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1. Introduction

In [5] we obtained a classification of formal deformations of a gerbe on a manifold
(C∞ or complex-analytic) in terms of Maurer-Cartan elements of the DGLA of
Hochschild cochains twisted by the cohomology class of the gerbe. In the present
paper we develop a different approach to the derivation of this classification in the
setting of C∞ manifolds, based on the differential-geometric approach of [4].

The main result of the present paper is the following theorem which we prove
in Section 8.

Theorem 1. Suppose that X is a C∞ manifold and S is an algebroid stack on X
which is a twisted form of OX . Then, there is an equivalence of 2-groupoid valued
functors of commutative Artin C-algebras

DefX(S) ∼= MC2(gDR(JX)[S]) .

Notations in the statement of Theorem 1 and the rest of the paper are as
follows. We consider a paracompact C∞-manifold X with the structure sheaf OX
of complex valued smooth functions. Let S be a twisted form of OX , as defined in
Section 4.5. Twisted forms of OX are in bijective correspondence with O×X -gerbes
and are classified up to equivalence by H2(X;O×) ∼= H3(X; Z).

One can formulate the formal deformation theory of algebroid stacks ([17, 16])
which leads to the 2-groupoid valued functor DefX(S) of commutative Artin C-
algebras. We discuss deformations of algebroid stacks in the Section 6. It is natural
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to expect that the deformation theory of algebroid pre-stacks is “controlled” by
a suitably constructed differential graded Lie algebra (DGLA) well-defined up to
isomorphism in the derived category of DGLA. The content of Theorem 1 can be
stated as the existence of such a DGLA, namely g(JX)[S], which “controls” the
formal deformation theory of the algebroid stack S in the following sense.

To a nilpotent DGLA g which satisfies gi = 0 for i < −1 one can associate its
Deligne 2-groupoid which we denote MC2(g), see [11, 10] and references therein.
We review this construction in the Section 3. Then the Theorem 1 asserts equiva-
lence of 2-groupoids DefX(S) and MC2(gDR(JX)[S]).

The DGLA g(JX)[S] is defined as the [S]-twist of the DGLA

gDR(JX) := Γ(X; DR(C
•
(JX))[1]) .

Here, JX is the sheaf of infinite jets of functions on X, considered as a sheaf
of topological OX -algebras with the canonical flat connection ∇can. The shifted
normalized Hochschild complex C

•
(JX)[1] is understood to comprise locally de-

fined OX -linear continuous Hochschild cochains. It is a sheaf of DGLA under the
Gerstenhaber bracket and the Hochschild differential δ. The canonical flat connec-
tion on JX induces one, also denoted ∇can, on C

•
(JX))[1]. The flat connection

∇can commutes with the differential δ and acts by derivations of the Gerstenhaber
bracket. Therefore, the de Rham complex DR(C

•
(JX))[1]) := Ω•X ⊗ C

•
(JX))[1])

equipped with the differential ∇can + δ and the Lie bracket induced by the Ger-
stenhaber bracket is a sheaf of DGLA on X giving rise to the DGLA g(JX) of
global sections.

The sheaf of abelian Lie algebras JX/OX acts by derivations of degree −1 on
the graded Lie algebra C

•
(JX)[1] via the adjoint action. Moreover, this action

commutes with the Hochschild differential. Therefore, the (abelian) graded Lie al-
gebra Ω•X⊗JX/OX acts by derivations on the graded Lie algebra Ω•X⊗C

•
(JX))[1].

We denote the action of the form ω ∈ Ω•X ⊗JX/OX by ιω. Consider now the sub-
sheaf of closed forms (Ω•X ⊗ JX/OX)cl which is by definition the kernel of ∇can.
(ΩkX ⊗ JX/OX)cl acts by derivations of degree k − 1 and this action commutes
with the differential ∇can + δ. Therefore, for ω ∈ Γ(X; (Ω2 ⊗ JX/OX)cl) one
can define the ω-twist g(JX)ω as the DGLA with the same underlying graded
Lie algebra structure as g(JX) and the differential given by ∇can + δ + ιω. The
isomorphism class of this DGLA depends only on the cohomology class of ω in
H2(Γ(X; Ω•X ⊗ JX/OX),∇can).

More precisely, for β ∈ Γ(X; Ω1
X⊗JX/OX) the DGLA gDR(JX)ω and gDR(JX)ω+∇canβ

are canonically isomorphic with the isomorphism depending only on the equiva-
lence class β + Im(∇can).

As we remarked before a twisted form S of OX is determined up to equiva-

lence by its class in H2(X;O×). The composition O× → O×/C× log−−→ O/C j∞−−→
DR(J /O) induces the map H2(X;O×) → H2(X; DR(J /O)) ∼= H2(Γ(X; Ω•X ⊗
JX/OX),∇can). We denote by [S] ∈ H2(Γ(X; Ω•X ⊗JX/OX),∇can) the image of
the class of S. By the remarks above we have the well-defined up to a canonical
isomorphism DGLA gDR(JX)[S].
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The rest of this paper is organized as follows. In the Section 2 we review
some preliminary facts. In the Section 3 we review the construction of Deligne 2-
groupoid, its relation with the deformation theory and its cosimplicial analogues.
In the Section 4 we review the notion of algebroid stacks. Next we define matrix
algebras associated with a descent datum in the Section 5. In the Section 6 we
define the deformations of algebroid stacks and relate them to the cosimplicial
DGLA of Hochschild cochains on matrix algebras. In the Section 7 we establish
quasiisomorphism of the DGLA controlling the deformations of twisted forms of
OX with a simpler cosimplicial DGLA. Finally, the proof the main result of this
paper, Theorem 1, is given in the Section 8

2. Preliminaries

2.1. Simplicial notions.

2.1.1. The category of simplices. For n = 0, 1, 2, . . . we denote by [n] the
category with objects 0, . . . , n freely generated by the graph

0 → 1 → · · · → n .

For 0 ≤ p ≤ q ≤ n we denote by (pq) the unique morphism p→ q.
We denote by ∆ the full subcategory of Cat with objects the categories [n] for

n = 0, 1, 2, . . ..
For 0 ≤ i ≤ n + 1 we denote by ∂i = ∂ni : [n] → [n + 1] the ith face map, i.e.

the unique map whose image does not contain the object i ∈ [n+ 1].
For 0 ≤ i ≤ n− 1 we denote by si = sni : [n] → [n− 1] the ith degeneracy map,

i.e. the unique surjective map such that si(i) = si(i+ 1).

2.1.2. Simplicial and cosimplicial objects. Suppose that C is a category. By
definition, a simplicial object in C (respectively, a cosimplicial object in C) is a
functor ∆op → C (respectively, a functor ∆ → C). Morphisms of (co)simplicial
objects are natural transformations of functors.

For a simplicial (respectively, cosimplicial) object F we denote the object
F ([n]) ∈ C by Fn (respectively, Fn).

2.2. Cosimplicial vector spaces. Let V • be a cosimplicial vector space.
We denote by C•(V ) the associated complex with component Cn(V ) = V n and
the differential ∂n : Cn(V ) → Cn+1(V ) defined by ∂n =

∑
i(−1)i∂ni , where ∂ni is

the map induced by the ith face map [n] → [n+ 1]. We denote cohomology of this
complex by H•(V ).

The complex C•(V ) contains a normalized subcomplex C
•
(V ). Here C

n
(V ) =

{V ∈ V n | sni v = 0}, where sni : [n] → [n − 1] is the ith degeneracy map. Recall
that the inclusion C

•
(V ) → C•(V ) is a quasiisomorphism.
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Starting from a cosimplicial vector space V • one can construct a new cosim-
plicial vector space V̂ • as follows. For every λ : [n] → ∆ set V̂ λ = V λ(n). Sup-
pose given another simplex µ : [m] → ∆ and morphism φ : [m] → [n] such that
µ = λ ◦ φ i.e. φ is a morphism of simplices µ → λ. The morphism (0n) factors
uniquely into 0 → φ(0) → φ(m) → n, which, under λ, gives the factorization of
λ(0n) : λ(0) → λ(n) (in ∆) into

λ(0)
f−−−−→ µ(0)

g−−−−→ µ(m) h−−−−→ λ(n) , (2.1)

where g = µ(0m). The map µ(m) → λ(n) induces the map

φ∗ : V̂ µ → V̂ λ (2.2)

Set now V̂ n =
∏

[n]
λ−→∆

V̂ λ. The maps (2.2) endow V̂ • with the structure of a

cosimplicial vector space. We then have the following well-known result:

Lemma 2.1.
H•(V ) ∼= H•(V̂ ) (2.3)

Proof. We construct morphisms of complexes inducing the isomorphisms in co-
homology. We will use the following notations. If f ∈ V̂ n and λ : [n] → ∆ we
will denote by f(λ) ∈ V̂ λ its component in V̂ λ. For λ : [n] → ∆ we denote by
λ|[jl] : [l− j] → ∆ its truncation: λ|[jl](i) = λ(i+ j), λ|[jl](i, k) = λ((i+ j) (k+ j)).
For λ1 : [n1] → ∆ and λ2 : [n2] → ∆ with λ1(n1) = λ2(0) define their concatena-
tion Λ = λ1 ∗ λ2 : [n1 + n2] → ∆ by the following formulas.

Λ(i) =

{
λ1(i) if i ≤ n1

λ2(i− n1) if i ≥ n1

Λ(ik) =


λ1(ik) if i, k ≤ n1

λ2((i− n1) (k − n1)) if i, k ≥ n1

λ2(0 (k − n1)) ◦ λ(in1) if i ≤ n1 ≤ k

This operation is associative. Finally we will identify in our notations λ : [1] → ∆
with the morphism λ(01) in ∆

The morphism C•(V ) → C•(V̂ ) is constructed as follows. Let λ : [n] → ∆ be a
simplex in ∆ and define λk by λ(k) = [λk], k = 0, 1, . . . , n. Let Υ(λ) : [n] → λ(n)
be a morphism in ∆ defined by

(Υ(λ))(k) = λ(kn)(λk) (2.4)

Then define the map ι : V • → V̂ • by the formula

(ι(v))(λ) = Υ(λ)∗v for v ∈ V n

This is a map of cosimplicial vector spaces, and therefore it induces a morphism
of complexes.
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The morphism π : C•(V̂ ) → C•(V ) is defined by the formula

π(f) = (−1)
n(n+1)

2

∑
0≤ik≤k+1

(−1)i0+···+in−1f(∂0
i0 ∗ ∂

1
i1 ∗ . . . ∗ ∂

n−1
in−1

) for f ∈ V̂ n

when n > 0, and π(f) is V 0 component of f if n = 0.
The morphism ι ◦ π is homotopic to Id with the homotopy h : C•(V̂ ) →

C•−1(V̂ ) given by the formula

hf(λ) =
n−1∑
j=0

∑
0≤ik≤k+1

(−1)i0+···+ij−1f(∂0
i0 ∗ · · · ∗ ∂

j−1
ij−1

∗Υ(λ|[0j]) ∗ λ|[j (n−1)])

for f ∈ V̂ n when n > 0, and h(f) = 0 if n = 0.
The composition π ◦ ι : C•(V ) → C•(V ) preserves the normalized subcomplex

C
•
(V ) and acts by identity on it. Therefore π ◦ ι induces the identity map on

cohomology. It follows that π and ι are quasiisomorphisms inverse to each other.

2.3. Covers. A cover (open cover) of a space X is a collection U of open
subsets of X such that

⋃
U∈U U = X.

2.3.1. The nerve of a cover. Let N0U =
∐
U∈U U . There is a canonical aug-

mentation map

ε0 : N0U
∐

U∈U (U↪→X)
−−−−−−−−−→ X

Let
NpU = N0U ×X · · · ×X N0U ,

the (p+ 1)-fold fiber product.
The assignment NU : ∆ 3 [p] 7→ NpU extends to a simplicial space called the

nerve of the cover U . The effect of the face map ∂ni (respectively, the degeneracy
map sni ) will be denoted by di = din (respectively, ςi = ςni ) and is given by the
projection along the ith factor (respectively, the diagonal embedding on the ith

factor). Therefore for every morphism f : [p] → [q] in ∆ we have a morphism
NqU → NpU which we denote by f∗. We will denote by f∗ the operation (f∗)∗ of
pull-back along f∗; if F is a sheaf on NpU then f∗F is a sheaf on NqU .

For 0 ≤ i ≤ n+ 1 we denote by prni : NnU → N0U the projection onto the ith

factor. For 0 ≤ j ≤ m, 0 ≤ ij ≤ n the map pri0 ×· · ·×prim : NnU → (N0U)m can
be factored uniquely as a composition of a map NnU → NmU and the canonical
imbedding NmU → (N0U)m. We denote this map NnU → NmU by prni0...im .

The augmentation map ε0 extends to a morphism ε : NU → X where the latter
is regarded as a constant simplicial space. Its component of degree n εn : NnU → X
is given by the formula εn = ε0 ◦ prni . Here 0 ≤ i ≤ n+ 1 is arbitrary.
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2.3.2. Čech complex. Let F be a sheaf of abelian groups on X. One defines
a cosimplicial group Č•(U ,F) = Γ(N•U ; ε∗F), with the cosimplicial structure in-
duced by the simplicial structure of NU . The associated complex is the Čech
complex of the cover U with coefficients in F . The differential ∂̌ in this complex
is given by

∑
(−1)i(di)∗.

2.3.3. Refinement. Suppose that U and V are two covers of X. A morphism of
covers ρ : U → V is a map of sets ρ : U → V with the property U ⊆ ρ(U) for all
U ∈ U .

A morphism ρ : U → V induces the map Nρ : NU → NV of simplicial spaces
which commutes with respective augmentations to X. The map N0ρ is determined
by the commutativity of

U −−−−→ N0Uy yN0ρ

ρ(U) −−−−→ N0V

It is clear that the map N0ρ commutes with the respective augmentations (i.e. is a
map of spaces over X) and, consequently induces maps Nnρ = (N0ρ)×Xn+1 which
commute with all structure maps.

2.3.4. The category of covers. Let Cov(X)0 denote the set of open covers of
X. For U ,V ∈ Cov(X)0 we denote by Cov(X)1(U ,V) the set of morphisms U → V.
Let Cov(X) denote the category with objects Cov(X)0 and morphisms Cov(X)1.
The construction of 2.3.1 is a functor

N : Cov(X) → Top∆op

/X .

3. Deligne 2-groupoid and its cosimplicial analogues

In this section we begin by recalling the definition of Deligne 2-groupoid and its
relation with the deformation theory. We then describe the cosimplicial analogues
of Deligne 2-groupoids and establish some of their properties.

3.1. Deligne 2-groupoid. In this subsection we review the construction of
Deligne 2-groupoid of a nilpotent differential graded algebra (DGLA). We follow
[11, 10] and references therein.

