1, . . . , am) =

(2πi)−
dim P−dim B

2

m!

〈
Â (R) Ch

(
FE/S

)
π∗c, a0da1 . . . dam

〉
(105)

where R is the curvature of the connection ∇P/B, and FE/S is the twisting
curvature of ∇E . The statement of the part a) follows. The proof of the part
b) is analogous to the proof of the local regularity of η-forms [3]. Namely one
shows that TAs has asymptotic expansion in powers of s, starting with s−1.
Then one shows that the coefficient for the leading term is 0.

Note that the above Proposition implies that we can represent lims→0 ΘAs as
a composition of two maps.

The first one is π̃∗ : Ω∗(G
(n)) → Ω∗(P

(n)) defined by

π̃∗ : c 7→ (2πi)−
dim P−dim B

2

∫
(P (n)×∆n)/P (n)

Â
(
u−1R(n)

)
Ch

(
u−1F

(n)
E/S

)
∧ π∗n(c)

(106)
It is easy to see that this map commutes with the differential ±δ and hence de-
fines a map of complexes C∗ (G,Ω∗ (B)) → C∗ (G,Ω∗ (P )) To identify this map
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on the level of cohomology notice that the collection of forms Â
(
R(n)

)
Ch

(
F

(n)
E/S

)
on P (n) × ∆n defines a closed simplicial form in the sense of [19]. The coho-
mology class of this form is the product of ÂG (TP/B), the equivariant Â-
genus of TP/B, and ChG (E/S) the equivariant twisting Chern character of
E , compare [4]. Hence on the level of cohomology the map π̃∗ defines a map
H∗
τ (BG) → H∗

τ (PG) which is pull-back composed with the multiplication by

(2πi)−
dim P−dim B

2 ÂG (TP/B) ChG (E/S).

The second one is the map ι : Ω∗(P
(n)) → CC∗(C∞

0 (P (n))) from the equation
(21).

The Proposition 23 immediately implies the following:

Corollary 24 The following diagram commutes up to homotopy

C∗ (G,Ω∗ (P )) Φ //CC∗ (C∞
0 (P ) oG)

C∗ (G,Ω∗ (B))

π̃∗

OO

ΦA

77nnnnnnnnnnnnnnnnnnnnnnnn

(107)

Combining this result with the Theorem 21 we obtain the main result of this
paper:

Theorem 25 The following diagram commutes up to homotopy

C∗ (G,Ω∗ (P )) Φ //CC∗ (C∞
0 (P ) oG)

C∗ (G,Ω∗ (B))

π̃∗

OO

Φ //CC∗ (C∞
0 (G))

Ch(D)t

OO (108)

Remark 26 In this paper we were concerned only with the smooth currents.
Our result can be generalized to the nonsmooth currents as follows. Fix an
arbitrary integer number N and let ΩN

k be the space of currents of degree k
which belong to the Sobolev space HN+k

loc . We can replace the complex Ω∗ (B)
by the similarly constructed complex using these currents. The results of these
paper remain true. In the proofs one needs to use the estimates indicated in
the Remark 6 in addition to the Lemma 4.
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Pontif́ıcia Univ. Católica, Rio de Janeiro, 1976), volume 652 of Lecture Notes
in Math., pages 25–61. Springer, Berlin, 1978.

[5] J.-L. Brylinski and V. Nistor. Cyclic cohomology of étale groupoids. K-Theory,
8(4):341–365, 1994.

[6] A. Connes. Cohomologie cyclique et foncteurs Extn. C. R. Acad. Sci. Paris
Sér. I Math., 296(23):953–958, 1983.

[7] A. Connes. Non-commutative differential geometry. Publ. Math. IHES, 62:257–
360, 1985.

[8] A. Connes. Cyclic cohomology and the transverse fundamental class of a
foliation. In Geometric methods in operator algebras (Kyoto, 1983), volume 123
of Pitman Res. Notes Math. Ser., pages 52–144. Longman Sci. Tech., Harlow,
1986.

[9] A. Connes. Noncommutative Geometry. Academic Press, 1994.

[10] A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture and
hyperbolic groups. Topology, 29:345–388, 1990.

[11] A. Connes and H. Moscovici. Transgression and the Chern character of finite-
dimensional K-cycles. Comm. Math. Phys., 155(1):103–122, 1993.

[12] M. Crainic. Cyclic cohomology of étale groupoids: the general case. K-Theory,
17(4):319–362, 1999.

[13] M. Crainic and I. Moerdijk. Foliation groupoids and their cyclic homology. Adv.
Math., 157(2):177–197, 2001.

[14] J. Cuntz. Generalized homomorphisms between C∗-algebras and KK-theory.
In Dynamics and processes (Bielefeld, 1981), volume 1031 of Lecture Notes in
Math., pages 31–45. Springer, Berlin, 1983.

[15] J. Cuntz. K-theory and C∗-algebras. In Algebraic K-theory, number theory,
geometry and analysis (Bielefeld, 1982), volume 1046 of Lecture Notes in Math.,
pages 55–79. Springer, Berlin, 1984.

35



[16] J. Cuntz. Bivariante K-Theorie für lokalkonvexe Algebren und der Chern-
Connes-Charakter. Doc. Math., 2:139–182 (electronic), 1997.

[17] J. Cuntz and D. Quillen. Cyclic homology and nonsingularity. J. Amer. Math.
Soc., 8(2):373–442, 1995.

[18] J. L. Dupont. Simplicial de Rham cohomology and characteristic classes of flat
bundles. Topology, 15(3):233–245, 1976.

[19] J. L. Dupont. Curvature and characteristic classes. Springer-Verlag, Berlin,
1978. Lecture Notes in Mathematics, Vol. 640.
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16(4):361–390, 1999.

[30] P.-Y. Le Gall. Groupoid C∗-algebras and operator K-theory. In Groupoids in
analysis, geometry, and physics (Boulder, CO, 1999), volume 282 of Contemp.
Math., pages 137–145. Amer. Math. Soc., Providence, RI, 2001.

[31] J. Lott. Superconnections and higher index theory. Geom. Funct. Anal.,
2(4):421–454, 1992.

36



[32] H. Moscovici and F. Wu. Localization of topological Pontryagin classes via
finite propagation speed. Geom. and Functional Analysis, 1:52–92, 1994.

[33] R. Nest and B. Tsygan Algebraic index theorem. Comm. Math. Phys.,
172(2):223–262, 1995

[34] R. Nest and B. Tsygan Algebraic index theorem for families. Adv. Math.,
113(2):151–205, 1995

[35] V. Nistor. Group cohomology and the cyclic cohomology of crossed products.
Invent. Math., 99(2):411–424, 1990.

[36] V. Nistor. A bivariant Chern character for p-summable quasihomomorphisms.
K-Theory, 5(3):193–211, 1991.

[37] V. Nistor. A bivariant Chern-Connes character. Ann. of Math. (2), 138(3):555–
590, 1993.

[38] V. Nistor. Super-connections and non-commutative geometry. In Cyclic
cohomology and noncommutative geometry (Waterloo, ON, 1995), volume 17
of Fields Inst. Commun., pages 115–136. Amer. Math. Soc., Providence, RI,
1997.

[39] D. Perrot. Retraction of the bivariant Chern character. K-Theory, 31(3):233–
287, 2004.

[40] H. Widom. Families of pseudodifferential operators. In Topics in functional
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