Suppose that g is a nilpotent DGLA such that gi = 0 for i < −1.
A Maurer-Cartan element of g is an element γ ∈ g1 satisfying

dγ +
1
2
[γ, γ] = 0. (3.1)

We denote by MC2(g)0 the set of Maurer-Cartan elements of g.
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The unipotent group exp g0 acts on the set of Maurer-Cartan elements of g by
the gauge equivalences. This action is given by the formula

(expX) · γ = γ −
∞∑
i=0

(adX)i

(i+ 1)!
(dX + [γ,X])

If expX is a gauge equivalence between two Maurer-Cartan elements γ1 and γ2 =
(expX) · γ1 then

d+ ad γ2 = Ad expX (d+ ad γ1). (3.2)

We denote by MC2(g)1(γ1, γ2) the set of gauge equivalences between γ1, γ2. The
composition

MC2(g)1(γ2, γ3)×MC2(g)1(γ1, γ2) → MC2(g)1(γ1, γ3)

is given by the product in the group exp g0.
If γ ∈ MC2(g)0 we can define a Lie bracket [·, ·]γ on g−1 by

[a, b]γ = [a, db+ [γ, b]]. (3.3)

With this bracket g−1 becomes a nilpotent Lie algebra. We denote by expγ g−1

the corresponding unipotent group, and by expγ the corresponding exponential
map g−1 → expγ g−1. If γ1, γ2 are two Maurer-Cartan elements, then the group
expγ g−1 acts on MC2(g)1(γ1, γ2). Let expγ t ∈ expγ g−1 and let expX ∈ MC2(g)1(γ1, γ2).
Then

(expγ t) · (expX) = exp(dt+ [γ, t]) expX ∈ exp g0

Such an element expγ t is called a 2-morphism between expX and (exp t) ·(expX).
We denote by MC2(g)2(expX, expY ) the set of 2-morphisms between expX and
expY . This set is endowed with a vertical composition given by the product in
the group expγ g−1.

Let γ1, γ2, γ3 ∈ MC2(g)0. Let expX12, expY12 ∈ MC2(g)1(γ1, γ2) and expX23,
expY23 ∈ MC2(g)1(γ2, γ3). Then one defines the horizontal composition

⊗ : MC2(g)2(expX23, expY23)×MC2(g)2(expX12, expY12) →
MC2(g)2(expX23 expX12, expX23 expY12)

as follows. Let expγ2 t12 ∈ MC2(g)2(expX12, expY12), expγ3 t23 ∈ MC2(g)2(expX23, expY23).
Then

expγ3 t23 ⊗ expγ2 t12 = expγ3 t23 expγ3(e
adX23(t12))

To summarize, the data described above forms a 2-groupoid which we denote
by MC2(g) as follows:

1. the set of objects is MC2(g)0

2. the groupoid of morphisms MC2(g)(γ1, γ2), γi ∈ MC2(g)0 consists of:
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• objects i.e. 1-morphisms in MC2(g) are given by MC2(g)1(γ1, γ2) – the
gauge transformations between γ1 and γ2.

• morphisms between expX, expY ∈ MC2(g)1(γ1, γ2) are given by MC2(g)2(expX, expY ).

A morphism of nilpotent DGLA φ : g → h induces a functor φ : MC2(g) →
MC2(g).

We have the following important result ([12], [11] and references therein).

Theorem 3.1. Suppose that φ : g → h is a quasi-isomorphism of DGLA and let
m be a nilpotent commutative ring. Then the induced map φ : MC2(g ⊗ m) →
MC2(h⊗m) is an equivalence of 2-groupoids.

3.2. Deformations and Deligne 2-groupoid. Let k be an algebraically
closed field of characteristic zero.

3.2.1. Hochschild cochains. Suppose that A is a k-vector space. The k-vector
space Cn(A) of Hochschild cochains of degree n ≥ 0 is defined by

Cn(A) := Homk(A⊗n, A) .

The graded vector space g(A) := C•(A)[1] has a canonical structure of a graded Lie
algebra under the Gerstenhaber bracket denoted by [ , ] below. Namely, C•(A)[1]
is canonically isomorphic to the (graded) Lie algebra of derivations of the free
associative co-algebra generated by A[1].

Suppose in addition that A is equipped with a bilinear operation µ : A⊗A→ A,
i.e. µ ∈ C2(A) = g1(A). The condition [µ, µ] = 0 is equivalent to the associativity
of µ.

Suppose that A is an associative k-algebra with the product µ. For a ∈ g(A)
let δ(a) = [µ, a]. Thus, δ is a derivation of the graded Lie algebra g(A). The
associativity of µ implies that δ2 = 0, i.e. δ defines a differential on g(A) called
the Hochschild differential.

For a unital algebra the subspace of normalized cochains C
n
(A) ⊂ Cn(A) is

defined by

C
n
(A) := Homk((A/k · 1)⊗n, A) .

The subspace C
•
(A)[1] is closed under the Gerstenhaber bracket and the action

of the Hochschild differential and the inclusion C
•
(A)[1] ↪→ C•(A)[1] is a quasi-

isomorphism of DGLA.
Suppose in addition that R is a commutative Artin k-algebra with the nilpotent

maximal ideal mR The DGLA g(A)⊗kmR is nilpotent and satisfies gi(A)⊗kmR =
0 for i < −1. Therefore, the Deligne 2-groupoid MC2(g(A) ⊗k mR) is defined.
Moreover, it is clear that the assignment R 7→ MC2(g(A) ⊗k mR) extends to a
functor on the category of commutative Artin algebras.
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3.2.2. Star products. Suppose that A is an associative unital k-algebra. Let m
denote the product on A.

Let R be a commutative Artin k-algebra with maximal ideal mR. There is a
canonical isomorphism R/mR

∼= k.
A (R-)star product onA is an associativeR-bilinear product onA⊗kR such that

the canonical isomorphism of k-vector spaces (A⊗kR)⊗Rk ∼= A is an isomorphism
of algebras. Thus, a star product is an R-deformation of A.

The 2-category of R-star products on A, denoted Def(A)(R), is defined as the
subcategory of the 2-category Alg2

R of R-algebras (see 4.1.1) with

• Objects: R-star products on A,

• 1-morphisms φ : m1 → m2 between the star products µi those R-algebra
homomorphisms φ : (A ⊗k R,m1) → (A ⊗k R,m2) which reduce to the
identity map modulo mR, i.e. φ⊗R k = IdA

• 2-morphisms b : φ → ψ, where φ, ψ : m1 → m2 are two 1-morphisms, are
elements b ∈ 1 +A⊗k mR ⊂ A⊗k R such that m2(φ(a), b) = m2(b, ψ(a)) for
all a ∈ A⊗k R.

It follows easily from the above definition and the nilpotency of mR that Def(A)(R)
is a 2-groupoid.

Note that Def(A)(R) is non-empty: it contains the trivial deformation, i.e. the
star product, still denoted m, which is the R-bilinear extension of the product on
A.

It is clear that the assignment R 7→ Def(A)(R) extends to a functor on the
category of commutative Artin k-algebras.

3.2.3. Star products and the Deligne 2-groupoid. We continue in notations
introduced above. In particular, we are considering an associative unital k-algebra
A. The product m ∈ C2(A) determines a cochain, still denoted m ∈ g1(A) ⊗k R,
hence the Hochschild differential δ = [m, ] in g(A)⊗kR for any commutative Artin
k-algebra R.

Suppose that m′ is an R-star product on A. Since µ(m′) := m′ − m = 0
mod mR we have µ(m′) ∈ g1(A)⊗k mR. Moreover, the associativity of m′ implies
that µ(m′) satisfies the Maurer-Cartan equation, i.e. µ(m′) ∈ MC2(g(A)⊗k mR)0.

It is easy to see that the assignment m′ 7→ µ(m′) extends to a functor

Def(A)(R) → MC2(g(A)⊗k mR) . (3.4)

The following proposition is well-known (cf. [9, 11, 10]).

Proposition 3.2. The functor (3.4) is an isomorphism of 2-groupoids.

3.2.4. Star products on sheaves of algebras. The above considerations gen-
eralize to sheaves of algebras in a straightforward way.

Suppose that A is a sheaf of k-algebras on a space X. Let m : A ⊗k A → A
denote the product.
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An R-star product on A is a structure of a sheaf of an associative algebras
on A ⊗k R which reduces to µ modulo the maximal ideal mR. The 2-category
(groupoid) of R star products on A, denoted Def(A)(R) is defined just as in the
case of algebras; we leave the details to the reader.

The sheaf of Hochschild cochains of degree n is defined by

Cn(A) := Hom(A⊗n,A).

We have the sheaf of DGLA g(A) := C•(A)[1], hence the nilpotent DGLA Γ(X; g(A)⊗k
mR) for every commutative Artin k-algebra R concentrated in degrees ≥ −1.
Therefore, the 2-groupoid MC2(Γ(X; g(A)⊗k mR) is defined.

The canonical functor Def(A)(R) → MC2(Γ(X; g(A)⊗k mR) defined just as in
the case of algebras is an isomorphism of 2-groupoids.

3.3. G-stacks. Suppose that G: [n] → Gn is a cosimplicial DGLA. We assume
that each Gn is a nilpotent DGLA. We denote its component of degree i by Gn,i

and assume that Gn,i = 0 for i < −1.

Definition 3.3. A G-stack is a triple γ = (γ0, γ1, γ2), where

• γ0 ∈ MC2(G0)0,

• γ1 ∈ MC2(G1)1(∂0
0γ

0, ∂0
1γ

0),

satisfying the condition
s10γ

1 = Id

• γ2 ∈ MC2(G2)2(∂1
2(γ1) ◦ ∂1

0(γ1), ∂1
1(γ1))

satisfying the conditions

∂2
2γ2 ◦ (Id⊗ ∂2

0γ2) = ∂2
1γ2 ◦ (∂2

3γ2 ⊗ Id)

s20γ
2 = s21γ

2 = Id
(3.5)

Let Stack(G)0 denote the set of G-stacks.

Definition 3.4. For γ1, γ2 ∈ Stack(G)0 a 1-morphism ג : γ1 → γ2 is a pair
ג = ,1ג) ,(2ג where 1ג ∈ MC2(G0)1(γ0

1 , γ
0
2), 2ג ∈ MC2(G1)2(γ1

2 ◦∂0
,(1ג)0 ∂0

γ1◦(1ג)1
1),

satisfying

(Id⊗ γ2
1) ◦ (∂1

2ג2 ⊗ Id) ◦ (Id⊗ ∂1
(2ג0 = ∂1

2ג1 ◦ (γ2
2 ⊗ Id)

s102ג = Id
(3.6)

Let Stack(G)1(γ1, γ2) denote the set of 1-morphisms γ1 → γ2

Composition of 1-morphisms ג : γ1 → γ2 and k : γ2 → γ3 is given by (k1 ◦
,1ג 2ג) ⊗ Id) ◦ (Id⊗ k2)).

Definition 3.5. For ,1ג 2ג ∈ Stack(G)1(γ1, γ2) a 2-morphism φ : 1ג → 2ג is a
2-morphism φ ∈ MC2(G0)2(1ג

1, 1ג
2) which satisfies

2ג
2 ◦ (Id⊗ ∂0

0φ) = (∂0
1φ⊗ Id) ◦ 2ג

1 (3.7)
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Let Stack(G)2(1ג, (2ג denote the set of 2-morphisms.
Compositions of 2-morphisms are given by the compositions in MC2(G0)2.
For γ1, γ2 ∈ Stack(G)0, we have the groupoid Stack(G)(γ1, γ2) with the set of

objects Stack(G)1(γ1, γ2) and the set of morphisms Stack(G)2(1ג, (2ג under vertical
composition.

Every morphism θ of cosimplicial DGLA induces in an obvious manner a functor
θ∗ : Stack(G⊗m) → Stack(H⊗m)

We have the following cosimplicial analogue of the Theorem 3.1:

Theorem 3.6. Suppose that θ : G → H is a quasi-isomorphism of cosimpli-
cial DGLA and m is a commutative nilpotent ring. Then the induced map θ∗ :
Stack(G⊗m) → Stack(H⊗m) is an equivalence.

Proof. The proof can be obtained by applying the Theorem 3.1 repeatedly.
Let γ1, γ2 ∈ Stack(G ⊗ m)0, and let ,1ג 2ג be two 1-morphisms between γ1

and γ2. Note that by the Theorem 3.1 θ∗ : MC2(G0 ⊗ m)2(1ג
1, 1ג

2) → MC2(H0 ⊗
m)2(θ∗1ג

1, θ∗1ג
2) is a bijection. Injectivity of the map θ∗ : Stack(G⊗ m)2(1ג, (2ג →

Stack(H ⊗ m)2(θ∗1ג, θ∗2ג) follows immediately. For the surjectivity, notice that
an element of Stack(H ⊗ m)2(θ∗1ג, θ∗2ג) is necessarily given by θ∗φ for some φ ∈
MC2(G0⊗m)(1ג

1, 1ג
2)2 and the following identity is satisfied in MC2(H1⊗m)(θ∗(γ1

2 ◦
∂0
1ג0

1), θ∗(∂
0
1ג1

2◦γ1
1))2: θ∗(2ג

2◦(∂1
0φ⊗Id)) = θ∗((Id⊗∂1

1φ)◦2ג
1). Since θ∗ : MC2(G1⊗

m)(γ1
2 ◦ ∂0

1ג0
1, ∂

0
1ג1

2 ◦ γ1
1)2 → MC2(H1⊗m)(θ∗(γ1

2 ◦ ∂0
1ג0

1), θ∗(∂
0
1ג1

2 ◦ γ1
1))2 is bijective,

and in particular injective, 2ג
2 ◦ (∂1

0φ ⊗ Id) = (Id ⊗ ∂1
1φ) ◦ 2ג

1, and φ defines an
element in Stack(G⊗m)2(1ג, .(2ג

Next, let γ1, γ2 ∈ Stack(G ⊗ m)0, and let ג be a 1-morphisms between θ∗γ1

and θ∗γ2. We show that there exists k ∈ Stack(G ⊗ m)1(γ1, γ2) such that θ∗k is
isomorphic to .ג Indeed, by Theorem 3.1, there exists k1 ∈ MC2(G0 ⊗m)1(γ1, γ2)
such that MC2(H0 ⊗ m)2(θ∗k1, (ג 6= ∅. Let φ ∈ MC2(H0 ⊗ m)2(θ∗k1, .(ג Define
ψ ∈ MC2(H1⊗m)2(θ∗(γ1

2◦∂0
0k1), θ∗(∂0

1k1◦γ1
1)) by ψ = (∂0

1φ⊗Id)−1◦2ג◦(Id⊗∂0
0φ).

It is easy to verify that the following identities holds:

(Id⊗ θ∗γ
2
1) ◦ (∂1

2ψ ⊗ Id) ◦ (Id⊗ ∂1
0ψ) = ∂1

1ψ ◦ (θ∗γ2
2 ⊗ Id)

s10ψ = Id

By bijectivity of θ∗ on MC2 there exists a unique k2 ∈ MC2(H1 ⊗ m)2(γ1
2 ◦

∂0
0k1, ∂0

1k1 ◦ γ1
1) such that θ∗k2 = ψ. Moreover, as before, injectivity of θ∗ implies

that the conditions (3.6) are satisfied. Therefore k = (k1,k2) defines a 1-morphism
γ1 → γ2 and φ is a 2-morphism θ∗k → .ג

Now, let γ ∈ Stack(H ⊗ m)0. We construct λ ∈ Stack(G ⊗ m)0 such that
Stack(H ⊗ m)1(θ∗λ, γ) 6= ∅. Indeed, by the Theorem 3.1 there exists λ0 ∈
MC2(G0 ⊗ m)0 such that MC2(H0 ⊗ m)1(θ∗λ0, γ0) 6= ∅. Let 1ג ∈ MC2(H0 ⊗
m)1(θ∗λ, γ). Applying Theorem 3.1 again we obtain that there exists µ ∈ MC2(G1⊗
m)1(∂0

0λ
0, ∂0

1λ
0) such that there exists φ ∈ MC2(H1 ⊗ m)2(γ1 ◦ ∂0

,1ג0 ∂0
1ג1 ◦ θ∗µ).

Then s10φ is then a 2-morphism 1ג → 1ג ◦ (s10µ), which induces a 2-morphism
ψ : (s10µ)−1 → Id.

Set now λ1 = µ◦(∂0
0(s10µ))−1 ∈ MC2(G1⊗m)1(∂0

0λ
0, ∂0

1λ
0), 2ג = φ⊗(∂0

0ψ)−1 ∈
MC2(H1 ⊗m)2(γ1 ◦ ∂0

,1ג0 ∂0
1ג1 ◦ θ∗λ1). It is easy to see that s10λ

1 = Id, s102ג = Id.
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We then conclude that there exists a unique λ2 such that

(Id⊗ θ∗λ
2) ◦ (∂1

2ג2 ⊗ Id) ◦ (Id⊗ ∂1
(2ג0 = ∂1

2ג1 ◦ (γ2 ⊗ Id).

Such a λ2 necessarily satisfies the conditions

∂2
2λ

2 ◦ (Id⊗ ∂2
0λ

2) = ∂2
1λ

2 ◦ (∂2
3λ

2 ⊗ Id).

s20λ
2 = s21λ

2 = Id

Therefore λ = (λ0, λ1, λ2) ∈ Stack(G ⊗ m), and ג = ,1ג) (2ג defines a 1-morphism
θ∗λ→ γ.

3.4. Acyclicity and strictness.

Definition 3.7. A G-stack (γ0, γ1, γ2) is called strict if ∂0
0γ

0 = ∂0
1γ

0, γ1 = Id and
γ2 = Id.

Let StackStr(G)0 denote the subset of strict G-stacks.

Lemma 3.8. StackStr(G)0 = MC2(ker(G0 ⇒ G1))0

Definition 3.9. For γ1, γ2 ∈ StackStr(G)0 a 1-morphism ג = ,1ג) (2ג ∈ Stack(G)1(γ1, γ2)
is called strict if ∂0

(1ג)0 = ∂0
(1ג)1 and 2ג = Id.

For γ1, γ2 ∈ StackStr(G)0 we denote by StackStr(G)1(γ1, γ2) the subset of strict
morphisms.

Lemma 3.10. For γ1, γ2 ∈ StackStr(G)0 StackStr(G)1(γ1, γ2) = MC2(ker(G0 ⇒
G1))1

For γ1, γ2 ∈ StackStr(G)0 let StackStr(G)(γ1, γ2) denote the full subcategory
of Stack(G)(γ1, γ2) with objects StackStr(G)1(γ1, γ2).

Thus, we have the 2-groupoids Stack(G) and StackStr(G) and an embedding
of the latter into the former which is fully faithful on the respective groupoids of
1-morphisms.

Lemma 3.11. StackStr(G) = MC2(ker(G0 ⇒ G1))

Suppose that G is a cosimplicial DGLA. For each n and i we have the vector
space Gn,i, namely the degree i component of Gn. The assignment n 7→ Gn,i is a
cosimplicial vector space G•,i.

We will be considering the following acyclicity condition on the cosimplicial
DGLA G:

for all i ∈ Z, Hp(G•,i) = 0 for p 6= 0 (3.8)

Theorem 3.12. Suppose that G is a cosimplicial DGLA which satisfies the condi-
tion (3.8), and m a commutative nilpotent ring. Then, the functor ι : StackStr(G⊗
m) → Stack(G⊗m)) is an equivalence.
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Proof. As we noted before, it is immediate from the definitions that if γ1, γ2 ∈
StackStr(G ⊗ m)0, and ,1ג 2ג ∈ StackStr(G ⊗ m)1(γ1, γ2), then ι : StackStr(G ⊗
m)2(1ג, (2ג → StackStr(G⊗m)2(1ג, (2ג is a bijection.

Suppose now that γ1, γ2 ∈ StackStr(G⊗m)0, ג = ,1ג) (2ג ∈ Stack(G⊗m)1(γ1, γ2).
We show that then there exists k ∈ StackStr(G)1(γ1, γ2) and a 2-morphism φ : ג →
k. Let 2ג = exp∂0

0γ
0
2
g, g ∈ (G1 ⊗m). Then ∂1

0g − ∂1
1g + ∂1

2g = 0 mod m2. By the
acyclicity condition there exists a ∈ (G0 ⊗ m) such that ∂0

0a − ∂0
1a = g mod m2.

Set φ1 = expγ0
2
a. Define then k1 = (φ1 · ,1ג (∂0

1φ1 ⊗ Id) ◦ 2ג ◦ (Id ⊗ ∂0
0φ1)−1) ∈

Stack(G ⊗ m)1(γ1, γ2). Note that φ1 defines a 2-morphism ג → k1. Note also
that k2

1 ∈ exp∂0
0γ

0
2
(G ⊗ m2). Proceeding inductively one constructs a sequence

kk ∈ Stack(G ⊗ m)1(γ1, γ2) such that k2
k ∈ exp(G ⊗ mk+1) and 2-morphisms

φk : ג → kk, φk+1 = φk mod mk. Since m is nilpotent, for k large enough
kk ∈ StackStr(G)1(γ1, γ2).

Assume now that γ ∈ Stack(G⊗m)0. We will construct λ ∈ StackStr(G⊗m)0
and a 1-morphism ג : γ → λ.

We begin by constructing µ ∈ Stack(G ⊗ m)0 such that µ2 = Id and a 1-
morphism k : γ → λ. We have: γ2 = exp∂1

1∂
0
1γ

0 c, c ∈ (G2 ⊗ m). In view of the
equations (3.5) c satisfies the following identities:

∂2
0c− ∂2

1c+ ∂2
2c− ∂2

3c = 0 mod m2

s20c = s21c = 0
(3.9)

By the acyclicity of the normalized complex we can find b ∈ G1 ⊗ m such
that ∂1

0b − ∂1
1b + ∂1

2b = c mod m2, s10b = 0. Let φ1 = exp∂0
1γ

0(−b). Define then
µ1 = (µ0

1, µ
1
1, µ

2
1) where µ0

1 = γ0, µ1
1 = φ1 · γ1, and µ2

1 is such that

(Id⊗ γ2) ◦ (∂1
2φ1 ⊗ Id) ◦ (Id⊗ ∂1

0φ1) = ∂1
1φ1 ◦ (µ2

1 ⊗ Id)

Note that µ2
1 = Id mod m2 and (Id, φ1) is a 1-morphism γ → µ1. As before

we can construct a sequence µk such that µ2
k = Id mod mk+1, and 1-morphisms

(Id, φk) : γ → µk, φk+1 = φk mod mk. As before we conclude that this gives
the desired construction of µ. The rest of the proof, i.e. the construction of λ is
completely analogous.

Corollary 3.13. Suppose that G is a cosimplicial DGLA which satisfies the con-
dition (3.8). Then there is a canonical equivalence:

Stack(G⊗m) ∼= MC2(ker(G0 ⇒ G1)⊗m)

Proof. Combine Lemma 3.11 with Theorem 3.12.

4. Algebroid stacks

In this section we review the notions of algebroid stack and twisted form. We also
define the notion of descent datum and relate it with algebroid stacks.
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4.1. Algebroids and algebroid stacks.

4.1.1. Algebroids. For a category C we denote by iC the subcategory of isomor-
phisms in C; equivalently, iC is the maximal subgroupoid in C.

Suppose that R is a commutative k-algebra.

Definition 4.1. An R-algebroid is a nonempty R-linear category C such that the
groupoid iC is connected

Let AlgdR denote the 2-category of R-algebroids (full 2-subcategory of the
2-category of R-linear categories).

Suppose that A is an R-algebra. The R-linear category with one object and
morphisms A is an R-algebroid denoted A+.

Suppose that C is an R-algebroid and L is an object of C. Let A = EndC(L).
The functor A+ → C which sends the unique object of A+ to L is an equivalence.

Let Alg2
R denote the 2-category of with

• objects R-algebras

• 1-morphisms homomorphism of R-algebras

• 2-morphisms φ→ ψ, where φ, ψ : A→ B are two 1-morphisms are elements
b ∈ B such that φ(a) · b = b · ψ(a) for all a ∈ A.

It is clear that the 1- and the 2- morphisms in Alg2
R as defined above induce 1-

and 2-morphisms of the corresponding algebroids under the assignment A 7→ A+.
The structure of a 2-category on Alg2

R (i.e. composition of 1- and 2- morphisms)
is determined by the requirement that the assignment A 7→ A+ extends to an
embedding (•)+ : Alg2

R → AlgdR.
Suppose that R→ S is a morphism of commutative k-algebras. The assignment

A→ A⊗R S extends to a functor (•)⊗R S : Alg2
R → Alg2

S .

4.1.2. Algebroid stacks. We refer the reader to [1] and [20] for basic definitions.
We will use the notion of fibered category interchangeably with that of a pseudo-
functor. A prestack C on a space X is a category fibered over the category of open
subsets of X, equivalently, a pseudo-functor U 7→ C(U), satisfying the following
additional requirement. For an open subset U ofX and two objects A,B ∈ C(U) we
have the presheaf HomC(A,B) on U defined by U ⊇ V 7→ HomC(V )(A|V , B|B). The
fibered category C is a prestack if for any U , A,B ∈ C(U), the presheaf HomC(A,B)
is a sheaf. A prestack is a stack if, in addition, it satisfies the condition of effective
descent for objects. For a prestack C we denote the associated stack by C̃.

Definition 4.2. A stack in R-linear categories C on X is an R-algebroid stack if
it is locally nonempty and locally connected, i.e. satisfies

1. any point x ∈ X has a neighborhood U such that C(U) is nonempty;

2. for any U ⊆ X, x ∈ U , A,B ∈ C(U) there exits a neighborhood V ⊆ U of x
and an isomorphism A|V ∼= B|V .
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Remark 4.3. Equivalently, the stack associated to the substack of isomorphisms
ĩC is a gerbe.

Example 4.4. Suppose that A is a sheaf of R-algebras on X. The assignment
X ⊇ U 7→ A(U)+ extends in an obvious way to a prestack in R-algebroids denoted
A+. The associated stack Ã+ is canonically equivalent to the stack of locally free
Aop-modules of rank one. The canonical morphism A+ → Ã+ sends the unique
(locally defined) object of A+ to the free module of rank one.

1-morphisms and 2-morphisms of R-algebroid stacks are those of stacks in R-
linear categories. We denote the 2-category ofR-algebroid stacks by AlgStackR(X).

4.2. Descent data.

4.2.1. Convolution data.

Definition 4.5. An R-linear convolution datum is a triple (U ,A01,A012) consist-
ing of:

• a cover U ∈ Cov(X)

• a sheaf A01 of R-modules A01 on N1U

• a morphism

A012 : (pr2
01)
∗A01 ⊗R (pr2

12)
∗A01 → (pr2

02)
∗A01 (4.1)

of R-modules

subject to the associativity condition expressed by the commutativity of the dia-
gram

(pr3
01)
∗A01 ⊗R (pr3

12)
∗A01 ⊗R (pr3

23)
∗A01

(pr3012)
∗(A012)⊗Id−−−−−−−−−−−−→ (pr3

02)
∗A01 ⊗R (pr3

23)
∗A01

Id⊗(pr3123)
∗(A012)

y y(pr3023)
∗(A012)

(pr3
01)
∗A01 ⊗R (pr3

13)
∗A01

(pr3013)
∗(A012)−−−−−−−−−→ (pr3

03)
∗A01

For a convolution datum (U ,A01,A012) we denote by A the pair (A01,A012)
and abbreviate the convolution datum by (U ,A).

For a convolution datum (U ,A) let

• A := (pr0
00)
∗A01; A is a sheaf of R-modules on N0U

• Api := (prpi )
∗A; thus for every p we get sheaves Api , 0 ≤ i ≤ p on NpU .

The identities pr0
01 ◦ pr0

000 = pr0
12 ◦ pr0

000 = pr02 ◦ pr0
000 = pr0

00 imply that the
pull-back of A012 to N0U by pr0

000 gives the pairing

(pr0
000)

∗(A012) : A⊗R A → A . (4.2)
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The associativity condition implies that the pairing (4.2) endowsA with a structure
of a sheaf of associative R-algebras on N0U .

The sheaf Api is endowed with the associative R-algebra structure induced by
that on A. We denote by Apii the Api ⊗R (Api )op-module Api , with the module
structure given by the left and right multiplication.

The identities pr2
01 ◦ pr1

001 = pr0
00 ◦ pr1

0, pr
2
12 ◦ pr1

001 = pr2
02 ◦ pr1

001 = Id imply
that the pull-back of A012 to N1U by pr1

001 gives the pairing

(pr1
001)

∗(A012) : A1
0 ⊗R A01 → A01 (4.3)

The associativity condition implies that the pairing (4.3) endows A01 with a struc-
ture of a A1

0-module. Similarly, the pull-back of A012 to N1U by pr1
011 endows A01

with a structure of a (A1
1)
op-module. Together, the two module structures define

a structure of a A1
0 ⊗R (A1

1)
op-module on A01.

The map (4.1) factors through the map

(pr2
01)
∗A01 ⊗A2

1
(pr2

12)
∗A01 → (pr2

02)
∗A01 (4.4)

Definition 4.6. A unit for a convolution datum A is a morphism of R-modules

1 : R→ A

such that the compositions

A01
1⊗Id−−−→ A1

0 ⊗R A01
(pr1001)

∗(A012)−−−−−−−−−→ A01

and

A01
Id⊗1−−−→ A01 ⊗R A1

1

(pr1011)
∗(A012)−−−−−−−−−→ A01

are equal to the respective identity morphisms.

4.2.2. Descent data.

Definition 4.7. A descent datum on X is an R-linear convolution datum (U ,A)
on X with a unit which satisfies the following additional conditions:

1. A01 is locally free of rank one as a A1
0-module and as a (A1

1)
op-module;

2. the map (4.4) is an isomorphism.

4.2.3. 1-morphisms. Suppose given convolution data (U ,A) and (U ,B) as in
Definition 4.5.

Definition 4.8. A 1-morphism of convolution data

φ : (U ,A) → (U ,B)
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is a morphism of R-modules φ01 : A01 → B01 such that the diagram

(pr2
01)
∗A01 ⊗R (pr2

12)
∗A01

A012−−−−→ (pr2
02)
∗A01

(pr201)
∗(φ01)⊗(pr212)

∗(φ01)

y y(pr202)
∗(φ01)

(pr2
01)
∗B01 ⊗R (pr2

12)
∗B01

B012−−−−→ (pr2
02)
∗B01

(4.5)

is commutative.

The 1-morphism φ induces a morphism of R-algebras φ := (pr0
00)
∗(φ01) : A →

B onN0U as well as morphisms φpi := (prpi )
∗(φ) : Api → Bpi onNpU . The morphism

φ01 is compatible with the morphism of algebras φ0 ⊗ φop1 : A1
0 ⊗R (A1

1)
op →

B1
0 ⊗R (B1

1)
op and the respective module structures.

A 1-morphism of descent data is a 1-morphism of the underlying convolution
data which preserves respective units.

4.2.4. 2-morphisms. Suppose that we are given descent data (U ,A) and (U ,B)
as in 4.2.2 and two 1-morphisms

φ, ψ : (U ,A) → (U ,B)

as in 4.2.3.
A 2-morphism

b : φ→ ψ

is a section b ∈ Γ(N0U ;B) such that the diagram

A01
b⊗φ01−−−−→ B1

0 ⊗R B01

ψ01⊗b
y y

B01 ⊗R B1
1 −−−−→ B01

is commutative.

4.2.5. The 2-category of descent data. Fix a cover U of X.
Suppose that we are given descent data (U ,A), (U ,B), (U , C) and 1-morphisms

φ : (U ,A) → (U ,B) and ψ : (U ,B) → (U , C). The map ψ01 ◦ φ01 : A01 → C01 is a
1-morphism of descent data ψ ◦ φ : (U ,A) → (U , C), the composition of φ and ψ.

Suppose that φ(i) : (U ,A) → (U ,B), i = 1, 2, 3, are 1-morphisms and b(j) :
φ(j) → φ(j+1), j = 1, 2, are 2-morphisms. The section b(2) · b(1) ∈ Γ(N0U ;B)
defines a 2-morphism, denoted b(2)b(1) : φ(1) → φ(3), the vertical composition of
b(1) and b(2).

Suppose that φ(i) : (U ,A) → (U ,B), ψ(i) : (U ,B) → (U , C), i = 1, 2, are 1-
morphisms and b : φ(1) → φ(2), c : ψ(1) → ψ(2) are 2-morphisms. The section c ·
ψ(1)(b) ∈ Γ(N0U ; C) defines a 2-morphism, denoted c⊗b, the horizontal composition
of b and c.

We leave it to the reader to check that with the compositions defined above
descent data, 1-morphisms and 2-morphisms form a 2-category, denoted DescR(U).
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4.2.6. Fibered category of descent data. Suppose that ρ : V → U is a mor-
phism of covers and (U ,A) is a descent datum. Let Aρ01 = (N1ρ)∗A01, Aρ012 =
(N2ρ)∗(A012). Then, (V,Aρ) is a descent datum. The assignment (U ,A) 7→
(V,Aρ) extends to a functor, denoted ρ∗ : DescR(U) → DescR(V).

The assignment Cov(X)op 3 U → DescR(U), ρ → ρ∗ is (pseudo-)functor. Let
DescR(X) denote the corresponding 2-category fibered in R-linear 2-categories
over Cov(X) with object pairs (U ,A) with U ∈ Cov(X) and (U ,A) ∈ DescR(U); a
morphism (U ′,A′) → (U ,A) in DescR(X) is a pair (ρ, φ), where ρ : U ′ → U is a
morphism in Cov(X) and φ : (U ′,A′) → ρ∗(U ,A) = (U ′,Aρ).

4.3. Trivializations.

4.3.1. Definition of a trivialization.

Definition 4.9. A trivialization of an algebroid stack C on X is an object in C(X).

Suppose that C is an algebroid stack on X and L ∈ C(X) is a trivialization.
The object L determines a morphism EndC(L)+ → C.

Lemma 4.10. The induced morphism ˜EndC(L)+ → C is an equivalence.

Remark 4.11. Suppose that C is an R-algebroid stack on X. Then, there exists a
cover U of X such that the stack ε∗0C admits a trivialization.

4.3.2. The 2-category of trivializations. Let TrivR(X) denote the 2-category
with

• objects the triples (C,U , L) where C is an R-algebroid stack on X, U is an
open cover of X such that ε∗0C(N0U) is nonempty and L is a trivialization of
ε∗0C.

• 1-morphisms (C′,U ′, L) → (C,U , L) are pairs (F, ρ) where ρ : U ′ → U is a
morphism of covers, F : C′ → C is a functor such that (N0ρ)∗F (L′) = L

• 2-morphisms (F, ρ) → (G, ρ), where (F, ρ), (G, ρ) : (C′,U ′, L) → (C,U , L),
are the morphisms of functors F → G.

The assignment (C,U , L) 7→ C extends in an obvious way to a functor TrivR(X) →
AlgStackR(X).

The assignment (C,U , L) 7→ U extends to a functor TrivR(X) → Cov(X) mak-
ing TrivR(X) a fibered 2-category over Cov(X). For U ∈ Cov(X) we denote the
fiber over U by TrivR(X)(U).

4.3.3. Algebroid stacks from descent data. Consider (U ,A) ∈ DescR(U).
The sheaf of algebras A on N0U gives rise to the algebroid stack Ã+. The sheaf

A01 defines an equivalence

φ01 := (•)⊗A1
0
A01 : (pr1

0)
∗Ã+ → (pr1

1)
∗Ã+ .
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The convolution map A012 defines an isomorphism of functors

φ012 : (pr2
01)
∗(φ01) ◦ (pr2

12)
∗(φ01) → (pr2

02)
∗(φ01) .

We leave it to the reader to verify that the triple (Ã+, φ01, φ012) constitutes a
descent datum for an algebroid stack on X which we denote by St(U ,A).

By construction there is a canonical equivalence Ã+ → ε∗0St(U ,A) which en-
dows ε∗0St(U ,A) with a canonical trivialization 11.

The assignment (U ,A) 7→ (St(U ,A),U , 11) extends to a cartesian functor

St : DescR(X) → TrivR(X) .

4.3.4. Descent data from trivializations. Consider (C,U , L) ∈ TrivR(X).
Since ε0 ◦ pr1

0 = ε0 ◦ pr1
1 = ε1 we have canonical identifications (pr1

0)
∗ε∗0C ∼=

(pr1
1)
∗ε∗0C ∼= ε∗1C. The object L ∈ ε∗0C(N0U) gives rise to the objects (pr1

0)
∗L and

(pr1
1)
∗L in ε∗1C(N0U). Let A01 = Homε∗1C((pr

1
1)
∗L, (pr1

0)
∗L). Thus, A01 is a sheaf

of R-modules on N1U .
The object L ∈ ε∗0C(N0U) gives rise to the objects (pr2

0)
∗L, (pr2

1)
∗L and (pr2

2)
∗L

in ε∗2C(N2U). There are canonical isomorphisms (pr2
ij)
∗A01

∼= Homε∗2C((pr
2
i )
∗L, (pr2

j )
∗L).

The composition of morphisms

Homε∗2C((pr
2
1)
∗L, (pr2

0)
∗L)⊗RHomε∗2C((pr

2
2)
∗L, (pr2

1)
∗L) → Homε∗2C((pr

2
2)
∗L, (pr2

0)
∗L)

gives rise to the map

A012 : (pr2
01)
∗A01 ⊗R (pr2

12)
∗A01 → (pr2

02)
∗A02

Since pr1
i ◦ pr0

00 = Id there is a canonical isomorphism A := (pr0
00)
∗A01

∼=
End(L) which supplies A with the unit section 1 : R 1−→ End(L) → A.

The pair (U ,A), together with the section 1 is a decent datum which we denote
dd(C,U , L).

The assignment (U ,A) 7→ dd(C,U , L) extends to a cartesian functor

dd : TrivR(X) → DescR(X) .

Lemma 4.12. The functors St and dd are mutually quasi-inverse equivalences.

4.4. Base change. For an R-linear category C and homomorphism of alge-
bras R → S we denote by C ⊗R S the category with the same objects as C and
morphisms defined by HomC⊗RS(A,B) = HomC(A,B)⊗R S.

For an R-algebra A the categories (A ⊗R S)+ and A+ ⊗R S are canonically
isomorphic.

For a prestack C in R-linear categories we denote by C ⊗R S the prestack
associated to the fibered category U 7→ C(U)⊗R S.

For U ⊆ X, A,B ∈ C(U), there is an isomorphism of sheaves HomC⊗RS
(A,B) =

HomC(A,B)⊗R S.
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Lemma 4.13. Suppose that A is a sheaf of R-algebras and C is an R-algebroid
stack.

1. (Ã+ ⊗R S)˜ is an algebroid stack equivalent to ˜(A⊗R S)+ .

2. C̃ ⊗R S is an algebroid stack.

Proof. Suppose that A is a sheaf of R-algebras. There is a canonical isomor-
phism of prestacks (A⊗R S)+ ∼= A+⊗R S which induces the canonical equivalence

˜(A⊗R S)+ ∼= ˜A+ ⊗R S.
The canonical functor A+ → Ã+ induces the functor A+ ⊗R S → Ã+ ⊗R S,

hence the functor ˜A+ ⊗R S → (Ã+ ⊗R S)˜.

The map A → A ⊗R S induces the functor Ã+ → ˜(A⊗R S)+ which factors

through the functor Ã+ ⊗R S → ˜(A⊗R S)+. From this we obtain the functor

(Ã+ ⊗R S)˜ → ˜(A⊗R S)+.
We leave it to the reader to check that the two constructions are mutually

inverse equivalences. It follows that (Ã+ ⊗R S)˜ is an algebroid stack equivalent

to ˜(A⊗R S)+.
Suppose that C is an R-algebroid stack. Let U be a cover such that ε∗0C(N0U) is

nonempty. Let L be an object in ε∗0C(N0U); put A := Endε∗0C(L). The equivalence

Ã+ → ε∗0C induces the equivalence (Ã+⊗RS)˜ → (ε∗0C⊗RS)˜. Since the former is
an algebroid stack so is the latter. There is a canonical equivalence (ε∗0C ⊗R S)˜ ∼=
ε∗0(C̃ ⊗R S); since the former is an algebroid stack so is the latter. Since the
property of being an algebroid stack is local, the stack C̃ ⊗R S is an algebroid
stack.

4.5. Twisted forms. Suppose that A is a sheaf of R-algebras on X. We will
call an R-algebroid stack locally equivalent to Ãop+ a twisted form of A.

Suppose that S is twisted form of OX . Then, the substack iS is an O×X -
gerbe. The assignment S 7→ iS extends to an equivalence between the 2-groupoid
of twisted forms of OX (a subcategory of AlgStackC(X)) and the 2-groupoid of
O×X -gerbes.

Let S be a twisted form of OX . Then for any U ⊆ X, A ∈ S(U) the canonical
map OU → EndS(A) is an isomorphism. Consequently, if U is a cover of X and
L is a trivialization of ε∗0S, then there is a canonical isomorphism of sheaves of
algebras ON0U → Endε∗0S(L).

Conversely, suppose that (U ,A) is a C-descent datum. If the sheaf of algebras
A is isomorphic to ON0U then such an isomorphism is unique since the latter has no
non-trivial automorphisms. Thus, we may and will identify A with ON0U . Hence,
A01 is a line bundle on N1U and the convolution map A012 is a morphism of line
bundles. The stack which corresponds to (U ,A) (as in 4.3.3) is a twisted form of
OX .
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Isomorphism classes of twisted forms of OX are classified by H2(X;O×X). We
recall the construction presently. Suppose that the twisted form S of OX is repre-
sented by the descent datum (U ,A). Assume in addition that the line bundle A01

on N1U is trivialized. Then we can consider A012 as an element in Γ(N2U ;O×).
The associativity condition implies that A012 is a cocycle in Č2(U ;O×). The class
of this cocycle in Ȟ2(U ;O×) does not depend on the choice of trivializations of the
line bundle A01 and yields a class in H2(X;O×X).

We can write this class using the de Rham complex for jets. We refer to the Sec-
tion 7.1 for the notations and a brief review. The composition O× → O×/C× log−−→
O/C j∞−−→ DR(J /O) induces the mapH2(X;O×) → H2(X; DR(J /O)) ∼= H2(Γ(X; Ω•X⊗
JX/OX),∇can). Here the latter isomorphism follows from the fact that the sheaf
Ω•X ⊗ JX/OX is soft. We denote by [S] ∈ H2(Γ(X; Ω•X ⊗ JX/OX),∇can) the
image of the class of S in H2(X;O×). In the Lemma 7.13 (see also Lemma 7.15)
we will construct an explicit representative for [S].

5. DGLA of local cochains on matrix algebras

In this section we define matrix algebras from a descent datum and use them to
construct a cosimplicial DGLA of local cochains. We also establish the acyclicity
of this cosimplicial DGLA.

5.1. Definition of matrix algebras.

5.1.1. Matrix entries. Suppose that (U ,A) is an R-descent datum. Let A10 :=
τ∗A01, where τ = pr1

10 : N1U → N1U is the transposition of the factors. The
pairings (pr1

100)
∗(A012) : A10⊗RA1

0 → A10 and (pr1
110)

∗(A012) : A1
1⊗RA10 → A10

of sheaves on N1U endow A10 with a structure of a A1
1 ⊗ (A1

0)
op-module.

The identities pr2
01 ◦ pr1

010 = Id, pr2
12 ◦ pr1

010 = τ and pr2
02 ◦ pr1

010 = pr0
00 ◦ pr1

0

imply that the pull-back of A012 by pr1
010 gives the pairing

(pr1
010)

∗(A012) : A01 ⊗R A10 → A1
00 (5.1)

which is a morphism of A1
0 ⊗K (A1

0)
op-modules. Similarly, we have the pairing

(pr1
101)

∗(A012) : A10 ⊗R A01 → A1
11 (5.2)

The pairings (4.2), (4.3), (5.1) and (5.2), Aij ⊗R Ajk → Aik are morphisms
of A1

i ⊗R (A1
k)
op-modules which, as a consequence of associativity, factor through

maps
Aij ⊗A1

j
Ajk → Aik (5.3)

induced by Aijk = (pr1
ijk)
∗(A012); here i, j, k = 0, 1. Define now for every p ≥ 0

the sheaves Apij , 0 ≤ i, j ≤ p, on NpU by Apij = (prpij)
∗A01. Define also Apijk =

(prpijk)
∗(A012). We immediately obtain for every p the morphisms

Apijk : Apij ⊗Ap
j
Apjk → Apik (5.4)
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5.1.2. Matrix algebras. Let Mat(A)0 = A; thus, Mat(A)0 is a sheaf of algebras
on N0U . For p = 1, 2, . . . let Mat(A)p denote the sheaf on NpU defined by

Mat(A)p =
p⊕

i,j=0

Apij

The maps (5.4) define the pairing

Mat(A)p ⊗ Mat(A)p → Mat(A)p

which endows the sheaf Mat(A)p with a structure of an associative algebra by
virtue of the associativity condition. The unit section 1 is given by 1 =

∑p
i=0 1ii,

where 1ii is the image of the unit section of Apii.

5.1.3. Combinatorial restriction. The algebras Mat(A)p, p = 0, 1, . . ., do not
form a cosimplicial sheaf of algebras on NU in the usual sense. They are, however,
related by combinatorial restriction which we describe presently.

For a morphism f : [p] → [q] in ∆ define a sheaf on NqU by

f ]Mat(A)q =
p⊕

i,j=0

Aqf(i)f(j) .

Note that f ]Mat(A)q inherits a structure of an algebra.
Recall from the Section 2.3.1 that the morphism f induces the map f∗ : NqU →

NpU and that f∗ denotes the pull-back along f∗. We will also use f∗ to denote the
canonical isomorphism of algebras

f∗ : f∗Mat(A)p → f ]Mat(A)q (5.5)

induced by the isomorphisms f∗Apij ∼= Aqf(i)f(j).

5.1.4. Refinement. Suppose that ρ : V → U is a morphism of covers. For
p = 0, 1, . . . there is a natural isomorphism

(Npρ)∗Mat(A)p ∼= Mat(Aρ)p

of sheaves of algebras on NpV. The above isomorphisms are obviously compatible
with combinatorial restriction.

5.2. Local cochains on matrix algebras.

5.2.1. Local cochains. A sheaf of matrix algebras is a sheaf of algebras B to-
gether with a decomposition

B =
p⊕

i,j=0

Bij
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as a sheaf of vector spaces which satisfies Bij · Bjk = Bik.
To a matrix algebra B one can associate to the DGLA of local cochains defined

as follows. For n = 0 let C0(B)loc =
⊕
Bii ⊂ B = C0(B). For n > 0 let Cn(B)loc

denote the subsheaf of Cn(B) whose stalks consist of multilinear maps D such that
for any collection of sikjk ∈ Bikjk

1. D(si1j1 ⊗ · · · ⊗ sinjn) = 0 unless jk = ik+1 for all k = 1, . . . , n− 1

2. D(si0i1 ⊗ si1i2 ⊗ · · · ⊗ sin−1in) ∈ Bi0in

For I = (i0, . . . , in) ∈ [p]×n+1 let

CI(B)loc := Homk(⊗n−1
j=0Bijij+1 ,Bi0in) .

The restriction maps along the embeddings ⊗n−1
j=0Bijij+1 ↪→ B⊗n induce an isomor-

phism Cn(B)loc → ⊕I∈[p]×n+1CI(B)loc.
The sheaf C•(B)loc[1] is a subDGLA of C•(B)[1] and the inclusion map is a

quasi-isomorphism.
For a matrix algebra B on X we denote by Def(B)loc(R) the subgroupoid of

Def(B)(R) with objects R-star products which respect the decomposition given
by (B ⊗k R)ij = Bij ⊗k R and 1- and 2-morphisms defined accordingly. The
composition

Def(B)loc(R) → Def(B)(R) → MC2(Γ(X;C•(B)[1])⊗k mR)

takes values in MC2(Γ(X;C•(B)loc[1])⊗k mR) and establishes an isomorphism of
2-groupoids Def(B)loc(R) ∼= MC2(Γ(X;C•(B)loc[1])⊗k mR).

5.2.2. Combinatorial restriction of local cochains. Suppose given a matrix
algebra B =

⊕q
i,j=0 Bij is a sheaf of matrix k-algebras.

The DGLA C•(B)loc[1] has additional variance not exhibited by C•(B)[1].
Namely, for f : [p] → [q] – a morphism in ∆ – there is a natural map of DGLA

f ] : C•(B)loc[1] → C•(f ]B)loc[1] (5.6)

defined as follows. Let f ij] : (f ]B)ij → Bf(i)f(j) denote the tautological isomor-
phism. For each multi-index I = (i0, . . . , in) ∈ [p]×n+1 let

f I] := ⊗n−1
j=0 f

ijij+1
] : ⊗n−1

j=0 (f ]B)ijij+1 → ⊗n−1
i=0 Bf(ij)f(ij+1) .

Let fn] := ⊕I∈Σ×n+1
p

f I] . The map (5.6) is defined as restriction along fn] .

Lemma 5.1. The map (5.6) is a morphism of DGLA

f ] : C•(B)loc[1] → C•(f ]B)loc[1] .
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If follows that combinatorial restriction of local cochains induces the functor

MC2(f ]) : MC2(Γ(X;C•(B)loc[1])⊗k mR) → MC2(Γ(X;C•(f ]B)loc[1])⊗k mR) .

Combinatorial restriction with respect to f induces the functor

f ] : Def(B)loc(R) → Def(f ]B)loc(R) .

It is clear that the diagram

Def(B)loc(R)
f]

−−−−→ Def(f ]B)loc(R)y y
MC2(Γ(X;C•(B)loc[1])⊗k mR)

MC2(f])−−−−−−→ MC2(Γ(X;C•(f ]B)loc[1])⊗k mR)

5.2.3. Cosimplicial DGLA from descent datum . Suppose that (U ,A) is a
descent datum for a twisted sheaf of algebras as in 4.2.2. Then, for each p = 0, 1, . . .
we have the matrix algebra Mat(A)p as defined in 5.1, and therefore the DGLA of
local cochains C•(Mat(A)p)loc[1] defined in 5.2.1. For each morphism f : [p] → [q]
there is a morphism of DGLA

f ] : C•(Mat(A)q)loc[1] → C•(f ]Mat(A)q)loc[1]

and an isomorphism of DGLA

C•(f ]Mat(A)q)loc[1] ∼= f∗C
•(Mat(A)p)loc[1]

induced by the isomorphism f∗ : f∗Mat(A)p → f ]Mat(A)q from the equation (5.5).
These induce the morphisms of the DGLA of global sections

Γ(NqU ;C•(Mat(A)q)loc[1])

f]

((PPPPPPPPPPPPPP
Γ(NpU ;C•(Mat(A)p)loc[1])

f∗

vvnnnnnnnnnnnnnn

Γ(NqU ; f∗C•(Mat(A)p)loc[1])

For λ : [n] → ∆ let

G(A)λ = Γ(Nλ(n)U ;λ(0n)∗C•(Mat(A)λ(0))loc[1])

Suppose given another simplex µ : [m] → ∆ and morphism φ : [m] → [n] such
that µ = λ◦φ (i.e. φ is a morphism of simplices µ→ λ). The morphism (0n) factors
uniquely into 0 → φ(0) → φ(m) → n, which, under λ, gives the factorization of
λ(0n) : λ(0) → λ(n) (in ∆) into

λ(0)
f−−−−→ µ(0)

g−−−−→ µ(m) h−−−−→ λ(n) , (5.7)
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where g = µ(0m). The map

φ∗ : G(A)µ → G(A)λ

is the composition

Γ(Nµ(m)U ; g∗C•(Mat(A)µ(0))loc[1]) h∗−→

Γ(Nλ(n)U ;h∗g∗C•(Mat(A)µ(0))loc[1])
f]

−→
Γ(Nλ(n)U ;h∗g∗f∗C•(Mat(A)λ(0))loc[1])

Suppose given yet another simplex, ν : [l] → ∆ and a morphism of simplices
ψ : ν → µ, i.e. a morphism ψ : [l] → [m] such that ν = µ ◦ ψ. Then, the
composition φ∗ ◦ ψ∗ : G(A)ν → G(A)λ coincides with the map (φ ◦ ψ)∗.

For n = 0, 1, 2, . . . let
G(A)n =

∏
[n]

λ−→∆

G(A)λ (5.8)

A morphism φ : [m] → [n] in ∆ induces the map of DGLA φ∗ : G(A)m → G(A)n.
The assignment ∆ 3 [n] 7→ G(A)n, φ 7→ φ∗ defines the cosimplicial DGLA denoted
G(A).

5.3. Acyclicity.

Theorem 5.2. The cosimplicial DGLA G(A) is acyclic, i.e. it satisfies the con-
dition (3.8).

The rest of the section is devoted to the proof of the Theorem 5.2. We fix a
degree of Hochschild cochains k.

For λ : [n] → ∆ let cλ = Γ(Nλ(n)U ;λ(0n)∗Ck(Mat(A)λ(0))loc). For a morphism
φ : µ→ λ we have the map φ∗ : cµ → cλ defined as in 5.2.3.

Let (C•, ∂) denote the corresponding cochain complex whose definition we recall
below. For n = 0, 1, . . . let Cn =

∏
[n]

λ−→∆

cλ. The differential ∂n : Cn → Cn+1 is

defined by the formula ∂n =
∑n+1
i=0 (−1)i(∂ni )∗.

5.3.1. Decomposition of local cochains. As was noted in 5.2.1, for n, q =
0, 1, . . . there is a direct sum decomposition

Ck(Mat(A)q)loc =
⊕

I∈[q]k+1

CI(Mat(A)q)loc. (5.9)

In what follows we will interpret a multi-index I = (i0, . . . , in) ∈ [q]k+1 as a
map I : {0, . . . , k} → [q]. For I as above let s(I) = | Im(I)| − 1. The map I factors
uniquely into the composition

{0, . . . , k} I′−→ [s(I)]
m(I)−−−→ [q]
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where the second map is a morphism in ∆ (i.e. is order preserving). Then, the
isomorphisms m(I)∗AI′(i)I′(j) ∼= AI(i)I(j) induce the isomorphism

m(I)∗CI
′
(Mat(A)s(I))loc → CI(Mat(A)q)loc

Therefore, the decomposition (5.9) may be rewritten as follows:

Ck(Mat(A)q)loc =
⊕
e

⊕
I

e∗C
I(Mat(A)p)loc (5.10)

where the summation is over injective (monotone) maps e : [s(e)] → [q] and sur-
jective maps I : {0, . . . , k} → [s(e)]. Note that, for e, I as above, there is an
isomorphism

e∗C
I(Mat(A)p)loc ∼= Ce◦I(e]Mat(A)s(e))loc

5.3.2. Filtrations. Let F •Ck(Mat(A)q)loc denote the decreasing filtration de-
fined by

F sCk(Mat(A)q)loc =
⊕

e:s(e)≥s

⊕
I

e∗C
I(Mat(A)p)loc

Note that F sCk(Mat(A)q)loc = 0 for s > k and GrsCk(Mat(A)q)loc = 0 for s < 0.
The filtration F •Ck(Mat(A)λ(0))loc induces the filtration F •cλ, hence the filtra-

tion F •C• with F scλ = Γ(Nλ(n)U ;λ(0n)∗F sCk(Mat(A)λ(0))loc), F sCn =
∏

[n]
λ−→∆

F scλ.

The following result then is an easy consequence of the definitions:

Lemma 5.3. For φ : µ→ λ the induced map φ∗ : cµ → cλ preserves filtration.

Corollary 5.4. The differential ∂n preserves the filtration.

Proposition 5.5. For any s the complex Grs(C•, ∂) is acyclic in non-zero degrees.

Proof. Use the following notation: for a simplex µ : [m] → ∆ and an arrow
e : [s] → [µ(0)] the simplex µe : [m+ 1] → ∆ is defined by µe(0) = [s], µe(01) = e,
and µe(i) = µ(i− 1), µe(i, j) = µ(i− 1, j − 1) for i > 0.

For D = (Dλ) ∈ F sCn, Dλ ∈ cλ and µ : [n− 1] → ∆ let

hn(D)µ =
∑
I,e

e∗D
I
µe

where e : [s] → µ(0) is an injective map, I : {0, . . . , k} → [s] is a surjection,
and DI

µe is the I-component of Dµe in the sense of the decomposition (5.9). Put
hn(D) = (hn(D)µ) ∈ Cn−1. It is clear that hn(D) ∈ F sCn−1. Thus the assignment
D 7→ hn(D) defines a filtered map hn : Cn → Cn−1 for all n ≥ 1. Hence, for any s
we have the map Grshn : GrsCn → GrsCn−1.

Next, we calculate the effect of the face maps ∂n−1
i : [n− 1] → [n]. First of all,

note that, for 1 ≤ i ≤ n − 1, (∂n−1
i )∗ = Id. The effect of (∂n−1

0 )∗ is the map on
global sections induced by

λ(01)] : λ(1n)∗Ck(Mat(A)λ(1))loc → λ(0n)∗Ck(Mat(A)λ(0))loc
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and (∂n−1
n )∗ = λ(n− 1, n)∗. Thus, for D = (Dλ) ∈ F sCn, we have:

((∂n−1
i )∗hn(D))λ = (∂n−1

i )∗
∑
I,e

e∗D
I
(λ◦∂n−1

i )e =


λ(01)]

∑
I,e e∗D

I
(λ◦∂n−1

0 )e
if i = 0∑

I,e e∗D
I
(λ◦∂n−1

i )e
if 1 ≤ i ≤ n− 1

λ(n− 1, n)∗
∑
I,e e∗D

I
(λ◦∂n−1

n )e
if i = n

On the other hand,

hn+1((∂nj )∗D)λ =
∑
I,e

e∗((∂nj )∗D)Iλe =


∑
I,e e∗e

]DI
λ if j = 0∑

I,e e∗D
I
(λ◦∂n−1

0 )λ(01)◦e
if j = 1∑

I,e e∗D
I
(λ◦∂n−1

j−1 )e
if 2 ≤ j ≤ n∑

I,e λ(n− 1, n)∗e∗DI
(λ◦∂n−1

n )e
if j = n+ 1

Note that
∑
I,e e∗e

]DI
λ = Dλ mod F s+1cλ, i.e. the map hn+1 ◦ ∂n0 induces the

identity map on Grscλ for all λ, hence the identity map on GrsCn.
The identities (∂n−1

i hn(D))λ = hn+1((∂ni+1)∗D)λ mod F scλ hold for 0 ≤ i ≤
n.

For n = 0, 1, . . . let ∂n =
∑
i(−1)∂ni . The above identities show that, for n > 0,

hn+1 ◦ ∂n + ∂n−1 ◦ hn = Id.

Proof of Theorem 5.2. Consider for a fixed k the complex of Hochschild degree
k cochains C•. It is shown in Proposition 5.5 that this complex admits a finite
filtration F •C• such that GrC• is acyclic in positive degrees. Therefore C•is also
acyclic in positive degree. As this holds for every k, the condition (3.8) is satisfied.

6. Deformations of algebroid stacks

In this section we define a 2-groupoid of deformations of an algebroid stack. We
also define 2-groupoids of deformations and star products of a descent datum and
relate it with the 2-groupoid G-stacks of an appropriate cosimplicial DGLA.

6.1. Deformations of linear stacks.

Definition 6.1. Let B be a prestack on X in R-linear categories. We say that B
is flat if for any U ⊆ X, A,B ∈ B(U) the sheaf HomB(A,B) is flat (as a sheaf of
R-modules).

Suppose now that C is a stack in k-linear categories on X and R is a commu-
tative Artin k-algebra. We denote by Def(C)(R) the 2-category with

• objects: pairs (B, $), where B is a stack in R-linear categories flat over R
and $ : B̃ ⊗R k → C is an equivalence of stacks in k-linear categories
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• 1-morphisms: a 1-morphism (B(1), $(1)) → (B(2), $(2)) is a pair (F, θ) where
F : B(1) → B(2) is a R-linear functor and θ : $(2) ◦ (F ⊗R k) → $(1) is an
isomorphism of functors

• 2-morphisms: a 2-morphism (F ′, θ′) → (F ′′, θ′′) is a morphism of R-linear
functors κ : F ′ → F ′′ such that θ′′ ◦ (Id$(2) ⊗ (κ⊗R k)) = θ′

The 2-category Def(C)(R) is a 2-groupoid.

Lemma 6.2. Suppose that B is a flat R-linear stack on X such that B̃ ⊗R k is an
algebroid stack. Then, B is an algebroid stack.

Proof. Let x ∈ X. Suppose that for any neighborhood U of x the category B(U) is
empty. Then, the same is true about B̃ ⊗R k(U) which contradicts the assumption
that B̃ ⊗R k is an algebroid stack. Therefore, B is locally nonempty.

Suppose that U is an open subset and A,B are two objects in B(U). Let A
and B be their respective images in B̃ ⊗R k(U). We have: HomB̃⊗Rk(U)

(A,B) =
Γ(U ; HomB(A,B)⊗R k). Replacing U by a subset we may assume that there is an
isomorphism φ : A→ B.

The short exact sequence

0 → mR → R→ k → 0

gives rise to the sequence

0 → HomB(A,B)⊗R mR → HomB(A,B) → HomB(A,B)⊗R k → 0

of sheaves on U which is exact due to flatness of HomB(A,B). The surjectivity of
the map HomB(A,B) → HomB(A,B)⊗R k implies that for any x ∈ U there exists
a neighborhood x ∈ V ⊆ U and φ ∈ Γ(V ; HomB(A|V , B|V )) = HomB(V )(A|V , B|V )
such that φ|V is the image of φ. Since φ is an isomorphism and mR is nilpotent it
follows that φ is an isomorphism.

6.2. Deformations of descent data. Suppose that (U ,A) is an k-descent
datum and R is a commutative Artin k-algebra.

We denote by Def ′(U ,A)(R) the 2-category with

• objects: R-deformations of (U ,A); such a gadget is a flat R-descent datum
(U ,B) together with an isomorphism of k-descent data π : (U ,B ⊗R k)) →
(U ,A)

• 1-morphisms: a 1-morphism of deformations (U ,B(1), π(1)) → (U ,B(2), π(2))
is a pair

(φ, a), where φ : (U ,B(1)) → (U ,B(2)) is a 1-morphism of R-descent data and
a : π(2) ◦ (φ⊗R k) → π(1) is 2-isomorphism

• 2-morphisms: a 2-morphism (φ′, a′) → (φ′′, a′′) is a 2-morphism b : φ′ → φ′′

such that a′′ ◦ (Idπ(2) ⊗ (b⊗R k)) = a′
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Suppose that (φ, a) is a 1-morphism. It is immediate from the definition above
that the morphism of k-descent data φ ⊗R k is an isomorphism. Since R is an
extension of k by a nilpotent ideal the morphism φ is an isomorphism. Similarly,
any 2-morphism is an isomorphism, i.e. Def ′(U ,A)(R) is a 2-groupoid.

The assignment R 7→ Def ′(U ,A)(R) is fibered 2-category in 2-groupoids over
the category of commutative Artin k-algebras ([3]).

6.2.1. Star products. A (R-)star product on (U ,A) is a deformation (U ,B, π)
of (U ,A) such that B01 = A01 ⊗k R and π : B01 ⊗R k → A01 is the canonical
isomorphism. In other words, a star product is a structure of an R-descent datum
on (U ,A⊗k R) such that the natural map

(U ,A⊗k R) → (U ,A)

is a morphism of such.
We denote by Def(U ,A)(R) the full 2-subcategory of Def ′(U ,A)(R) whose ob-

jects are star products.
The assignment R 7→ Def(U ,A)(R) is fibered 2-category in 2-groupoids over the

category of commutative Artin k-algebras ([3]) and the inclusions Def(U ,A)(R) →
Def ′(U ,A)(R) extend to a morphism of fibered 2-categories.

Proposition 6.3. Suppose that (U ,A) is a C-linear descent datum with A =
ON0U . Then, the embedding Def(U ,A)(R) → Def ′(U ,A)(R) is an equivalence.

6.2.2. Deformations and G-stacks. Suppose that (U ,A) is a k-descent datum
and (U ,B) is an R-star product on (U ,A). Then, for every p = 0, 1, . . . the matrix
algebra Mat(B)p is a flat R-deformation of the matrix algebra Mat(A)p. The iden-
tification B01 = A01 ⊗k R gives rise to the identification Mat(B)p = Mat(A)p ⊗k R
of the underlying sheaves of R-modules. Using this identification we obtain the
Maurer-Cartan element µp ∈ Γ(NpU ;C2(Mat(A)p)loc⊗kmR). Moreover, the equa-
tion (5.5) implies that for a morphism f : [p] → [q] in ∆ we have f∗µp = f ]µq.
Therefore the collection µp defines an element in Stackstr(G(A) ⊗k mR)0. The
considerations of 5.2.1 and 5.2.2 imply that this construction extends to an iso-
morphism of 2-groupoids

Def(U ,A)(R) → Stackstr(G(A)⊗k mR) (6.1)

Combining (6.1) with the embedding

Stackstr(G(A)⊗k mR) → Stack(G(A)⊗k mR) (6.2)

we obtain the functor

Def(U ,A)(R) → Stack(G(A)⊗k mR) (6.3)

The naturality properties of (6.3) with respect to base change imply that (6.3)
extends to morphism of functors on the category of commutative Artin algebras.

Combining this with the results of Theorems 5.2 and 3.12 implies the following:
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Proposition 6.4. The functor (6.3) is an equivalence.

Proof. By Theorem 5.2 the DGLA G(A)⊗k mR satisfies the assumptions of The-
orem 3.12. The latter says that the inclusion (6.2) is an equivalence. Since (6.1)
is an isomorphism, the composition (6.3) is an equivalence as claimed.

7. Jets

In this section we use constructions involving the infinite jets to simplify the cosim-
plicial DGLA governing the deformations of a descent datum.

7.1. Infinite jets of a vector bundle. Let M be a smooth manifold,
and E a locally-free OM -module of finite rank.

Let πi : M ×M → M , i = 1, 2 denote the projection on the ith. Denote by
∆M : M → M ×M the diagonal embedding and let ∆∗M : OM×M → OM be the
induced map. Let IM := ker(∆∗M ).

Let
J k(E) := (π1)∗

(
OM×M/Ik+1

M ⊗π−1
2 OM

π−1
2 E

)
,

J k
M := J k(OM ). It is clear from the above definition that J k

M is, in a natural way,
a sheaf of commutative algebras and J k(E) is a sheaf of J k

M -modules. If moreover
E is a sheaf of algebras, J k(E) will canonically be a sheaf of algebras as well. We
regard J k(E) as OM -modules via the pull-back map π∗1 : OM → (π1)∗OM×M

For 0 ≤ k ≤ l the inclusion Il+1
M → Ik+1

M induces the surjective map J l(E) →
J k(E). The sheaves J k(E), k = 0, 1, . . . together with the maps just defined
form an inverse system. Define J (E) := lim

←−
J k(E). Thus, J (E) carries a natural

topology.
We denote by pE : J (E) → E the canonical projection. In the case when

E = OM we denote by p the corresponding projection p : JM → OM . By jk : E →
J k(E) we denote the map e 7→ 1 ⊗ e, and j∞ := lim

←−
jk. In the case E = OM we

also have the canonical embedding OM → JM given by f 7→ f · j∞(1).
Let

d1 : OM×M ⊗π∗2OM
π−1

2 E → π−1
1 Ω1

M ⊗π−1
1 OM

OM×M ⊗π−1
2 OM

π−1
2 E

denote the exterior derivative along the first factor. It satisfies

d1(Ik+1
M ⊗π−1

2 OM
π−1

2 E) ⊂ π−1
1 Ω1

M ⊗π−1
1 OM

IkM ⊗π−1
2 OM

π−1
2 E

for each k and, therefore, induces the map

d
(k)
1 : J k(E) → Ω1

M/P ⊗OM
J k−1(E)

The maps d(k)
1 for different values of k are compatible with the maps J l(E) →

J k(E) giving rise to the canonical flat connection

∇can : J (E) → Ω1
M ⊗ J (E)
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Here and below we use notation (•)⊗ J (E) for lim
←−

(•)⊗OM
J k(E).

Since∇can is flat we obtain the complex of sheaves DR(J (E)) = (Ω•M⊗J (E),∇can).
When E = OM embedding OM → JM induces embedding of de Rham complex
DR(O) = (Ω•M , d) into DR(J ). We denote the quotient by DR(J /O). All the com-
plexes above are complexes of soft sheaves. We have the following:

Proposition 7.1. The (hyper)cohomology Hi(M, DR(J (E))) ∼= Hi(Γ(M ; ΩM ⊗
J (E)),∇can) is 0 if i > 0. The map j∞ : E → J (E) induces the isomorphism
between Γ(E) and H0(M, DR(J (E))) ∼= H0(Γ(M ; ΩM ⊗ J (E)),∇can)

7.2. Jets of line bundles. Let, as before, M be a smooth manifold, JM
be the sheaf of infinite jets of smooth functions on M and p : JM → OM be the
canonical projection. Set JM,0 = ker p. Note that JM,0 is a sheaf of OM modules
and therefore is soft.

Suppose now that L is a line bundle onM . Let Isom0(L⊗JM ,J (L)) denote the
sheaf of local JM -module isomorphisms L ⊗ JM → J (L) such that the following
diagram is commutative:

L ⊗ JM //

Id⊗p
##GGGGGGGGG J (L)

pL
}}zz

zz
zz

zz

L

It is easy to see that the canonical map JM → EndJM
(L ⊗ JM ) is an isomor-

phism. For φ ∈ JM,0 the exponential series exp(φ) converges. The composition

JM,0
exp−−→ JM → EndJM

(L ⊗ JM )

defines an isomorphism of sheaves of groups

exp : JM,0 → Aut0(L ⊗ JM ) ,

where Aut0(L⊗JM ) is the sheaf of groups of (locally defined) JM -linear automor-
phisms of L ⊗ JM making the diagram

L ⊗ JM //

Id⊗p
##GGGGGGGGG L ⊗ JM

Id⊗p
{{wwwwwwwww

L

commutative.

Lemma 7.2. The sheaf Isom0(L⊗JM ,J (L)) is a torsor under the sheaf of groups
expJM,0.

Proof. Since L is locally trivial, both J (L) and L ⊗ JM are locally isomorphic
to JM . Therefore the sheaf Isom0(L ⊗ JM ,J (L)) is locally non-empty, hence a
torsor.
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Corollary 7.3. The torsor Isom0(L⊗JM ,J (L)) is trivial, i.e. Isom0(L⊗JM ,J (L)) :=
Γ(M ; Isom0(L ⊗ JM ,J (L))) 6= ∅.

Proof. Since the sheaf of groups JM,0 is soft we have H1(M,JM,0) = 0 ([8], Lemme
22, cf. also [6], Proposition 4.1.7). Therefore every JM,0-torsor is trivial.

Corollary 7.4. The set Isom0(L⊗JM ,J (L)) is an affine space with the underlying
vector space Γ(M ;JM,0).

Let L1 and L2 be two line bundles, and f : L1 → L2 an isomorphism. Then f
induces a map Isom0(L2⊗JM ,J (L2)) → Isom0(L1⊗JM ,J (L1)) which we denote
by Ad f :

Ad f(σ) = (j∞(f))−1 ◦ σ ◦ (f ⊗ Id).

Let L be a line bundle on M and f : N →M is a smooth map. Then there is
a pull-back map f∗ : Isom0(L ⊗ JM ,J (L)) → Isom0(f∗L ⊗ JN ,J (f∗L)).

If L1, L2 are two line bundles, and σi ∈ Isom0(Li⊗JM ,J (Li)), i = 1, 2. Then
we denote by σ1⊗ σ2 the induced element of Isom0((L1⊗L2)⊗JM ,J (L1⊗L2)).

For a line bundle L let L∗ be its dual. Then given σ ∈ Isom0(L ⊗ JM ,J (L))
there exists a unique a unique σ∗ ∈ Isom0(L∗⊗JM ,J (L∗)) such that σ∗⊗σ = Id.

For any bundle E J (E) has a canonical flat connection which we denote ∇can

. A choice of σ ∈ Isom0(L⊗JM ,J (L)) induces the flat connection σ−1 ◦∇can
L ◦ σ

on L ⊗ JM .
Let ∇ be a connection on L with the curvature θ. It gives rise to the connection

∇⊗ Id + Id⊗∇can on L ⊗ JM .

Lemma 7.5. 1. Choose σ, ∇ as above. Then the difference

F (σ,∇) = σ−1 ◦ ∇can
L ◦ σ − (∇⊗ Id + Id⊗∇can) (7.1)

is an element of ∈ Ω1 ⊗ EndJM
(L ⊗ JM ) ∼= Ω1 ⊗ JM .

2. Moreover, F satisfies
∇canF (σ,∇) + θ = 0 (7.2)

Proof. We leave the verification of the first claim to the reader. The flatness of
= σ−1 ◦ ∇can

L ◦ σ implies the second claim.

The following properties of our construction are immediate

Lemma 7.6. 1. Let L1 and L2 be two line bundles, and f : L1 → L2 an
isomorphism. Let ∇ be a connection on L2 and σ ∈ Isom0(L2⊗JM ,J (L2)).
Then

F (σ,∇) = F (Ad f(σ),Ad f(∇))

2. Let L be a line bundle on M , ∇ a connection on L and σ ∈ Isom0(L ⊗
JM ,J (L)). Let f : N →M be a smooth map. Then

f∗F (σ,∇) = F (f∗σ, f∗∇)
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3. Let L be a line bundle on M , ∇ a connection on L and σ ∈ Isom0(L ⊗
JM ,J (L)). Let φ ∈ Γ(M ;JM,0). Then

F (φ · σ,∇) = F (σ,∇) +∇canφ

4. Let L1, L2 be two line bundles with connections ∇1 and ∇2 respectively, and
let σi ∈ Isom0(Li ⊗ JM ,J (Li)), i = 1, 2. Then

F (σ1 ⊗ σ2,∇1 ⊗ Id + Id⊗∇2) = F (σ1,∇1) + F (σ2,∇2)

7.3. DGLAs of infinite jets. Suppose that (U ,A) is a descent datum
representing a twisted form of OX . Thus, we have the matrix algebra Mat(A) and
the cosimplicial DGLA G(A) of local C-linear Hochschild cochains.

The descent datum (U ,A) gives rise to the descent datum (U ,J (A)), J (A) =
(J (A),J (A01), j∞(A012)), representing a twisted form of JX , hence to the matrix
algebra Mat(J (A)) and the corresponding cosimplicial DGLA G(J (A)) of local O-
linear continuous Hochschild cochains.

The canonical flat connection ∇can on J (A) induces the flat connection, still
denoted ∇can on Mat(J (A))p for each p; the product on Mat(J (A))p is horizontal
with respect to ∇can. The flat connection ∇can induces the flat connection, still
denoted ∇can on C•(Mat(J (A))p)loc[1] which acts by derivations of the Gersten-
haber bracket and commutes with the Hochschild differential δ. Therefore we have
the sheaf of DGLA DR(C•(Mat(J (A))p)loc[1]) with the underlying sheaf of graded
Lie algebras Ω•NpU ⊗ C•(Mat(J (A))p)loc[1] and the differential ∇can + δ.

For λ : [n] → ∆ let

GDR(J (A))λ = Γ(Nλ(n)U ;λ(0n)∗DR(C•(Mat(J (A))λ(0))loc[1]))

be the DGLA of global sections. The “inclusion of horizontal sections” map induces
the morphism of DGLA

j∞ : G(A)λ → GDR(J (A))λ

For φ : [m] → [n] in ∆, µ = λ ◦ φ there is a morphism of DGLA φ∗ :
GDR(J (A))µ → GDR(J (A))λ making the diagram

G(A)λ
j∞−−−−→ GDR(J (A))λ

φ∗

y yφ∗
G(A)µ

j∞−−−−→ GDR(J (A))µ

commutative.
Let GDR(J (A))n =

∏
[n]

λ−→∆
GDR(J (A))λ. The assignment ∆ 3 [n] 7→ GDR(J (A))n,

φ 7→ φ∗ defines the cosimplicial DGLA GDR(J (A)).

Proposition 7.7. The map j∞ : G(A) → G(J (A)) extends to a quasiisomor-
phism of cosimplicial DGLA.

j∞ : G(A) → GDR(J (A))
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The goal of this section is to construct a quasiisomorphism of the latter DGLA
with the simpler DGLA.

The canonical flat connection∇can on JX induces a flat connection on C
•
(JX)[1],

the complex of O-linear continuous normalized Hochschild cochains, still denoted
∇can which acts by derivations of the Gerstenhaber bracket and commutes with
the Hochschild differential δ. Therefore we have the sheaf of DGLA DR(C

•
(JX)[1])

with the underlying graded Lie algebra Ω•X ⊗ C
•
(JX)[1] and the differential δ +

∇can.
Recall that the Hochschild differential δ is zero on C0(JX) due to commu-

tativity of JX . It follows that the action of the sheaf of abelian Lie algebras
JX = C0(JX) on C

•
(JX)[1] via the restriction of the adjoint action (by deriva-

tions of degree −1) commutes with the Hochschild differential δ. Since the cochains
we consider are OX -linear, the subsheaf OX = OX · j∞(1) ⊂ JX acts trivially.
Hence the action of JX descends to an action of the quotient JX/OX . This
action induces the action of the abelian graded Lie algebra Ω•X ⊗ JX/OX by
derivations on the graded Lie algebra Ω•X ⊗ C

•
(JX)[1]. Moreover, the subsheaf

(Ω•X ⊗JX/OX)cl := ker(∇can) acts by derivation which commute with the differ-
ential δ + ∇can. For ω ∈ Γ(X; (Ω2

X ⊗ JX/OX)cl) we denote by DR(C
•
(JX)[1])ω

the sheaf of DGLA with the underlying graded Lie algebra Ω•X ⊗ C
•
(JX)[1] and

the differential δ +∇can + ιω. Let

gDR(JX)ω = Γ(X; DR(C
•
(JX)[1])ω) ,

be the corresponding DGLA of global sections.
Suppose now that U is a cover of X; let ε : NU → X denote the canonical map.

For λ : [n] → ∆ let

GDR(J )λω = Γ(Nλ(n)U ; ε∗DR(C
•
(JX)[1])ω)

For µ : [m] → ∆ and a morphism φ : [m] → [n] in ∆ such that µ = λ ◦ φ the map
µ(m) → λ(n) induces the map

φ∗ : GDR(J )µω → GDR(J )λω

For n = 0, 1, . . . let GDR(J )nω =
∏

[n]
λ−→∆

GDR(J )λω. The assignment [n] 7→ GDR(J )nω
extends to a cosimplicial DGLA GDR(J )ω. We will also denote this DGLA by
GDR(J )ω(U) if we need to explicitly indicate the cover.

Lemma 7.8. The cosimplicial DGLA GDR(J )ω is acyclic, i.e. satisfies the condi-
tion (3.8).

Proof. Consider the cosimplicial vector space V • with V n = Γ(NnU ; ε∗DR(C
•
(JX)[1])ω)

and the cosimplicial structure induced by the simplicial structure of NU . The co-
homology of the complex (V •, ∂) is the Čech cohomology of U with the coefficients
in the soft sheaf of vector spaces Ω• ⊗ C

•
(JX)[1] and, therefore, vanishes in the

positive degrees. GDR(J )ω as a cosimplicial vector space can be identified with V̂ •

in the notations of Lemma 2.1. Hence the result follows from the Lemma 2.1.
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We leave the proof of the following lemma to the reader.

Lemma 7.9. The map ε∗ : gDR(JX)ω → GDR(J )0ω induces an isomorphism of
DGLA

gDR(JX)ω ∼= ker(GDR(J )0ω ⇒ GDR(J )1ω)

where the two maps on the right are (∂0
0)∗ and (∂0

1)∗.

Two previous lemmas together with the Corollary 3.13 imply the following:

Proposition 7.10. Let ω ∈ Γ(X; (Ω2
X ⊗ JX/OX)cl) and let m be a commutative

nilpotent ring. Then the map ε∗ induces equivalence of groupoids:

MC2(gDR(JX)ω ⊗m) ∼= Stack(GDR(J )ω ⊗m)

For β ∈ Γ(X; Ω1 ⊗ JX/OX) there is a canonical isomorphism of cosimplicial
DGLA exp(ιβ) : GDR(J )ω+∇canβ → GDR(J )ω. Therefore, GDR(J )ω depends only
on the class of ω in H2

DR(JX/OX).
The rest of this section is devoted to the proof of the following theorem.

Theorem 7.11. Suppose that (U ,A) is a descent datum representing a twisted
form S of OX . There exists a quasi-isomorphism of cosimplicial DGLA GDR(J )[S] →
GDR(J (A)).

7.4. Quasiisomorphism. Suppose that (U ,A) is a descent datum for a
twisted form of OX . Thus, A is identified with ON0U and A01 is a line bundle on
N1U .

7.4.1. Multiplicative connections. Let Cµ(A01) denote the set of connections
∇ on A01 which satisfy

1. AdA012((pr2
02)
∗∇) = (pr2

01)
∗∇⊗ Id + Id⊗ (pr2

12)
∗∇

2. (pr0
00)
∗∇ is the canonical flat connection on ON0U .

Let Isomµ
0 (A01⊗JN1U ,J (A01)) denote the subset of Isom0(A01⊗JN1U ,J (A01))

which consists of σ which satisfy

1. AdA012((pr2
02)
∗σ) = (pr2

01)
∗σ ⊗ (pr2

12)
∗σ

2. (pr0
00)
∗σ = Id

Note that the vector space Z
1
(U ; Ω1) of cocycles in the normalized Čech com-

plex of the cover U with coefficients in the sheaf of 1-forms Ω1 acts on the set
Cµ(A01), with the action given by

α · ∇ = ∇+ α (7.3)

Here ∇ ∈ Cµ(A01), α ∈ Z
1
(U ; Ω1) ⊂ Ω1(N1U).

Similarly, the vector space Z
1
(U ;J0) acts on the set Isomµ

0 (A01⊗JN1U ,J (A01)),
with the action given as in Corollary 7.4.

Note that since the sheaves involved are soft, cocycles coincide with cobound-
aries: Z

1
(U ; Ω1) = B

1
(U ; Ω1), Z

1
(U ;J0) = B

1
(U ;J0).
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Proposition 7.12. The set Cµ(A01) (respectively, Isomµ
0 (A01 ⊗ JN1U ,J (A01)))

is an affine space with the underlying vector space being Z
1
(U ; Ω1) (respectively,

Z
1
(U ;J0)).

Proof. Proofs of the both statements are completely analogous. Therefore we
explain the proof of the statement concerning Isomµ

0 (A01 ⊗ JN1U ,J (A01)) only.
We show first that Isomµ

0 (A01 ⊗ JN1U ,J (A01)) is nonempty. Choose an ar-
bitrary σ ∈ Isom0(A01 ⊗ JN1U ,J (Aij)) such that (pr0

00)
∗σ = Id. Then, by

Corollary 7.4, there exists c ∈ Γ(N2U ;J0) such that c · (AdA012((d1)∗σ02)) =
(d0)∗σ01 ⊗ (d2)∗σ12. It is easy to see that c ∈ Z

2
(U ; expJ0). Since the sheaf

expJ0 is soft, corresponding Čech cohomology is trivial. Therefore, there exists
φ ∈ C1

(U ;J0) such that c = ∂̌φ. Then, φ · σ ∈ Isomµ
0 (A01 ⊗ JN1U ,J (A01)).

Suppose that σ, σ′ ∈ Isomµ
0 (A01⊗JN1U ,J (A01)). By the Corollary 7.4 σ = φ·σ′

for some uniquely defined φ ∈ Γ(N2U ;J0). It is easy to see that φ ∈ Z1
(U ;J0).

We assume from now on that we have chosen σ ∈ Isomµ
0 (A01⊗JN1U ,J (A01)),

∇ ∈ Cµ(A01). Such a choice defines σpij ∈ Isom0(Aij ⊗ JNpU ,J (Aij)) for every p
and 0 ≤ i, j ≤ p by σpij = (prpij)

∗σ. This collection of σpij induces for every p algebra
isomorphism σp : Mat(A)p ⊗ JNpU → Mat(J (A))p. The following compatibility
holds for these isomorphisms. Let f : [p] → [q] be a morphism in ∆. Then the
following diagram commutes:

f∗(Mat(A)p ⊗ JNpU )
f∗−−−−→ f ]Mat(A⊗ JNqU )q

f∗(σ
p)

y yf](σp)

f∗Mat(J (A))p
f∗−−−−→ f ]Mat(J (A))q

(7.4)

Similarly define the connections ∇p
ij = (prpij)

∗∇. For p = 0, 1, . . . set ∇p =
⊕pi,j=0∇ij ; the connections ∇p on Mat(A)p satisfy

f∗∇p = (Ad f∗)(f ]∇q) . (7.5)

Note that F (σ,∇) ∈ Γ(N1U ; Ω1
N1U⊗JN1U ) is a cocycle of degree one in Č•(U ; Ω1

X⊗
JX). Vanishing of the corresponding Čech cohomology implies that there exists
F 0 ∈ Γ(N0U ; Ω1

N0U ⊗ JN0U ) such that

(d1)∗F 0 − (d0)∗F 0 = F (σ,∇). (7.6)

For p = 0, 1, . . ., 0 ≤ i ≤ p, let F pii = (prpi )
∗F 0; put F pij = 0 for i 6= j. Let

F p ∈ Γ(NpU ; Ω1
NpU⊗Mat(A)p)⊗JNpU denote the diagonal matrix with components

F pij . For f : [p] → [q] we have

f∗F
p = f ]F q . (7.7)

Then, we obtain the following equality of connections on Mat(A)p ⊗ JNpU :

(σp)−1 ◦ ∇can ◦ σp = ∇p ⊗ Id + Id⊗∇can + adF p (7.8)
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The matrices F p also have the following property. Let ∇canF p be the diagonal
matrix with the entries (∇canF p)ii = ∇canF pii. Denote by ∇canF p the image of
∇canF p under the natural map Γ(NpU ; Ω2

NpU⊗Mat(A)p⊗JNpU ) → Γ(NpU ; Ω2
NpU⊗

Mat(A)p ⊗ (JNpU/ONpU )). Recall the canonical map εp : NpU → X. Then, we
have the following:

Lemma 7.13. There exists a unique ω ∈ Γ(X; (Ω2
X ⊗ JX/OX)cl) such that

∇canF p = −ε∗pω ⊗ Idp,

where Idp denotes the (p+ 1)× (p+ 1) identity matrix.

Proof. Using the definition of F 0 and formula (7.2) we obtain: (d1)∗∇canF 0 −
(d0)∗∇canF 0 = ∇canF (σ,∇) ∈ Ω2(N1U). Therefore (d1)∗∇canF 0−(d0)∗∇canF 0 =
0, and there exists a unique ω ∈ Γ(X; Ω2

X ⊗ (JX/OX)) such that ε∗0ω = ∇canF 0.
Since (∇can)2 = 0 it follows that ∇canω = 0. For any p we have: (∇canF p)ii =
pr∗i∇canF 0 = ε∗pω, and the assertion of the Lemma follows.

Lemma 7.14. The class of ω in H2(Γ(X; Ω•X ⊗JX/OX),∇can) does not depend
on the choices made in its construction.

Proof. The construction of ω depends on the choice of σ ∈ Isomµ
0 (A01⊗JN1U ,J (A01)),

∇ ∈ Cµ(A01) and F 0 satisfying the equation (7.6). Assume that we make different
choices: σ′ = (∂̌φ) ·σ, ∇′ = (∂̌α) ·∇ and (F 0)′ satisfying ∂̌(F 0)′ = F (σ′,∇′). Here,
φ ∈ C0

(U ;J0) and α ∈ C0
(U ; Ω1). We have: F (σ′,∇′) = F (σ,∇)−∂̌α+∂̌∇canφ. It

follows that ∂̌((F 0)′−F 0−∇canφ+α) = 0. Therefore (F 0)′−F 0−∇canφ+α = −ε∗0β
for some β ∈ Γ(X; Ω1

X ⊗ JX). Hence if ω′ is constructed using σ′, ∇′, (F 0)′

then ω′ − ω = ∇canβ where β is the image of β under the natural projection
Γ(X; Ω1

X ⊗ JX) → Γ(X; Ω1
X ⊗ (JX/OX)).

Let ρ : V → U be a refinement of the cover U , and (V,Aρ) the corresponding
descent datum. Choice of σ, ∇, F 0 on U induces the corresponding choice (Nρ)∗σ,
(Nρ)∗∇, (Nρ)∗(F 0) on V. Let ωρ denotes the form constructed as in Lemma 7.13
using (Nρ)∗σ, (Nρ)∗∇, (Nρ)∗F 0. Then,

ωρ = (Nρ)∗ω.

The following result now follows easily and we leave the details to the reader.

Proposition 7.15. The class of ω in H2(Γ(X; Ω•X ⊗ JX/OX),∇can) coincides
with the image [S] of the class of the gerbe.

7.5. Construction of the quasiisomorphism. For λ : [n] → ∆ let

Hλ := Γ(Nλ(n)U ; Ω•Nλ(n)U ⊗ λ(0n)∗C•(Mat(A)λ(0) ⊗ JNλ(0)U )loc[1])

considered as a graded Lie algebra. For φ : [m] → [n], µ = λ◦φ there is a morphism
of graded Lie algebras φ∗ : Hµ → Hλ. For n = 0, 1, . . . let Hn :=

∏
[n]

λ−→∆
Hλ. The

assignment ∆ 3 [n] 7→ Hn, φ 7→ φ∗ defines a cosimplicial graded Lie algebra H.
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For each λ : [n] → ∆ the map

σλ∗ := Id⊗ λ(0n)∗(σλ(0)) : Hλ → GDR(J (A))λ

is an isomorphism of graded Lie algebras. It follows from (7.4) that the maps σλ∗
yield an isomorphism of cosimplicial graded Lie algebras

σ∗ : H → GDR(J (A)).

Moreover, the equation (7.8) shows that if we equip H with the differential given
on Γ(Nλ(n)U ; Ω•Nλ(n)U ⊗ λ(0n)∗C•(Mat(A)λ(0) ⊗ JNλ(0)U )loc[1]) by

δ + λ(0n)∗(∇λ(0))⊗ Id + Id⊗∇can + adλ(0n)∗(Fλ(0))

= δ + λ(0n)](∇λ(n))⊗ Id + Id⊗∇can + adλ(0n)](Fλ(n))) (7.9)

then σ∗ becomes an isomorphism of DGLA. Consider now an automorphism exp ιF
of the cosimplicial graded Lie algebra H given on Hλ by exp ιλ(0n)∗Fp

. Note the fact
that this morphism preserves the cosimplicial structure follows from the relation
(7.7).

The following result is proved by the direct calculation; see [4], Lemma 16.

Lemma 7.16.

exp(ιFp
) ◦ (δ +∇p ⊗ Id + Id⊗∇can + adF p) ◦ exp(−ιFp

) =
δ +∇p ⊗ Id + Id⊗∇can − ι∇Fp . (7.10)

Therefore the morphism
exp ιF : H → H (7.11)

conjugates the differential given by the formula (7.9) into the differential which on
Hλ is given by

δ + λ(0n)∗(∇λ(0))⊗ Id + Id⊗∇can − ιλ(0n)∗(∇canFλ(0)) (7.12)

Consider the map

cotr : C
•
(JNpU )[1] → C•(Mat(A)p ⊗ JNpU )[1] (7.13)

defined as follows:

cotr(D)(a1 ⊗ j1, . . . , an ⊗ jn) = a0 . . . anD(j1, . . . , jn). (7.14)

The map cotr is a quasiisomorphism of DGLAs (cf. [15], section 1.5.6; see also
[4] Proposition 14).

Lemma 7.17. For every p the map

Id⊗ cotr : Ω•NpU ⊗ C
•
(JNpU )[1] → Ω•NpU ⊗ C•(Mat(A)p ⊗ JNpU )[1] . (7.15)

is a quasiisomorphism of DGLA, where the source and the target are equipped with
the differentials δ +∇can + ιε∗ω and δ +∇p ⊗ Id+ Id⊗∇can − ι∇Fp respectively.
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Proof. It is easy to see that Id⊗ cotr is a morphism of graded Lie algebras, which
satisfies (∇p⊗Id+Id⊗∇can)◦(Id⊗cotr) = (Id⊗cotr)◦∇can and δ◦(Id⊗cotr) =
(Id⊗ cotr) ◦ δ. Since the domain of (Id⊗ cotr) is the normalized complex, in view
of the Lemma 7.13 we also have ι∇Fp ◦ (Id ⊗ cotr) = −(Id ⊗ cotr) ◦ ιε∗ω. This
implies that (Id⊗ cotr) is a morphism of DGLA.

To see that this map is a quasiisomorphism, introduce filtration on Ω•NpU by

FiΩ•NpU = Ω≥−iNpU and consider the complexes C
•
(JNpU )[1] and C•(Mat(A))p ⊗

JNpU )[1] equipped with the trivial filtration. The map (7.15) is a morphism of
filtered complexes with respect to the induced filtrations on the source and the
target. The differentials induced on the associated graded complexes are δ (or,
more precisely, Id ⊗ δ) and the induced map of the associated graded objects is
Id ⊗ cotr which is a quasi-isomorphism. Therefore, the map (7.15) is a quasiiso-
morphism as claimed.

The map (7.15) therefore induces for every λ : [n] → ∆ a morphism Id⊗ cotr :
GDR(J )λω → Hλ. These morphisms are clearly compatible with the cosimplicial
structure and hence induce a quasiisomorphism of cosimplicial DGLAs

Id⊗ cotr : GDR(J )ω → H

where the differential in the right hand side is given by (7.12).
We summarize our consideration in the following:

Theorem 7.18. For a any choice of σ ∈ Isomµ
0 (A01 ⊗ JN1U ,J (A01)), ∇ ∈

Cµ(A01) and F 0 as in (7.6) the composition Φσ,∇,F := σ∗ ◦ exp(ιF ) ◦ (Id⊗ cotr)

Φσ,∇,F : GDR(J )ω → GDR(J (A)) (7.16)

is a quasiisomorphism of cosimplicial DGLAs.

Let ρ : V → U be a refinement of the cover U and let (V,Aρ) be the in-
duced descent datum. We will denote the corresponding cosimplicial DGLAs by
GDR(J )ω(U) and GDR(J )ω(V) respectively. Then the map Nρ : NV → NU induces
a morphism of cosimplicial DGLAs

(Nρ)∗ : GDR(J (A)) → GDR(J (Aρ)) (7.17)

and
(Nρ)∗ : GDR(J )ω(U) → GDR(J )ω(V). (7.18)

Notice also that the choice that the choice of data σ, ∇, F 0 on NU induces the
corresponding data (Nρ)∗σ, (Nρ)∗∇, (Nρ)∗F 0 on NV. This data allows one to
construct using the equation (7.16) the map

Φ(Nρ)∗σ,(Nρ)∗∇,(Nρ)∗F : GDR(J )ω → GDR(J (Aρ)) (7.19)

The following Proposition is an easy consequence of the description of the map
Φ, and we leave the proof to the reader.
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Proposition 7.19. The following diagram commutes:

GDR(J )ω(U)
(Nρ)∗−−−−→ GDR(J )ω(V)

Φσ,∇,F

y yΦ(Nρ)∗σ,(Nρ)∗∇,(Nρ)∗F

GDR(J (A))
(Nρ)∗−−−−→ GDR(J (Aρ))

(7.20)

8. Proof of the main theorem

In this section we prove the main result of this paper. Recall the statement of the
theorem from the introduction:

Theorem 1. Suppose that X is a C∞ manifold and S is an algebroid stack on X
which is a twisted form of OX . Then, there is an equivalence of 2-groupoid valued
functors of commutative Artin C-algebras

DefX(S) ∼= MC2(gDR(JX)[S]) .

Proof. Suppose U is a cover of X such that ε∗0S(N0U) is nonempty. There is a
descent datum (U ,A) ∈ DescC(U) whose image under the functor DescC(U) →
AlgStackC(X) is equivalent to S.

The proof proceeds as follows. Recall the 2-groupoids Def ′(U ,A)(R) and
Def(U ,A)(R) of deformations of and star-products on the descent datum (U ,A)
defined in the Section 6.2. Note that the composition DescR(U) → TrivR(X) →
AlgStackR(X) induces functors Def ′(U ,A)(R) → Def(S)(R) and Def(U ,A)(R) →
Def(S)(R), the second one being the composition of the first one with the equiva-
lence Def(U ,A)(R) → Def ′(U ,A)(R). We are going to show that for a commuta-
tive Artin C-algebra R there are equivalences

1. Def(U ,A)(R) ∼= MC2(gDR(JX)[S])(R) and

2. the functor Def(U ,A)(R) ∼= Def(S)(R) induced by the functor Def(U ,A)(R) →
Def(S)(R) above.

Let J (A) = (J (A01), j∞(A012)). Then, (U ,J (A)) is a descent datum for a
twisted form of JX . Let R be a commutative Artin C-algebra with maximal ideal
mR.

Then the first statement follows from the equivalences

Def(U ,A)(R) ∼= Stack(G(A)⊗mR) (8.1)
∼= Stack(GDR(J (A)))⊗mR) (8.2)
∼= Stack(GDR(JX)[S] ⊗mR) (8.3)
∼= MC2(gDR(JX)[S] ⊗mR) (8.4)

Here the equivalence (8.1) is the subject of the Proposition 6.4. The inclusion
of horizontal sections is a quasi-isomorphism and the induced map in (8.2) is an
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equivalence by Theorem 3.6. In the Theorem 7.18 we have constructed a quasi-
isomorphism G(JX)[S] → G(J (A)); the induced map (8.3) is an equivalence by
another application of Theorem 3.6. Finally, the equivalence (8.4) is shown in the
Proposition 7.10

We now proceed with the proof of the second statement. We begin by consid-
ering the behavior of Def ′(U ,A)(R) under the refinement. Consider a refinement
ρ : V → U . Recall that by the Proposition 7.10 the map ε∗ induces equiva-
lences MC2(gDR(JX)ω⊗m) → Stack(GDR(J )ω(U)⊗m) and MC2(gDR(JX)ω⊗m) →
Stack(GDR(J )ω(V)⊗m). It is clear that the diagram

MC2(gDR(JX)ω ⊗m)

%%LLLLLLLLLLL

yyrrrrrrrrrrr

Stack(GDR(J )ω(U)⊗m)
(Nρ)∗ // Stack(GDR(J )ω(V)⊗m)

commutes, and therefore (Nρ)∗ : Stack(GDR(J )ω(U)⊗m) → Stack(GDR(J )ω(V)⊗
m) is an equivalence. Then the Proposition 7.19 together with the Theorem 3.6
implies that (Nρ)∗ : Stack(GDR(J (A))) ⊗ m) → Stack(GDR(J (Aρ))) ⊗ m) is an
equivalence. It follows that the functor ρ∗ : Def(U ,A)(R) → Def(V,Aρ)(R) is an
equivalence. Note also that the diagram

Def(U ,A)(R)
ρ∗−−−−→ Def(V,Aρ)(R)y y

Def ′(U ,A)(R)
ρ∗−−−−→ Def ′(V,Aρ)(R)

is commutative with the top horizontal and both vertical maps being equivalences.
Hence it follows that the bottom horizontal map is an equivalence.

Recall now that by the Proposition 6.3 the embedding Def(U ,A)(R) → Def ′(U ,A)(R)
is an equivalence. Therefore it is sufficient to show that the functor Def ′(U ,A)(R) →
Def(S)(R) is an equivalence. Suppose that C is an R-deformation of S. It follows
from Lemma 6.2 that C is an algebroid stack. Therefore, there exists a cover
V and an R-descent datum (V,B) whose image under the functor DescR(V) →
AlgStackR(X) is equivalent to C. Replacing V by a common refinement of U and
V if necessary we may assume that there is a morphism of covers ρ : V → U .
Clearly, (V,B) is a deformation of (V,Aρ). Since the functor ρ∗ : Def ′(U ,A)(R) →
Def ′(V,Aρ) is an equivalence there exists a deformation (U ,B′) such that ρ∗(U ,B′)
is isomorphic to (V,B). Let C′ denote the image of (U ,B′) under the func-
tor DescR(V) → AlgStackR(X). Since the images of (U ,B′) and ρ∗(U ,B′) in
AlgStackR(X) are equivalent it follows that C′ is equivalent to C. This shows that
the functor Def ′(U ,A)(R) → Def(C)(R) is essentially surjective.

Suppose now that (U ,B(i)), i = 1, 2, are R-deformations of (U ,A). Let C(i)

denote the image of (U ,B(i)) in Def(S)(R). Suppose that F : C(1) → C(2) is a
1-morphism.
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Let L denote the image of the canonical trivialization under the composition

ε∗0(F ) : B̃(1)+ ∼= ε∗0C(1) F−→ ε∗0C(1) ∼= B̃(2)+ .

Thus, L is a B(1)⊗RB(2)op-module such that the line bundle L⊗RC is trivial. There-
fore, L admits a non-vanishing global section. Moreover, there is an isomorphism
f : B(1)

01 ⊗(B(1))11
(pr1

1)
∗L→ (pr1

0)
∗L⊗(B(2))10

B(2)
01 of (B(1))10⊗R ((B(2))11)

op-modules.
A choice of a non-vanishing global section of L gives rise to isomorphisms

B(1)
01

∼= B(1)
01 ⊗(B(1))11

(pr1
1)
∗L and B(2)

01
∼= (pr1

0)
∗L⊗(B(2))10

B(2)
01 .

The composition

B(1)
01

∼= B(1)
01 ⊗(B(1))11

(pr1
1)
∗L

f−→ (pr1
0)
∗L⊗(B(2))10

B(2)
01

∼= B(2)
01

defines a 1-morphism of deformations of (U ,A) such that the induced 1-morphism
C(1) → C(2) is isomorphic to F . This shows that the functor Def ′(U ,A)(R) →
Def(C) induces essentially surjective functors on groupoids of morphisms. By sim-
ilar arguments left to the reader one shows that these are fully faithful.

This completes the proof of Theorem 1.
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